630 lines
23 KiB
C++
630 lines
23 KiB
C++
// Copyright 2020-2022 Junekey Jeon
|
|
//
|
|
// The contents of this file may be used under the terms of
|
|
// the Apache License v2.0 with LLVM Exceptions.
|
|
//
|
|
// (See accompanying file LICENSE-Apache or copy at
|
|
// https://llvm.org/foundation/relicensing/LICENSE.txt)
|
|
//
|
|
// Alternatively, the contents of this file may be used under the terms of
|
|
// the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE-Boost or copy at
|
|
// https://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, this software
|
|
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied.
|
|
|
|
#ifndef JKJ_HEADER_DRAGONBOX_TO_CHARS
|
|
#define JKJ_HEADER_DRAGONBOX_TO_CHARS
|
|
|
|
#include "dragonbox.h"
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#define JKJ_FORCEINLINE inline __attribute__((always_inline))
|
|
#elif defined(_MSC_VER)
|
|
#define JKJ_FORCEINLINE __forceinline
|
|
#else
|
|
#define JKJ_FORCEINLINE inline
|
|
#endif
|
|
|
|
namespace jkj::dragonbox {
|
|
namespace to_chars_detail {
|
|
template <class Float, class FloatTraits>
|
|
extern char *to_chars(typename FloatTraits::carrier_uint significand,
|
|
int exponent, char *buffer) noexcept;
|
|
|
|
// These "//"'s are to prevent clang-format to ruin this nice alignment.
|
|
// Thanks to reddit user u/mcmcc:
|
|
// https://www.reddit.com/r/cpp/comments/so3wx9/dragonbox_110_is_released_a_fast_floattostring/hw8z26r/?context=3
|
|
static constexpr char radix_100_table[] = {
|
|
'0', '0', '0', '1', '0', '2', '0', '3', '0', '4', //
|
|
'0', '5', '0', '6', '0', '7', '0', '8', '0', '9', //
|
|
'1', '0', '1', '1', '1', '2', '1', '3', '1', '4', //
|
|
'1', '5', '1', '6', '1', '7', '1', '8', '1', '9', //
|
|
'2', '0', '2', '1', '2', '2', '2', '3', '2', '4', //
|
|
'2', '5', '2', '6', '2', '7', '2', '8', '2', '9', //
|
|
'3', '0', '3', '1', '3', '2', '3', '3', '3', '4', //
|
|
'3', '5', '3', '6', '3', '7', '3', '8', '3', '9', //
|
|
'4', '0', '4', '1', '4', '2', '4', '3', '4', '4', //
|
|
'4', '5', '4', '6', '4', '7', '4', '8', '4', '9', //
|
|
'5', '0', '5', '1', '5', '2', '5', '3', '5', '4', //
|
|
'5', '5', '5', '6', '5', '7', '5', '8', '5', '9', //
|
|
'6', '0', '6', '1', '6', '2', '6', '3', '6', '4', //
|
|
'6', '5', '6', '6', '6', '7', '6', '8', '6', '9', //
|
|
'7', '0', '7', '1', '7', '2', '7', '3', '7', '4', //
|
|
'7', '5', '7', '6', '7', '7', '7', '8', '7', '9', //
|
|
'8', '0', '8', '1', '8', '2', '8', '3', '8', '4', //
|
|
'8', '5', '8', '6', '8', '7', '8', '8', '8', '9', //
|
|
'9', '0', '9', '1', '9', '2', '9', '3', '9', '4', //
|
|
'9', '5', '9', '6', '9', '7', '9', '8', '9', '9' //
|
|
};
|
|
static constexpr char radix_100_head_table[] = {
|
|
'0', '.', '1', '.', '2', '.', '3', '.', '4', '.', //
|
|
'5', '.', '6', '.', '7', '.', '8', '.', '9', '.', //
|
|
'1', '.', '1', '.', '1', '.', '1', '.', '1', '.', //
|
|
'1', '.', '1', '.', '1', '.', '1', '.', '1', '.', //
|
|
'2', '.', '2', '.', '2', '.', '2', '.', '2', '.', //
|
|
'2', '.', '2', '.', '2', '.', '2', '.', '2', '.', //
|
|
'3', '.', '3', '.', '3', '.', '3', '.', '3', '.', //
|
|
'3', '.', '3', '.', '3', '.', '3', '.', '3', '.', //
|
|
'4', '.', '4', '.', '4', '.', '4', '.', '4', '.', //
|
|
'4', '.', '4', '.', '4', '.', '4', '.', '4', '.', //
|
|
'5', '.', '5', '.', '5', '.', '5', '.', '5', '.', //
|
|
'5', '.', '5', '.', '5', '.', '5', '.', '5', '.', //
|
|
'6', '.', '6', '.', '6', '.', '6', '.', '6', '.', //
|
|
'6', '.', '6', '.', '6', '.', '6', '.', '6', '.', //
|
|
'7', '.', '7', '.', '7', '.', '7', '.', '7', '.', //
|
|
'7', '.', '7', '.', '7', '.', '7', '.', '7', '.', //
|
|
'8', '.', '8', '.', '8', '.', '8', '.', '8', '.', //
|
|
'8', '.', '8', '.', '8', '.', '8', '.', '8', '.', //
|
|
'9', '.', '9', '.', '9', '.', '9', '.', '9', '.', //
|
|
'9', '.', '9', '.', '9', '.', '9', '.', '9', '.' //
|
|
};
|
|
|
|
// These digit generation routines are inspired by James Anhalt's itoa
|
|
// algorithm: https://github.com/jeaiii/itoa The main idea is for given n, find
|
|
// y such that floor(10^k * y / 2^32) = n holds, where k is an appropriate
|
|
// integer depending on the length of n. For example, if n = 1234567, we set k
|
|
// = 6. In this case, we have floor(y / 2^32) = 1, floor(10^2 * ((10^0 * y) mod
|
|
// 2^32) / 2^32) = 23, floor(10^2 * ((10^2 * y) mod 2^32) / 2^32) = 45, and
|
|
// floor(10^2 * ((10^4 * y) mod 2^32) / 2^32) = 67.
|
|
// See https://jk-jeon.github.io/posts/2022/02/jeaiii-algorithm/ for more
|
|
// explanation.
|
|
|
|
JKJ_FORCEINLINE static void print_9_digits(std::uint32_t s32, int &exponent,
|
|
char *&buffer) noexcept {
|
|
// -- IEEE-754 binary32
|
|
// Since we do not cut trailing zeros in advance, s32 must be of 6~9 digits
|
|
// unless the original input was subnormal.
|
|
// In particular, when it is of 9 digits it shouldn't have any trailing zeros.
|
|
// -- IEEE-754 binary64
|
|
// In this case, s32 must be of 7~9 digits unless the input is subnormal,
|
|
// and it shouldn't have any trailing zeros if it is of 9 digits.
|
|
if (s32 >= 1'0000'0000) {
|
|
// 9 digits.
|
|
// 1441151882 = ceil(2^57 / 1'0000'0000) + 1
|
|
auto prod = s32 * std::uint64_t(1441151882);
|
|
prod >>= 25;
|
|
std::memcpy(buffer, radix_100_head_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 2, radix_100_table + std::uint32_t(prod >> 32) * 2, 2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 4, radix_100_table + std::uint32_t(prod >> 32) * 2, 2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 6, radix_100_table + std::uint32_t(prod >> 32) * 2, 2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 8, radix_100_table + std::uint32_t(prod >> 32) * 2, 2);
|
|
|
|
exponent += 8;
|
|
buffer += 10;
|
|
}
|
|
else if (s32 >= 100'0000) {
|
|
// 7 or 8 digits.
|
|
// 281474978 = ceil(2^48 / 100'0000) + 1
|
|
auto prod = s32 * std::uint64_t(281474978);
|
|
prod >>= 16;
|
|
auto two_digits = std::uint32_t(prod >> 32);
|
|
// If s32 is of 8 digits, increase the exponent by 7.
|
|
// Otherwise, increase it by 6.
|
|
exponent += (6 + unsigned(two_digits >= 10));
|
|
|
|
// Write the first digit and the decimal point.
|
|
std::memcpy(buffer, radix_100_head_table + two_digits * 2, 2);
|
|
// This third character may be overwritten later but we don't care.
|
|
buffer[2] = radix_100_table[two_digits * 2 + 1];
|
|
|
|
// Remaining 6 digits are all zero?
|
|
if (std::uint32_t(prod) <=
|
|
std::uint32_t((std::uint64_t(1) << 32) / 100'0000)) {
|
|
// The number of characters actually written is:
|
|
// 1, if only the first digit is nonzero, which means that either s32 is
|
|
// of 7 digits or it is of 8 digits but the second digit is zero, or 3,
|
|
// otherwise.
|
|
// Note that buffer[2] is never zero if s32 is of 7 digits, because the
|
|
// input is never zero.
|
|
buffer +=
|
|
(1 + (unsigned(two_digits >= 10) & unsigned(buffer[2] > '0')) * 2);
|
|
}
|
|
else {
|
|
// At least one of the remaining 6 digits are nonzero.
|
|
// After this adjustment, now the first destination becomes buffer + 2.
|
|
buffer += unsigned(two_digits >= 10);
|
|
|
|
// Obtain the next two digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer + 2, radix_100_table + two_digits * 2, 2);
|
|
|
|
// Remaining 4 digits are all zero?
|
|
if (std::uint32_t(prod) <=
|
|
std::uint32_t((std::uint64_t(1) << 32) / 1'0000)) {
|
|
buffer += (3 + unsigned(buffer[3] > '0'));
|
|
}
|
|
else {
|
|
// At least one of the remaining 4 digits are nonzero.
|
|
|
|
// Obtain the next two digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer + 4, radix_100_table + two_digits * 2, 2);
|
|
|
|
// Remaining 2 digits are all zero?
|
|
if (std::uint32_t(prod) <=
|
|
std::uint32_t((std::uint64_t(1) << 32) / 100)) {
|
|
buffer += (5 + unsigned(buffer[5] > '0'));
|
|
}
|
|
else {
|
|
// Obtain the last two digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer + 6, radix_100_table + two_digits * 2, 2);
|
|
|
|
buffer += (7 + unsigned(buffer[7] > '0'));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (s32 >= 1'0000) {
|
|
// 5 or 6 digits.
|
|
// 429497 = ceil(2^32 / 1'0000)
|
|
auto prod = s32 * std::uint64_t(429497);
|
|
auto two_digits = std::uint32_t(prod >> 32);
|
|
|
|
// If s32 is of 6 digits, increase the exponent by 5.
|
|
// Otherwise, increase it by 4.
|
|
exponent += (4 + unsigned(two_digits >= 10));
|
|
|
|
// Write the first digit and the decimal point.
|
|
std::memcpy(buffer, radix_100_head_table + two_digits * 2, 2);
|
|
// This third character may be overwritten later but we don't care.
|
|
buffer[2] = radix_100_table[two_digits * 2 + 1];
|
|
|
|
// Remaining 4 digits are all zero?
|
|
if (std::uint32_t(prod) <=
|
|
std::uint32_t((std::uint64_t(1) << 32) / 1'0000)) {
|
|
// The number of characters actually written is 1 or 3, similarly to the
|
|
// case of 7 or 8 digits.
|
|
buffer +=
|
|
(1 + (unsigned(two_digits >= 10) & unsigned(buffer[2] > '0')) * 2);
|
|
}
|
|
else {
|
|
// At least one of the remaining 4 digits are nonzero.
|
|
// After this adjustment, now the first destination becomes buffer + 2.
|
|
buffer += unsigned(two_digits >= 10);
|
|
|
|
// Obtain the next two digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer + 2, radix_100_table + two_digits * 2, 2);
|
|
|
|
// Remaining 2 digits are all zero?
|
|
if (std::uint32_t(prod) <=
|
|
std::uint32_t((std::uint64_t(1) << 32) / 100)) {
|
|
buffer += (3 + unsigned(buffer[3] > '0'));
|
|
}
|
|
else {
|
|
// Obtain the last two digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer + 4, radix_100_table + two_digits * 2, 2);
|
|
|
|
buffer += (5 + unsigned(buffer[5] > '0'));
|
|
}
|
|
}
|
|
}
|
|
else if (s32 >= 100) {
|
|
// 3 or 4 digits.
|
|
// 42949673 = ceil(2^32 / 100)
|
|
auto prod = s32 * std::uint64_t(42949673);
|
|
auto two_digits = std::uint32_t(prod >> 32);
|
|
|
|
// If s32 is of 4 digits, increase the exponent by 3.
|
|
// Otherwise, increase it by 2.
|
|
exponent += (2 + int(two_digits >= 10));
|
|
|
|
// Write the first digit and the decimal point.
|
|
std::memcpy(buffer, radix_100_head_table + two_digits * 2, 2);
|
|
// This third character may be overwritten later but we don't care.
|
|
buffer[2] = radix_100_table[two_digits * 2 + 1];
|
|
|
|
// Remaining 2 digits are all zero?
|
|
if (std::uint32_t(prod) <= std::uint32_t((std::uint64_t(1) << 32) / 100)) {
|
|
// The number of characters actually written is 1 or 3, similarly to the
|
|
// case of 7 or 8 digits.
|
|
buffer +=
|
|
(1 + (unsigned(two_digits >= 10) & unsigned(buffer[2] > '0')) * 2);
|
|
}
|
|
else {
|
|
// At least one of the remaining 2 digits are nonzero.
|
|
// After this adjustment, now the first destination becomes buffer + 2.
|
|
buffer += unsigned(two_digits >= 10);
|
|
|
|
// Obtain the last two digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer + 2, radix_100_table + two_digits * 2, 2);
|
|
|
|
buffer += (3 + unsigned(buffer[3] > '0'));
|
|
}
|
|
}
|
|
else {
|
|
// 1 or 2 digits.
|
|
// If s32 is of 2 digits, increase the exponent by 1.
|
|
exponent += int(s32 >= 10);
|
|
|
|
// Write the first digit and the decimal point.
|
|
std::memcpy(buffer, radix_100_head_table + s32 * 2, 2);
|
|
// This third character may be overwritten later but we don't care.
|
|
buffer[2] = radix_100_table[s32 * 2 + 1];
|
|
|
|
// The number of characters actually written is 1 or 3, similarly to the
|
|
// case of 7 or 8 digits.
|
|
buffer += (1 + (unsigned(s32 >= 10) & unsigned(buffer[2] > '0')) * 2);
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline char *to_chars<float, default_float_traits<float>>(
|
|
std::uint32_t s32, int exponent, char *buffer) noexcept {
|
|
// Print significand.
|
|
print_9_digits(s32, exponent, buffer);
|
|
|
|
// Print exponent and return
|
|
if (exponent < 0) {
|
|
std::memcpy(buffer, "E-", 2);
|
|
buffer += 2;
|
|
exponent = -exponent;
|
|
}
|
|
else {
|
|
buffer[0] = 'E';
|
|
buffer += 1;
|
|
}
|
|
|
|
if (exponent >= 10) {
|
|
std::memcpy(buffer, &radix_100_table[exponent * 2], 2);
|
|
buffer += 2;
|
|
}
|
|
else {
|
|
buffer[0] = char('0' + exponent);
|
|
buffer += 1;
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
template <>
|
|
inline char *to_chars<double, default_float_traits<double>>(
|
|
std::uint64_t const significand, int exponent, char *buffer) noexcept {
|
|
// Print significand by decomposing it into a 9-digit block and a 8-digit
|
|
// block.
|
|
std::uint32_t first_block, second_block;
|
|
bool no_second_block;
|
|
|
|
if (significand >= 1'0000'0000) {
|
|
first_block = std::uint32_t(significand / 1'0000'0000);
|
|
second_block = std::uint32_t(significand) - first_block * 1'0000'0000;
|
|
exponent += 8;
|
|
no_second_block = (second_block == 0);
|
|
}
|
|
else {
|
|
first_block = std::uint32_t(significand);
|
|
no_second_block = true;
|
|
}
|
|
|
|
if (no_second_block) {
|
|
print_9_digits(first_block, exponent, buffer);
|
|
}
|
|
else {
|
|
// We proceed similarly to print_9_digits(), but since we do not need to
|
|
// remove trailing zeros, the procedure is a bit simpler.
|
|
if (first_block >= 1'0000'0000) {
|
|
// The input is of 17 digits, thus there should be no trailing zero at
|
|
// all. The first block is of 9 digits. 1441151882 = ceil(2^57 /
|
|
// 1'0000'0000) + 1
|
|
auto prod = first_block * std::uint64_t(1441151882);
|
|
prod >>= 25;
|
|
std::memcpy(buffer, radix_100_head_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 2, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 4, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 6, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 8, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
|
|
// The second block is of 8 digits.
|
|
// 281474978 = ceil(2^48 / 100'0000) + 1
|
|
prod = second_block * std::uint64_t(281474978);
|
|
prod >>= 16;
|
|
prod += 1;
|
|
std::memcpy(buffer + 10, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 12, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 14, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 16, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
|
|
exponent += 8;
|
|
buffer += 18;
|
|
}
|
|
else {
|
|
if (first_block >= 100'0000) {
|
|
// 7 or 8 digits.
|
|
// 281474978 = ceil(2^48 / 100'0000) + 1
|
|
auto prod = first_block * std::uint64_t(281474978);
|
|
prod >>= 16;
|
|
auto two_digits = std::uint32_t(prod >> 32);
|
|
|
|
std::memcpy(buffer, radix_100_head_table + two_digits * 2, 2);
|
|
buffer[2] = radix_100_table[two_digits * 2 + 1];
|
|
|
|
exponent += (6 + unsigned(two_digits >= 10));
|
|
buffer += unsigned(two_digits >= 10);
|
|
|
|
// Print remaining 6 digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 2, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 4, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 6, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
|
|
buffer += 8;
|
|
}
|
|
else if (first_block >= 1'0000) {
|
|
// 5 or 6 digits.
|
|
// 429497 = ceil(2^32 / 1'0000)
|
|
auto prod = first_block * std::uint64_t(429497);
|
|
auto two_digits = std::uint32_t(prod >> 32);
|
|
|
|
std::memcpy(buffer, radix_100_head_table + two_digits * 2, 2);
|
|
buffer[2] = radix_100_table[two_digits * 2 + 1];
|
|
|
|
exponent += (4 + unsigned(two_digits >= 10));
|
|
buffer += unsigned(two_digits >= 10);
|
|
|
|
// Print remaining 4 digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 2, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 4, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
|
|
buffer += 6;
|
|
}
|
|
else if (first_block >= 100) {
|
|
// 3 or 4 digits.
|
|
// 42949673 = ceil(2^32 / 100)
|
|
auto prod = first_block * std::uint64_t(42949673);
|
|
auto two_digits = std::uint32_t(prod >> 32);
|
|
|
|
std::memcpy(buffer, radix_100_head_table + two_digits * 2, 2);
|
|
buffer[2] = radix_100_table[two_digits * 2 + 1];
|
|
|
|
exponent += (2 + unsigned(two_digits >= 10));
|
|
buffer += unsigned(two_digits >= 10);
|
|
|
|
// Print remaining 2 digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
std::memcpy(buffer + 2, radix_100_table + std::uint32_t(prod >> 32) * 2,
|
|
2);
|
|
|
|
buffer += 4;
|
|
}
|
|
else {
|
|
// 1 or 2 digits.
|
|
std::memcpy(buffer, radix_100_head_table + first_block * 2, 2);
|
|
buffer[2] = radix_100_table[first_block * 2 + 1];
|
|
|
|
exponent += unsigned(first_block >= 10);
|
|
buffer += (2 + unsigned(first_block >= 10));
|
|
}
|
|
|
|
// Next, print the second block.
|
|
// The second block is of 8 digits, but we may have trailing zeros.
|
|
// 281474978 = ceil(2^48 / 100'0000) + 1
|
|
auto prod = second_block * std::uint64_t(281474978);
|
|
prod >>= 16;
|
|
prod += 1;
|
|
auto two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer, radix_100_table + two_digits * 2, 2);
|
|
|
|
// Remaining 6 digits are all zero?
|
|
if (std::uint32_t(prod) <=
|
|
std::uint32_t((std::uint64_t(1) << 32) / 100'0000)) {
|
|
buffer += (1 + unsigned(buffer[1] > '0'));
|
|
}
|
|
else {
|
|
// Obtain the next two digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer + 2, radix_100_table + two_digits * 2, 2);
|
|
|
|
// Remaining 4 digits are all zero?
|
|
if (std::uint32_t(prod) <=
|
|
std::uint32_t((std::uint64_t(1) << 32) / 1'0000)) {
|
|
buffer += (3 + unsigned(buffer[3] > '0'));
|
|
}
|
|
else {
|
|
// Obtain the next two digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer + 4, radix_100_table + two_digits * 2, 2);
|
|
|
|
// Remaining 2 digits are all zero?
|
|
if (std::uint32_t(prod) <=
|
|
std::uint32_t((std::uint64_t(1) << 32) / 100)) {
|
|
buffer += (5 + unsigned(buffer[5] > '0'));
|
|
}
|
|
else {
|
|
// Obtain the last two digits.
|
|
prod = std::uint32_t(prod) * std::uint64_t(100);
|
|
two_digits = std::uint32_t(prod >> 32);
|
|
std::memcpy(buffer + 6, radix_100_table + two_digits * 2, 2);
|
|
buffer += (7 + unsigned(buffer[7] > '0'));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print exponent and return
|
|
if (exponent < 0) {
|
|
std::memcpy(buffer, "E-", 2);
|
|
buffer += 2;
|
|
exponent = -exponent;
|
|
}
|
|
else {
|
|
buffer[0] = 'E';
|
|
buffer += 1;
|
|
}
|
|
|
|
if (exponent >= 100) {
|
|
// d1 = exponent / 10; d2 = exponent % 10;
|
|
// 6554 = ceil(2^16 / 10)
|
|
auto prod = std::uint32_t(exponent) * std::uint32_t(6554);
|
|
auto d1 = prod >> 16;
|
|
prod = std::uint16_t(prod) * std::uint32_t(5); // * 10
|
|
auto d2 = prod >> 15; // >> 16
|
|
std::memcpy(buffer, &radix_100_table[d1 * 2], 2);
|
|
buffer[2] = char('0' + d2);
|
|
buffer += 3;
|
|
}
|
|
else if (exponent >= 10) {
|
|
std::memcpy(buffer, &radix_100_table[exponent * 2], 2);
|
|
buffer += 2;
|
|
}
|
|
else {
|
|
buffer[0] = char('0' + exponent);
|
|
buffer += 1;
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
// Avoid needless ABI overhead incurred by tag dispatch.
|
|
template <class PolicyHolder, class Float, class FloatTraits>
|
|
char *to_chars_n_impl(float_bits<Float, FloatTraits> br,
|
|
char *buffer) noexcept {
|
|
auto const exponent_bits = br.extract_exponent_bits();
|
|
auto const s = br.remove_exponent_bits(exponent_bits);
|
|
|
|
if (br.is_finite(exponent_bits)) {
|
|
if (s.is_negative()) {
|
|
*buffer = '-';
|
|
++buffer;
|
|
}
|
|
if (br.is_nonzero()) {
|
|
auto result = to_decimal<Float, FloatTraits>(
|
|
s, exponent_bits, policy::sign::ignore, policy::trailing_zero::ignore,
|
|
typename PolicyHolder::decimal_to_binary_rounding_policy{},
|
|
typename PolicyHolder::binary_to_decimal_rounding_policy{},
|
|
typename PolicyHolder::cache_policy{});
|
|
return to_chars_detail::to_chars<Float, FloatTraits>(
|
|
result.significand, result.exponent, buffer);
|
|
}
|
|
else {
|
|
std::memcpy(buffer, "0E0", 3);
|
|
return buffer + 3;
|
|
}
|
|
}
|
|
else {
|
|
if (s.has_all_zero_significand_bits()) {
|
|
if (s.is_negative()) {
|
|
*buffer = '-';
|
|
++buffer;
|
|
}
|
|
std::memcpy(buffer, "Infinity", 8);
|
|
return buffer + 8;
|
|
}
|
|
else {
|
|
std::memcpy(buffer, "NaN", 3);
|
|
return buffer + 3;
|
|
}
|
|
}
|
|
}
|
|
} // namespace to_chars_detail
|
|
|
|
// Returns the next-to-end position
|
|
template <class Float, class FloatTraits = default_float_traits<Float>,
|
|
class... Policies>
|
|
char *to_chars_n(Float x, char *buffer, Policies... policies) noexcept {
|
|
using namespace jkj::dragonbox::detail::policy_impl;
|
|
using policy_holder = decltype(make_policy_holder(
|
|
base_default_pair_list<
|
|
base_default_pair<decimal_to_binary_rounding::base,
|
|
decimal_to_binary_rounding::nearest_to_even>,
|
|
base_default_pair<binary_to_decimal_rounding::base,
|
|
binary_to_decimal_rounding::to_even>,
|
|
base_default_pair<cache::base, cache::full>>{},
|
|
policies...));
|
|
|
|
return to_chars_detail::to_chars_n_impl<policy_holder>(
|
|
float_bits<Float, FloatTraits>(x), buffer);
|
|
}
|
|
|
|
// Null-terminate and bypass the return value of fp_to_chars_n
|
|
template <class Float, class FloatTraits = default_float_traits<Float>,
|
|
class... Policies>
|
|
char *to_chars(Float x, char *buffer, Policies... policies) noexcept {
|
|
auto ptr = to_chars_n<Float, FloatTraits>(x, buffer, policies...);
|
|
*ptr = '\0';
|
|
return ptr;
|
|
}
|
|
|
|
// Maximum required buffer size (excluding null-terminator)
|
|
template <class FloatFormat>
|
|
inline constexpr std::size_t max_output_string_length =
|
|
std::is_same_v<FloatFormat, ieee754_binary32>
|
|
?
|
|
// sign(1) + significand(9) + decimal_point(1) + exp_marker(1) +
|
|
// exp_sign(1) + exp(2)
|
|
(1 + 9 + 1 + 1 + 1 + 2)
|
|
:
|
|
// format == ieee754_format::binary64
|
|
// sign(1) + significand(17) + decimal_point(1) + exp_marker(1) +
|
|
// exp_sign(1) + exp(3)
|
|
(1 + 17 + 1 + 1 + 1 + 3);
|
|
} // namespace jkj::dragonbox
|
|
|
|
#endif
|