SmartOS/Device/SerialPort.cpp

511 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "SerialPort.h"
#include "Time.h"
#include "Platform\stm32.h"
#define COM_DEBUG 0
const byte uart_irqs[] = UART_IRQs;
SerialPort::SerialPort() { Init(); }
SerialPort::SerialPort(COM index, int baudRate)
{
Init();
Set(index, baudRate);
}
// 析构时自动关闭
SerialPort::~SerialPort()
{
if(RS485) delete RS485;
RS485 = nullptr;
}
void SerialPort::Init()
{
_index = 0xFF;
RS485 = nullptr;
Error = 0;
#ifdef STM32F1XX
IsRemap = false;
#endif
MinSize = 1;
_taskidRx = 0;
_parity = USART_Parity_No;
_dataBits = USART_WordLength_8b;
_stopBits = USART_StopBits_1;
}
void SerialPort::Set(COM index, int baudRate)
{
USART_TypeDef* const g_Uart_Ports[] = UARTS;
_index = index;
assert_param(_index < ArrayLength(g_Uart_Ports));
_port = g_Uart_Ports[_index];
_baudRate = baudRate;
// 计算字节间隔。字节速度一般是波特率转为字节后再除以2
//ByteTime = 15000000 / baudRate; // (1000000 /(baudRate/10)) * 1.5
//ByteTime = 1000000 / (baudRate >> 3 >> 1);
//ByteTime <<= 1;
if(baudRate > 9600)
ByteTime = 1;
else
ByteTime = 1000 / (baudRate / 10) + 1; // 小数部分忽略,直接加一
// 根据端口实际情况决定打开状态
if(((USART_TypeDef*)_port)->CR1 & USART_CR1_UE) Opened = true;
// 设置名称
Buffer(Name, 4) = "COMx";
Name[3] = '0' + _index + 1;
Name[4] = 0;
}
void SerialPort::Set(byte parity, byte dataBits, byte stopBits)
{
_parity = parity;
_dataBits = dataBits;
_stopBits = stopBits;
}
// 打开串口
bool SerialPort::OnOpen()
{
Pin rx, tx;
GetPins(&tx, &rx);
debug_printf("Serial%d Open(%d, %d, %d, %d)\r\n", _index + 1, _baudRate, _parity, _dataBits, _stopBits);
//串口引脚初始化
_tx.Set(tx).Open();
_rx.Init(rx, false).Open();
auto st = (USART_TypeDef*)_port;
// 不要关调试口,否则杯具
if(_index != Sys.MessagePort) USART_DeInit(st);
// USART_DeInit其实就是关闭时钟这里有点多此一举。但为了安全起见还是使用
// 检查重映射
#ifdef STM32F1XX
if(IsRemap)
{
switch (_index) {
case 0: AFIO->MAPR |= AFIO_MAPR_USART1_REMAP; break;
case 1: AFIO->MAPR |= AFIO_MAPR_USART2_REMAP; break;
case 2: AFIO->MAPR |= AFIO_MAPR_USART3_REMAP_FULLREMAP; break;
}
}
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE );
#endif
// 打开 UART 时钟。必须先打开串口时钟,才配置引脚
#if defined(STM32F0) || defined(GD32F150)
switch(_index)
{
case COM1: RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); break;
case COM2: RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); break;
default: break;
}
#else
if (_index) { // COM2-5 on APB1
RCC->APB1ENR |= RCC_APB1ENR_USART2EN >> 1 << _index;
} else { // COM1 on APB2
RCC->APB2ENR |= RCC_APB2ENR_USART1EN;
}
#endif
#if defined(STM32F0) || defined(GD32F150)
_tx.AFConfig(Port::AF_1);
_rx.AFConfig(Port::AF_1);
#elif defined(STM32F4)
const byte afs[] = { GPIO_AF_USART1, GPIO_AF_USART2, GPIO_AF_USART3, GPIO_AF_UART4, GPIO_AF_UART5, GPIO_AF_USART6, GPIO_AF_UART7, GPIO_AF_UART8 };
_tx.AFConfig((Port::GPIO_AF)afs[_index]);
_rx.AFConfig((Port::GPIO_AF)afs[_index]);
#endif
USART_InitTypeDef p;
USART_StructInit(&p);
p.USART_BaudRate = _baudRate;
p.USART_WordLength = _dataBits;
p.USART_StopBits = _stopBits;
p.USART_Parity = _parity;
USART_Init(st, &p);
// 串口接收中断配置,同时会打开过载错误中断
USART_ITConfig(st, USART_IT_RXNE, ENABLE);
//USART_ITConfig(st, USART_IT_PE, ENABLE);
//USART_ITConfig(st, USART_IT_ERR, ENABLE);
//USART_ITConfig(st, USART_IT_TXE, DISABLE);
// 清空缓冲区
//#if !(defined(STM32F0) || defined(GD32F150))
Tx.Clear();
//#endif
Rx.SetCapacity(0x80);
Rx.Clear();
//#if defined(STM32F0) || defined(GD32F150)
// GD官方提供因GD设计比ST严格导致一些干扰被错误认为是溢出
//USART_OverrunDetectionConfig(st, USART_OVRDetection_Disable);
//#else
// 打开中断,收发都要使用
//const byte irqs[] = UART_IRQs;
byte irq = uart_irqs[_index];
Interrupt.SetPriority(irq, 0);
Interrupt.Activate(irq, OnHandler, this);
//#endif
USART_Cmd(st, ENABLE);//使能串口
if(RS485) *RS485 = false;
return true;
}
// 关闭端口
void SerialPort::OnClose()
{
debug_printf("~Serial%d Close\r\n", _index + 1);
auto st = (USART_TypeDef*)_port;
USART_Cmd(st, DISABLE);
USART_DeInit(st);
_tx.Close();
_rx.Close();
//const byte irqs[] = UART_IRQs;
byte irq = uart_irqs[_index];
Interrupt.Deactivate(irq);
// 检查重映射
#ifdef STM32F1XX
if(IsRemap)
{
switch (_index) {
case 0: AFIO->MAPR &= ~AFIO_MAPR_USART1_REMAP; break;
case 1: AFIO->MAPR &= ~AFIO_MAPR_USART2_REMAP; break;
case 2: AFIO->MAPR &= ~AFIO_MAPR_USART3_REMAP_FULLREMAP; break;
}
}
#endif
}
// 发送单一字节数据
uint SerialPort::SendData(byte data, uint times)
{
/*
在USART_DR寄存器中写入了最后一个数据字后在关闭USART模块之前或设置微控制器进入低功耗模式之前
必须先等待TC=1。使用下列软件过程清除TC位
1读一次USART_SR寄存器
2写一次USART_DR寄存器。
*/
auto st = (USART_TypeDef*)_port;
USART_SendData(st, (ushort)data);
// 等待发送完毕
while(USART_GetFlagStatus(st, USART_FLAG_TXE) == RESET && --times > 0);
if(!times) Error++;
return times;
}
// 向某个端口写入数据。如果size为0则把data当作字符串一直发送直到遇到\0为止
bool SerialPort::OnWrite(const Buffer& bs)
{
if(!bs.Length()) return true;
/*#if defined(STM32F0) || defined(GD32F150)
if(RS485) *RS485 = true;
// 中断发送过于频繁,影响了接收中断,采用循环阻塞发送。后面考虑独立发送任务
for(int i=0; i<bs.Length(); i++)
{
SendData(bs[i], 3000);
}
if(RS485) *RS485 = false;
#else*/
// 如果队列已满,则强制刷出
if(Tx.Length() + bs.Length() > Tx.Capacity()) Flush(Sys.Clock / 40000);
Tx.Write(bs);
// 打开串口发送
if(RS485) *RS485 = true;
USART_ITConfig((USART_TypeDef*)_port, USART_IT_TXE, ENABLE);
//#endif
return true;
}
// 刷出某个端口中的数据
bool SerialPort::Flush(uint times)
{
//#if !(defined(STM32F0) || defined(GD32F150))
// 打开串口发送
if(RS485) *RS485 = true;
while(!Tx.Empty() && times > 0) times = SendData(Tx.Pop(), times);
if(RS485) *RS485 = false;
return times > 0;
/*#else
return true;
#endif*/
}
#if !defined(TINY) && defined(STM32F0)
#pragma arm section code = "SectionForSys"
#endif
void SerialPort::OnTxHandler()
{
//#if !(defined(STM32F0) || defined(GD32F150))
if(!Tx.Empty())
USART_SendData((USART_TypeDef*)_port, (ushort)Tx.Pop());
else
{
USART_ITConfig((USART_TypeDef*)_port, USART_IT_TXE, DISABLE);
if(RS485) *RS485 = false;
}
//#endif
}
#pragma arm section code
// 从某个端口读取数据
uint SerialPort::OnRead(Buffer& bs)
{
uint count = 0;
uint len = Rx.Length();
// 如果没有数据,立刻返回,不要等待浪费时间
if(!len)
{
bs.SetLength(0);
return 0;
}
// 如果有数据变化,等一会
while(len != count && len < bs.Length())
{
count = len;
// 按照115200波特率计算传输7200字节每秒每个毫秒7个字节大概150微秒差不多可以接收一个新字节
Sys.Sleep(ByteTime);
//Sys.Sleep(2);
len = Rx.Length();
}
// 如果数据大小不足,等下次吧
if(len < MinSize)
{
bs.SetLength(0);
return 0;
}
// 从接收队列读取
count = Rx.Read(bs);
bs.SetLength(count);
// 如果还有数据,打开任务
if(!Rx.Empty()) Sys.SetTask(_taskidRx, true, 0);
return count;
}
#if !defined(TINY) && defined(STM32F0)
#pragma arm section code = "SectionForSys"
#endif
void SerialPort::OnRxHandler()
{
// 串口接收中断必须以极快的速度完成,否则会出现丢数据的情况
// 判断缓冲区足够最小值以后才唤醒任务,减少时间消耗
// 缓冲区里面别用%,那会产生非常耗时的除法运算
byte dat = (byte)USART_ReceiveData((USART_TypeDef*)_port);
Rx.Push(dat);
// 收到数据开启任务调度。延迟_byteTime可能还有字节到来
//!!! 暂时注释任务唤醒,避免丢数据问题
if(_taskidRx && Rx.Length() >= MinSize)
{
//Sys.SetTask(_taskidRx, true, (ByteTime >> 10) + 1);
_task->Set(true, 10);
}
}
#pragma arm section code
void SerialPort::ReceiveTask(void* param)
{
auto sp = (SerialPort*)param;
assert(sp, "串口 ReceiveTask param Error");
//!!! 只要注释这一行,四位触摸开关就不会有串口溢出错误
if(sp->Rx.Length() == 0) return;
// 从栈分配,节省内存
byte buf[0x100];
Buffer bs(buf, ArrayLength(buf));
int mx = sp->MaxSize;
if(mx > 0 && mx > bs.Length()) bs.SetLength(mx);
uint len = sp->Read(bs);
if(len)
{
len = sp->OnReceive(bs, nullptr);
// 如果有数据,则反馈回去
if(len) sp->Write(bs);
}
}
void SerialPort::SetBaudRate(int baudRate)
{
Set((COM)_index, baudRate);
}
void SerialPort::ChangePower(int level)
{
// 串口进入低功耗时,直接关闭
if(level) Close();
}
void SerialPort::Register(TransportHandler handler, void* param)
{
ITransport::Register(handler, param);
if(handler)
{
// 建立一个未启用的任务,用于定时触发接收数据,收到数据时开启
if(!_taskidRx)
{
_taskidRx = Sys.AddTask(ReceiveTask, this, -1, -1, "串口接收");
_task = Task::Get(_taskidRx);
// 串口任务深度设为2允许重入解决接收任务内部调用发送然后又等待接收匹配的问题
_task->MaxDeepth = 2;
}
/*#if defined(STM32F0) || defined(GD32F150)
// 打开中断
byte irq = uart_irqs[_index];
Interrupt.SetPriority(irq, 0);
Interrupt.Activate(irq, OnHandler, this);
#endif*/
}
else
{
Sys.RemoveTask(_taskidRx);
}
}
#if !defined(TINY) && defined(STM32F0)
#pragma arm section code = "SectionForSys"
#endif
// 真正的串口中断函数
void SerialPort::OnHandler(ushort num, void* param)
{
auto sp = (SerialPort*)param;
auto st = (USART_TypeDef*)sp->_port;
//#if !(defined(STM32F0) || defined(GD32F150))
if(USART_GetITStatus(st, USART_IT_TXE) != RESET) sp->OnTxHandler();
//#endif
// 接收中断
if(USART_GetITStatus(st, USART_IT_RXNE) != RESET) sp->OnRxHandler();
// 溢出
if(USART_GetFlagStatus(st, USART_FLAG_ORE) != RESET)
{
USART_ClearFlag(st, USART_FLAG_ORE);
// 读取并扔到错误数据
USART_ReceiveData(st);
sp->Error++;
//debug_printf("Serial%d 溢出 \r\n", sp->_index + 1);
}
/*if(USART_GetFlagStatus(st, USART_FLAG_NE) != RESET) USART_ClearFlag(st, USART_FLAG_NE);
if(USART_GetFlagStatus(st, USART_FLAG_FE) != RESET) USART_ClearFlag(st, USART_FLAG_FE);
if(USART_GetFlagStatus(st, USART_FLAG_PE) != RESET) USART_ClearFlag(st, USART_FLAG_PE);*/
}
#pragma arm section code
// 获取引脚
void SerialPort::GetPins(Pin* txPin, Pin* rxPin)
{
*rxPin = *txPin = P0;
const Pin g_Uart_Pins[] = UART_PINS;
const Pin* p = g_Uart_Pins;
#ifdef STM32F1XX
const Pin g_Uart_Pins_Map[] = UART_PINS_FULLREMAP;
if(IsRemap) p = g_Uart_Pins_Map;
#endif
int n = _index << 2;
*txPin = p[n];
*rxPin = p[n + 1];
}
extern "C"
{
SerialPort* _printf_sp;
bool isInFPutc;
/* 重载fputc可以让用户程序使用printf函数 */
int fputc(int ch, FILE *f)
{
#if DEBUG
if(Sys.Clock == 0) return ch;
int idx = Sys.MessagePort;
if(idx == COM_NONE) return ch;
USART_TypeDef* g_Uart_Ports[] = UARTS;
auto port = g_Uart_Ports[idx];
if(isInFPutc) return ch;
isInFPutc = true;
// 检查并打开串口
if((port->CR1 & USART_CR1_UE) != USART_CR1_UE)
{
_printf_sp = SerialPort::GetMessagePort();
}
if(_printf_sp)
{
byte b = ch;
_printf_sp->Write(Buffer(&b, 1));
}
isInFPutc = false;
#endif
return ch;
}
}
SerialPort* SerialPort::GetMessagePort()
{
auto sp = _printf_sp;
// 支持中途改变调试口
if(sp && Sys.MessagePort != sp->_index)
{
delete sp;
_printf_sp = nullptr;
}
if(!sp)
{
auto idx = Sys.MessagePort;
if(idx == COM_NONE) return nullptr;
sp = _printf_sp = new SerialPort(idx);
sp->Open();
}
return sp;
}