yalantinglibs/include/ylt/standalone/iguana/detail/itoa.hpp

322 lines
11 KiB
C++

//=== itoa.h - Fast integer to ascii conversion --*- C++ -*-//
//
// The MIT License (MIT)
// Copyright (c) 2016 Arturo Martin-de-Nicolas
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//===----------------------------------------------------------------------===//
#ifndef DEC_ITOA_IMPL_H
#define DEC_ITOA_IMPL_H
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstring> // memcpy
#include <type_traits>
namespace dec_ {
// Using a lookup table to convert binary numbers from 0 to 99
// into ascii characters as described by Andrei Alexandrescu in
// https://www.facebook.com/notes/facebook-engineering/
// three-optimization-tips-for-c/10151361643253920/
template <typename T, size_t N, typename Gen, size_t... Is>
constexpr auto generate_array(Gen&& item, std::index_sequence<Is...>) {
return std::array<T, N>{{item(Is)...}};
}
const std::array<char, 200> digits = generate_array<char, 200>(
[](size_t i) {
return char('0' + ((i % 2) ? ((i / 2) % 10) : ((i / 2) / 10)));
},
std::make_index_sequence<200>{});
// extern const std::array<char,200> digits;
static inline uint16_t const& dd(uint8_t u) {
return reinterpret_cast<uint16_t const*>(digits.data())[u];
}
template <typename T>
static constexpr T pow10(size_t x) {
return x ? 10 * pow10<T>(x - 1) : 1;
}
// Division by a power of 10 is implemented using a multiplicative inverse.
// This strength reduction is also done by optimizing compilers, but
// presently the fastest results are produced by using the values
// for the multiplication and the shift as given by the algorithm
// described by Agner Fog in "Optimizing Subroutines in Assembly Language"
//
// http://www.agner.org/optimize/optimizing_assembly.pdf
//
// "Integer division by a constant (all processors)
// A floating point number can be divided by a constant by multiplying
// with the reciprocal. If we want to do the same with integers, we have
// to scale the reciprocal by 2n and then shift the product to the right
// by n. There are various algorithms for finding a suitable value of n
// and compensating for rounding errors. The algorithm described below
// was invented by Terje Mathisen, Norway, and not published elsewhere."
// using uint128_t = unsigned __int128;
template <typename UInt, bool A, UInt M, unsigned S>
struct MulInv {
using type = UInt;
static constexpr bool a{A};
static constexpr UInt m{M};
static constexpr unsigned s{S};
};
template <int, int, class...>
struct UT;
template <int N, class T, class... Ts>
struct UT<N, N, T, Ts...> {
using U = T;
};
template <int N, int M, class T, class... Ts>
struct UT<N, M, T, Ts...> {
using U = typename UT<N, 2 * M, Ts...>::U;
};
template <int N>
using MI = typename UT<N, 1, MulInv<uint8_t, 0, 205U, 11>,
MulInv<uint16_t, 1, 41943U, 22>,
MulInv<uint32_t, 0, 3518437209U, 45>,
MulInv<uint64_t, 0, 12379400392853802749U, 90>>::U;
template <int N>
using U = typename MI<N>::type;
// struct QR holds the result of dividing an unsigned N-byte variable
// by 10^N resulting in
template <size_t N>
struct QR {
U<N> q; // quotient with fewer than 2*N decimal digits
U<N / 2> r; // remainder with at most N decimal digits
};
template <size_t N>
QR<N> static inline split(U<N> u) {
constexpr MI<N> mi{};
U<N> q = (mi.m * (U<2 * N>(u) + mi.a)) >> mi.s;
return {q, U<N / 2>(u - q * pow10<U<N / 2>>(N))};
}
enum Direction { Fwd, Rev };
template <Direction D>
struct convert {
//===----------------------------------------------------------===//
// output the digits in either a forward or reverse direction
// use memcpy so compiler handles alignment on target architecture.
// Typically generates one store to memory with an optimizing
// compiler for target architecture that supports unaligned access.
//===----------------------------------------------------------===//
template <typename T>
static inline char* out(char* p, T&& obj) {
if (D == Rev)
p -= sizeof(T);
memcpy(p, reinterpret_cast<const void*>(&obj), sizeof(T));
if (D == Fwd)
p += sizeof(T);
return p;
}
//===----------------------------------------------------------===//
// head: find most significant digit, skip leading zeros
//===----------------------------------------------------------===//
// "x" contains quotient and remainder after division by 10^N
// quotient is less than 10^N
template <size_t N>
static inline char* head(char* p, QR<N> x) {
return (D == Fwd ? (tail(head(p, U<N / 2>(x.q)), x.r))
: (head(tail(p, x.r), U<N / 2>(x.q))));
}
// "u" is less than 10^2*N
template <typename UInt, size_t N = sizeof(UInt)>
static inline char* head(char* p, UInt u) {
return (u < pow10<U<N>>(N) ? (head(p, U<N / 2>(u)))
: (head<N>(p, split<N>(u))));
}
// recursion base case, selected when "u" is one byte
static inline char* head(char* p, U<1> u) {
return (u < 10 ? (out<char>(p, '0' + u)) : (out(p, dd(u))));
}
//===----------------------------------------------------------===//
// tail: produce all digits including leading zeros
//===----------------------------------------------------------===//
// recursive step, "u" is less than 10^2*N
template <typename UInt, size_t N = sizeof(UInt)>
static inline char* tail(char* p, UInt u) {
QR<N> x = split<N>(u);
return (D == Fwd ? (tail(tail(p, U<N / 2>(x.q)), x.r))
: (tail(tail(p, x.r), U<N / 2>(x.q))));
}
// recursion base case, selected when "u" is one byte
static inline char* tail(char* p, U<1> u) { return out(p, dd(u)); }
//===----------------------------------------------------------===//
// large values are >= 10^2*N
// where x contains quotient and remainder after division by 10^N
//===----------------------------------------------------------===//
template <size_t N>
static inline char* large(char* p, QR<N> x) {
QR<N> y = split<N>(x.q);
return (D == Fwd ? (tail(tail(head(p, U<N / 2>(y.q)), y.r), x.r))
: (head(tail(tail(p, x.r), y.r), U<N / 2>(y.q))));
}
//===----------------------------------------------------------===//
// handle values of "u" that might be >= 10^2*N
// where N is the size of "u" in bytes
//===----------------------------------------------------------===//
template <typename UInt, size_t N = sizeof(UInt)>
static inline char* itoa(char* p, UInt u) {
if (u < pow10<U<N>>(N))
return head(p, U<N / 2>(u));
QR<N> x = split<N>(u);
return (u < pow10<U<N>>(2 * N) ? (head<N>(p, x)) : (large<N>(p, x)));
}
// selected when "u" is one byte
static inline char* itoa(char* p, U<1> u) {
if (u < 10)
return out<char>(p, '0' + u);
if (u < 100)
return out(p, dd(u));
return (D == Fwd ? (out(out<char>(p, '0' + u / 100), dd(u % 100)))
: (out<char>(out(p, dd(u % 100)), '0' + u / 100)));
}
//===----------------------------------------------------------===//
// handle unsigned and signed integral operands
//===----------------------------------------------------------===//
// itoa: handle unsigned integral operands (selected by SFINAE)
template <typename U, std::enable_if_t<!std::is_signed<U>::value &&
std::is_integral<U>::value>* = nullptr>
static inline char* itoa(U u, char* p) {
return convert<D>::template itoa(p, u);
}
// itoa: handle signed integral operands (selected by SFINAE)
template <typename I, size_t N = sizeof(I),
std::enable_if_t<std::is_signed<I>::value &&
std::is_integral<I>::value>* = nullptr>
static inline char* itoa(I i, char* p) {
// Need "mask" to be filled with a copy of the sign bit.
// If "i" is a negative value, then the result of "operator >>"
// is implementation-defined, though usually it is an arithmetic
// right shift that replicates the sign bit.
// Use a conditional expression to be portable,
// a good optimizing compiler generates an arithmetic right shift
// and avoids the conditional branch.
U<N> mask = i < 0 ? ~U<N>(0) : 0;
// Now get the absolute value of "i" and cast to unsigned type U<N>.
// Cannot use std::abs() because the result is undefined
// in 2's complement systems for the most-negative value.
// Want to avoid conditional branch for performance reasons since
// CPU branch prediction will be ineffective when negative values
// occur randomly.
// Let "u" be "i" cast to unsigned type U<N>.
// Subtract "u" from 2*u if "i" is positive or 0 if "i" is negative.
// This yields the absolute value with the desired type without
// using a conditional branch and without invoking undefined or
// implementation defined behavior:
U<N> u = ((2 * U<N>(i)) & ~mask) - U<N>(i);
// Unconditionally store a minus sign when producing digits
// in a forward direction and increment the pointer only if
// the value is in fact negative.
// This avoids a conditional branch and is safe because we will
// always produce at least one digit and it will overwrite the
// minus sign when the value is not negative.
if (D == Fwd) {
*p = '-';
p += (mask & 1);
}
p = convert<D>::template itoa(p, u);
if (D == Rev && mask)
*--p = '-';
return p;
}
};
} // namespace dec_
// Programming interface: itoa_fwd, itoa_rev
template <typename I>
char* itoa_fwd(I i, char* p) {
return dec_::convert<dec_::Fwd>::itoa(i, p);
}
inline char* xtoa(long long sval, char* str, int radix, int signedp) {
unsigned long long uval;
unsigned int uradix = radix;
char* sp = str;
char* sp2;
char* sp3;
/* If signed, store sign at start of buffer for negative base-10 values */
if (signedp && (10 == uradix) && (0 > sval)) {
*sp++ = '-';
uval = -sval;
}
else {
uval = sval;
}
sp2 = sp;
do {
unsigned int rem = uval % uradix;
uval /= uradix;
if (10 > rem) {
*sp++ = '0' + (char)rem;
}
else {
*sp++ = 'A' + (char)rem - 10;
}
} while (0 < uval);
/* Mark end of string */
sp3 = sp;
*sp-- = 0;
/* Reverse string contents (excluding sign) in place */
while (sp2 < sp) {
char tmp = *sp2;
*sp2++ = *sp;
*sp-- = tmp;
}
return sp3;
}
template <typename I>
char* itoa_rev(I i, char* p) {
return dec_::convert<dec_::Rev>::itoa(i, p);
}
#endif // DEC_ITOA_IMPL_H