llvm-svn: 263555
This commit is contained in:
Arpith Chacko Jacob 2016-03-15 16:19:13 +00:00
parent 83bedca7e9
commit fc46c25d74
5 changed files with 6 additions and 1053 deletions

View File

@ -4145,14 +4145,6 @@ void CGOpenMPRuntime::emitTargetOutlinedFunction(
CGF.EmitStmt(CS.getCapturedStmt());
};
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
IsOffloadEntry, CodeGen);
}
void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
// Create a unique name for the entry function using the source location
// information of the current target region. The name will be something like:
//
@ -4174,8 +4166,6 @@ void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
<< llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
}
const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
CodeGenFunction CGF(CGM, true);
CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);

View File

@ -49,31 +49,7 @@ class CodeGenModule;
typedef llvm::function_ref<void(CodeGenFunction &)> RegionCodeGenTy;
class CGOpenMPRuntime {
protected:
CodeGenModule &CGM;
/// \brief Creates offloading entry for the provided entry ID \a ID,
/// address \a Addr and size \a Size.
virtual void createOffloadEntry(llvm::Constant *ID, llvm::Constant *Addr,
uint64_t Size);
/// \brief Helper to emit outlined function for 'target' directive.
/// \param D Directive to emit.
/// \param ParentName Name of the function that encloses the target region.
/// \param OutlinedFn Outlined function value to be defined by this call.
/// \param OutlinedFnID Outlined function ID value to be defined by this call.
/// \param IsOffloadEntry True if the outlined function is an offload entry.
/// \param CodeGen Lambda codegen specific to an accelerator device.
/// An oulined function may not be an entry if, e.g. the if clause always
/// evaluates to false.
virtual void emitTargetOutlinedFunctionHelper(const OMPExecutableDirective &D,
StringRef ParentName,
llvm::Function *&OutlinedFn,
llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry,
const RegionCodeGenTy &CodeGen);
private:
/// \brief Default const ident_t object used for initialization of all other
/// ident_t objects.
llvm::Constant *DefaultOpenMPPSource = nullptr;
@ -291,6 +267,11 @@ private:
/// compilation unit. The function that does the registration is returned.
llvm::Function *createOffloadingBinaryDescriptorRegistration();
/// \brief Creates offloading entry for the provided entry ID \a ID,
/// address \a Addr and size \a Size.
void createOffloadEntry(llvm::Constant *ID, llvm::Constant *Addr,
uint64_t Size);
/// \brief Creates all the offload entries in the current compilation unit
/// along with the associated metadata.
void createOffloadEntriesAndInfoMetadata();

View File

@ -18,326 +18,5 @@
using namespace clang;
using namespace CodeGen;
/// \brief Get the GPU warp size.
llvm::Value *CGOpenMPRuntimeNVPTX::getNVPTXWarpSize(CodeGenFunction &CGF) {
CGBuilderTy &Bld = CGF.Builder;
return Bld.CreateCall(
llvm::Intrinsic::getDeclaration(
&CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize),
llvm::None, "nvptx_warp_size");
}
/// \brief Get the id of the current thread on the GPU.
llvm::Value *CGOpenMPRuntimeNVPTX::getNVPTXThreadID(CodeGenFunction &CGF) {
CGBuilderTy &Bld = CGF.Builder;
return Bld.CreateCall(
llvm::Intrinsic::getDeclaration(
&CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
llvm::None, "nvptx_tid");
}
// \brief Get the maximum number of threads in a block of the GPU.
llvm::Value *CGOpenMPRuntimeNVPTX::getNVPTXNumThreads(CodeGenFunction &CGF) {
CGBuilderTy &Bld = CGF.Builder;
return Bld.CreateCall(
llvm::Intrinsic::getDeclaration(
&CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
llvm::None, "nvptx_num_threads");
}
/// \brief Get barrier to synchronize all threads in a block.
void CGOpenMPRuntimeNVPTX::getNVPTXCTABarrier(CodeGenFunction &CGF) {
CGBuilderTy &Bld = CGF.Builder;
Bld.CreateCall(llvm::Intrinsic::getDeclaration(
&CGM.getModule(), llvm::Intrinsic::nvvm_barrier0));
}
// \brief Synchronize all GPU threads in a block.
void CGOpenMPRuntimeNVPTX::syncCTAThreads(CodeGenFunction &CGF) {
getNVPTXCTABarrier(CGF);
}
/// \brief Get the thread id of the OMP master thread.
/// The master thread id is the first thread (lane) of the last warp in the
/// GPU block. Warp size is assumed to be some power of 2.
/// Thread id is 0 indexed.
/// E.g: If NumThreads is 33, master id is 32.
/// If NumThreads is 64, master id is 32.
/// If NumThreads is 1024, master id is 992.
llvm::Value *CGOpenMPRuntimeNVPTX::getMasterThreadID(CodeGenFunction &CGF) {
CGBuilderTy &Bld = CGF.Builder;
llvm::Value *NumThreads = getNVPTXNumThreads(CGF);
// We assume that the warp size is a power of 2.
llvm::Value *Mask = Bld.CreateSub(getNVPTXWarpSize(CGF), Bld.getInt32(1));
return Bld.CreateAnd(Bld.CreateSub(NumThreads, Bld.getInt32(1)),
Bld.CreateNot(Mask), "master_tid");
}
namespace {
enum OpenMPRTLFunctionNVPTX {
/// \brief Call to void __kmpc_kernel_init(kmp_int32 omp_handle,
/// kmp_int32 thread_limit);
OMPRTL_NVPTX__kmpc_kernel_init,
};
// NVPTX Address space
enum ADDRESS_SPACE {
ADDRESS_SPACE_SHARED = 3,
};
} // namespace
CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState(
CodeGenModule &CGM)
: WorkerFn(nullptr), CGFI(nullptr) {
createWorkerFunction(CGM);
};
void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction(
CodeGenModule &CGM) {
// Create an worker function with no arguments.
CGFI = &CGM.getTypes().arrangeNullaryFunction();
WorkerFn = llvm::Function::Create(
CGM.getTypes().GetFunctionType(*CGFI), llvm::GlobalValue::InternalLinkage,
/* placeholder */ "_worker", &CGM.getModule());
CGM.SetInternalFunctionAttributes(/*D=*/nullptr, WorkerFn, *CGFI);
WorkerFn->setLinkage(llvm::GlobalValue::InternalLinkage);
WorkerFn->addFnAttr(llvm::Attribute::NoInline);
}
void CGOpenMPRuntimeNVPTX::initializeEnvironment() {
//
// Initialize master-worker control state in shared memory.
//
auto DL = CGM.getDataLayout();
ActiveWorkers = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int32Ty, /*isConstant=*/false,
llvm::GlobalValue::CommonLinkage,
llvm::Constant::getNullValue(CGM.Int32Ty), "__omp_num_threads", 0,
llvm::GlobalVariable::NotThreadLocal, ADDRESS_SPACE_SHARED);
ActiveWorkers->setAlignment(DL.getPrefTypeAlignment(CGM.Int32Ty));
WorkID = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int64Ty, /*isConstant=*/false,
llvm::GlobalValue::CommonLinkage,
llvm::Constant::getNullValue(CGM.Int64Ty), "__tgt_work_id", 0,
llvm::GlobalVariable::NotThreadLocal, ADDRESS_SPACE_SHARED);
WorkID->setAlignment(DL.getPrefTypeAlignment(CGM.Int64Ty));
}
void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) {
auto &Ctx = CGM.getContext();
CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, *WST.CGFI, {});
emitWorkerLoop(CGF, WST);
CGF.FinishFunction();
}
void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF,
WorkerFunctionState &WST) {
//
// The workers enter this loop and wait for parallel work from the master.
// When the master encounters a parallel region it sets up the work + variable
// arguments, and wakes up the workers. The workers first check to see if
// they are required for the parallel region, i.e., within the # of requested
// parallel threads. The activated workers load the variable arguments and
// execute the parallel work.
//
CGBuilderTy &Bld = CGF.Builder;
llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
CGF.EmitBranch(AwaitBB);
// Workers wait for work from master.
CGF.EmitBlock(AwaitBB);
// Wait for parallel work
syncCTAThreads(CGF);
// On termination condition (workid == 0), exit loop.
llvm::Value *ShouldTerminate = Bld.CreateICmpEQ(
Bld.CreateAlignedLoad(WorkID, WorkID->getAlignment()),
llvm::Constant::getNullValue(WorkID->getType()->getElementType()),
"should_terminate");
Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
// Activate requested workers.
CGF.EmitBlock(SelectWorkersBB);
llvm::Value *ThreadID = getNVPTXThreadID(CGF);
llvm::Value *ActiveThread = Bld.CreateICmpSLT(
ThreadID,
Bld.CreateAlignedLoad(ActiveWorkers, ActiveWorkers->getAlignment()),
"active_thread");
Bld.CreateCondBr(ActiveThread, ExecuteBB, BarrierBB);
// Signal start of parallel region.
CGF.EmitBlock(ExecuteBB);
// TODO: Add parallel work.
// Signal end of parallel region.
CGF.EmitBlock(TerminateBB);
CGF.EmitBranch(BarrierBB);
// All active and inactive workers wait at a barrier after parallel region.
CGF.EmitBlock(BarrierBB);
// Barrier after parallel region.
syncCTAThreads(CGF);
CGF.EmitBranch(AwaitBB);
// Exit target region.
CGF.EmitBlock(ExitBB);
}
// Setup NVPTX threads for master-worker OpenMP scheme.
void CGOpenMPRuntimeNVPTX::emitEntryHeader(CodeGenFunction &CGF,
EntryFunctionState &EST,
WorkerFunctionState &WST) {
CGBuilderTy &Bld = CGF.Builder;
// Get the master thread id.
llvm::Value *MasterID = getMasterThreadID(CGF);
// Current thread's identifier.
llvm::Value *ThreadID = getNVPTXThreadID(CGF);
// Setup BBs in entry function.
llvm::BasicBlock *WorkerCheckBB = CGF.createBasicBlock(".check.for.worker");
llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
EST.ExitBB = CGF.createBasicBlock(".exit");
// The head (master thread) marches on while its body of companion threads in
// the warp go to sleep.
llvm::Value *ShouldDie =
Bld.CreateICmpUGT(ThreadID, MasterID, "excess_in_master_warp");
Bld.CreateCondBr(ShouldDie, EST.ExitBB, WorkerCheckBB);
// Select worker threads...
CGF.EmitBlock(WorkerCheckBB);
llvm::Value *IsWorker = Bld.CreateICmpULT(ThreadID, MasterID, "is_worker");
Bld.CreateCondBr(IsWorker, WorkerBB, MasterBB);
// ... and send to worker loop, awaiting parallel invocation.
CGF.EmitBlock(WorkerBB);
CGF.EmitCallOrInvoke(WST.WorkerFn, llvm::None);
CGF.EmitBranch(EST.ExitBB);
// Only master thread executes subsequent serial code.
CGF.EmitBlock(MasterBB);
// First action in sequential region:
// Initialize the state of the OpenMP runtime library on the GPU.
llvm::Value *Args[] = {Bld.getInt32(/*OmpHandle=*/0), getNVPTXThreadID(CGF)};
CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init),
Args);
}
void CGOpenMPRuntimeNVPTX::emitEntryFooter(CodeGenFunction &CGF,
EntryFunctionState &EST) {
CGBuilderTy &Bld = CGF.Builder;
llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
CGF.EmitBranch(TerminateBB);
CGF.EmitBlock(TerminateBB);
// Signal termination condition.
Bld.CreateAlignedStore(
llvm::Constant::getNullValue(WorkID->getType()->getElementType()), WorkID,
WorkID->getAlignment());
// Barrier to terminate worker threads.
syncCTAThreads(CGF);
// Master thread jumps to exit point.
CGF.EmitBranch(EST.ExitBB);
CGF.EmitBlock(EST.ExitBB);
}
/// \brief Returns specified OpenMP runtime function for the current OpenMP
/// implementation. Specialized for the NVPTX device.
/// \param Function OpenMP runtime function.
/// \return Specified function.
llvm::Constant *
CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
llvm::Constant *RTLFn = nullptr;
switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
case OMPRTL_NVPTX__kmpc_kernel_init: {
// Build void __kmpc_kernel_init(kmp_int32 omp_handle,
// kmp_int32 thread_limit);
llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int32Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
break;
}
}
return RTLFn;
}
void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID,
llvm::Constant *Addr,
uint64_t Size) {
auto *F = dyn_cast<llvm::Function>(Addr);
// TODO: Add support for global variables on the device after declare target
// support.
if (!F)
return;
llvm::Module *M = F->getParent();
llvm::LLVMContext &Ctx = M->getContext();
// Get "nvvm.annotations" metadata node
llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
llvm::Metadata *MDVals[] = {
llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, "kernel"),
llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
// Append metadata to nvvm.annotations
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
}
void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry) {
if (!IsOffloadEntry) // Nothing to do.
return;
assert(!ParentName.empty() && "Invalid target region parent name!");
const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
EntryFunctionState EST;
WorkerFunctionState WST(CGM);
// Emit target region as a standalone region.
auto &&CodeGen = [&EST, &WST, &CS, this](CodeGenFunction &CGF) {
emitEntryHeader(CGF, EST, WST);
CGF.EmitStmt(CS.getCapturedStmt());
emitEntryFooter(CGF, EST);
};
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
IsOffloadEntry, CodeGen);
// Create the worker function
emitWorkerFunction(WST);
// Now change the name of the worker function to correspond to this target
// region's entry function.
WST.WorkerFn->setName(OutlinedFn->getName() + "_worker");
}
CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
: CGOpenMPRuntime(CGM), ActiveWorkers(nullptr), WorkID(nullptr) {
if (!CGM.getLangOpts().OpenMPIsDevice)
llvm_unreachable("OpenMP NVPTX can only handle device code.");
// Called once per module during initialization.
initializeEnvironment();
}
: CGOpenMPRuntime(CGM) {}

View File

@ -16,121 +16,11 @@
#define LLVM_CLANG_LIB_CODEGEN_CGOPENMPRUNTIMENVPTX_H
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "clang/AST/StmtOpenMP.h"
#include "llvm/IR/CallSite.h"
namespace clang {
namespace CodeGen {
class CGOpenMPRuntimeNVPTX : public CGOpenMPRuntime {
//
// NVPTX calls.
//
/// \brief Get the GPU warp size.
llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF);
/// \brief Get the id of the current thread on the GPU.
llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF);
// \brief Get the maximum number of threads in a block of the GPU.
llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF);
/// \brief Get barrier to synchronize all threads in a block.
void getNVPTXCTABarrier(CodeGenFunction &CGF);
// \brief Synchronize all GPU threads in a block.
void syncCTAThreads(CodeGenFunction &CGF);
//
// OMP calls.
//
/// \brief Get the thread id of the OMP master thread.
/// The master thread id is the first thread (lane) of the last warp in the
/// GPU block. Warp size is assumed to be some power of 2.
/// Thread id is 0 indexed.
/// E.g: If NumThreads is 33, master id is 32.
/// If NumThreads is 64, master id is 32.
/// If NumThreads is 1024, master id is 992.
llvm::Value *getMasterThreadID(CodeGenFunction &CGF);
//
// Private state and methods.
//
// Master-worker control state.
// Number of requested OMP threads in parallel region.
llvm::GlobalVariable *ActiveWorkers;
// Outlined function for the workers to execute.
llvm::GlobalVariable *WorkID;
class EntryFunctionState {
public:
llvm::BasicBlock *ExitBB;
EntryFunctionState() : ExitBB(nullptr){};
};
class WorkerFunctionState {
public:
llvm::Function *WorkerFn;
const CGFunctionInfo *CGFI;
WorkerFunctionState(CodeGenModule &CGM);
private:
void createWorkerFunction(CodeGenModule &CGM);
};
/// \brief Initialize master-worker control state.
void initializeEnvironment();
/// \brief Emit the worker function for the current target region.
void emitWorkerFunction(WorkerFunctionState &WST);
/// \brief Helper for worker function. Emit body of worker loop.
void emitWorkerLoop(CodeGenFunction &CGF, WorkerFunctionState &WST);
/// \brief Helper for target entry function. Guide the master and worker
/// threads to their respective locations.
void emitEntryHeader(CodeGenFunction &CGF, EntryFunctionState &EST,
WorkerFunctionState &WST);
/// \brief Signal termination of OMP execution.
void emitEntryFooter(CodeGenFunction &CGF, EntryFunctionState &EST);
/// \brief Returns specified OpenMP runtime function for the current OpenMP
/// implementation. Specialized for the NVPTX device.
/// \param Function OpenMP runtime function.
/// \return Specified function.
llvm::Constant *createNVPTXRuntimeFunction(unsigned Function);
//
// Base class overrides.
//
/// \brief Creates offloading entry for the provided entry ID \a ID,
/// address \a Addr and size \a Size.
void createOffloadEntry(llvm::Constant *ID, llvm::Constant *Addr,
uint64_t Size) override;
/// \brief Emit outlined function for 'target' directive on the NVPTX
/// device.
/// \param D Directive to emit.
/// \param ParentName Name of the function that encloses the target region.
/// \param OutlinedFn Outlined function value to be defined by this call.
/// \param OutlinedFnID Outlined function ID value to be defined by this call.
/// \param IsOffloadEntry True if the outlined function is an offload entry.
/// An outlined function may not be an entry if, e.g. the if clause always
/// evaluates to false.
void emitTargetOutlinedFunction(const OMPExecutableDirective &D,
StringRef ParentName,
llvm::Function *&OutlinedFn,
llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry) override;
public:
explicit CGOpenMPRuntimeNVPTX(CodeGenModule &CGM);
};

View File

@ -1,587 +0,0 @@
// Test target codegen - host bc file has to be created first.
// RUN: %clang_cc1 -verify -fopenmp -x c++ -triple powerpc64le-unknown-unknown -fomptargets=nvptx64-nvidia-cuda -emit-llvm-bc %s -o %t-ppc-host.bc
// RUN: %clang_cc1 -verify -fopenmp -x c++ -triple nvptx64-unknown-unknown -fomptargets=nvptx64-nvidia-cuda -emit-llvm %s -fopenmp-is-device -fomp-host-ir-file-path %t-ppc-host.bc -o - | FileCheck %s --check-prefix CHECK --check-prefix CHECK-64
// RUN: %clang_cc1 -verify -fopenmp -x c++ -triple i386-unknown-unknown -fomptargets=nvptx-nvidia-cuda -emit-llvm-bc %s -o %t-x86-host.bc
// RUN: %clang_cc1 -verify -fopenmp -x c++ -triple nvptx-unknown-unknown -fomptargets=nvptx-nvidia-cuda -emit-llvm %s -fopenmp-is-device -fomp-host-ir-file-path %t-x86-host.bc -o - | FileCheck %s --check-prefix CHECK --check-prefix CHECK-32
// expected-no-diagnostics
#ifndef HEADER
#define HEADER
// CHECK-DAG: [[OMP_NT:@.+]] = common addrspace(3) global i32 0
// CHECK-DAG: [[OMP_WID:@.+]] = common addrspace(3) global i64 0
template<typename tx, typename ty>
struct TT{
tx X;
ty Y;
};
int foo(int n) {
int a = 0;
short aa = 0;
float b[10];
float bn[n];
double c[5][10];
double cn[5][n];
TT<long long, char> d;
// CHECK: define {{.*}}void [[T1:@__omp_offloading_.+foo.+]]_worker()
// CHECK: br label {{%?}}[[AWAIT_WORK:.+]]
//
// CHECK: [[AWAIT_WORK]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: [[WORK:%.+]] = load i64, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: [[SHOULD_EXIT:%.+]] = icmp eq i64 [[WORK]], 0
// CHECK-NEXT: br i1 [[SHOULD_EXIT]], label {{%?}}[[EXIT:.+]], label {{%?}}[[SEL_WORKERS:.+]]
//
// CHECK: [[SEL_WORKERS]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[NT:%.+]] = load i32, i32 addrspace(3)* [[OMP_NT]]
// CHECK-NEXT: [[IS_ACTIVE:%.+]] = icmp slt i32 [[TID]], [[NT]]
// CHECK-NEXT: br i1 [[IS_ACTIVE]], label {{%?}}[[EXEC_PARALLEL:.+]], label {{%?}}[[BAR_PARALLEL:.+]]
//
// CHECK: [[EXEC_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[TERM_PARALLEL:.+]]
//
// CHECK: [[TERM_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[BAR_PARALLEL]]
//
// CHECK: [[BAR_PARALLEL]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[AWAIT_WORK]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
// CHECK: define {{.*}}void [[T1]]()
// CHECK: [[NTID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
// CHECK-NEXT: [[WS:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.warpsize()
// CHECK-NEXT: [[A:%.+]] = sub i32 [[WS]], 1
// CHECK-NEXT: [[B:%.+]] = sub i32 [[NTID]], 1
// CHECK-NEXT: [[C:%.+]] = xor i32 [[A]], -1
// CHECK-NEXT: [[MID:%.+]] = and i32 [[B]], [[C]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[EXCESS:%.+]] = icmp ugt i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[EXCESS]], label {{%?}}[[EXIT:.+]], label {{%?}}[[CHECK_WORKER:.+]]
//
// CHECK: [[CHECK_WORKER]]
// CHECK-NEXT: [[IS_WORKER:%.+]] = icmp ult i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[IS_WORKER]], label {{%?}}[[WORKER:.+]], label {{%?}}[[MASTER:.+]]
//
// CHECK: [[WORKER]]
// CHECK-NEXT: call void [[T1]]_worker()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[MASTER]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: call void @__kmpc_kernel_init(i32 0, i32 [[TID]])
// CHECK-NEXT: br label {{%?}}[[TERM:.+]]
//
// CHECK: [[TERM]]
// CHECK-NEXT: store i64 0, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
#pragma omp target
{
}
// CHECK-NOT: define {{.*}}void [[T2:@__omp_offloading_.+foo.+]]_worker()
#pragma omp target if(0)
{
}
// CHECK: define {{.*}}void [[T3:@__omp_offloading_.+foo.+]]_worker()
// CHECK: br label {{%?}}[[AWAIT_WORK:.+]]
//
// CHECK: [[AWAIT_WORK]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: [[WORK:%.+]] = load i64, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: [[SHOULD_EXIT:%.+]] = icmp eq i64 [[WORK]], 0
// CHECK-NEXT: br i1 [[SHOULD_EXIT]], label {{%?}}[[EXIT:.+]], label {{%?}}[[SEL_WORKERS:.+]]
//
// CHECK: [[SEL_WORKERS]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[NT:%.+]] = load i32, i32 addrspace(3)* [[OMP_NT]]
// CHECK-NEXT: [[IS_ACTIVE:%.+]] = icmp slt i32 [[TID]], [[NT]]
// CHECK-NEXT: br i1 [[IS_ACTIVE]], label {{%?}}[[EXEC_PARALLEL:.+]], label {{%?}}[[BAR_PARALLEL:.+]]
//
// CHECK: [[EXEC_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[TERM_PARALLEL:.+]]
//
// CHECK: [[TERM_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[BAR_PARALLEL]]
//
// CHECK: [[BAR_PARALLEL]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[AWAIT_WORK]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
// CHECK: define {{.*}}void [[T3]](i[[SZ:32|64]] [[ARG1:%.+]])
// CHECK: [[AA_ADDR:%.+]] = alloca i[[SZ]],
// CHECK: store i[[SZ]] [[ARG1]], i[[SZ]]* [[AA_ADDR]],
// CHECK: [[AA_CADDR:%.+]] = bitcast i[[SZ]]* [[AA_ADDR]] to i16*
// CHECK: [[NTID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
// CHECK-NEXT: [[WS:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.warpsize()
// CHECK-NEXT: [[A:%.+]] = sub i32 [[WS]], 1
// CHECK-NEXT: [[B:%.+]] = sub i32 [[NTID]], 1
// CHECK-NEXT: [[C:%.+]] = xor i32 [[A]], -1
// CHECK-NEXT: [[MID:%.+]] = and i32 [[B]], [[C]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[EXCESS:%.+]] = icmp ugt i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[EXCESS]], label {{%?}}[[EXIT:.+]], label {{%?}}[[CHECK_WORKER:.+]]
//
// CHECK: [[CHECK_WORKER]]
// CHECK-NEXT: [[IS_WORKER:%.+]] = icmp ult i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[IS_WORKER]], label {{%?}}[[WORKER:.+]], label {{%?}}[[MASTER:.+]]
//
// CHECK: [[WORKER]]
// CHECK-NEXT: call void [[T3]]_worker()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[MASTER]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: call void @__kmpc_kernel_init(i32 0, i32 [[TID]])
// CHECK-NEXT: load i16, i16* [[AA_CADDR]],
// CHECK: br label {{%?}}[[TERM:.+]]
//
// CHECK: [[TERM]]
// CHECK-NEXT: store i64 0, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
#pragma omp target if(1)
{
aa += 1;
}
// CHECK: define {{.*}}void [[T4:@__omp_offloading_.+foo.+]]_worker()
// CHECK: br label {{%?}}[[AWAIT_WORK:.+]]
//
// CHECK: [[AWAIT_WORK]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: [[WORK:%.+]] = load i64, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: [[SHOULD_EXIT:%.+]] = icmp eq i64 [[WORK]], 0
// CHECK-NEXT: br i1 [[SHOULD_EXIT]], label {{%?}}[[EXIT:.+]], label {{%?}}[[SEL_WORKERS:.+]]
//
// CHECK: [[SEL_WORKERS]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[NT:%.+]] = load i32, i32 addrspace(3)* [[OMP_NT]]
// CHECK-NEXT: [[IS_ACTIVE:%.+]] = icmp slt i32 [[TID]], [[NT]]
// CHECK-NEXT: br i1 [[IS_ACTIVE]], label {{%?}}[[EXEC_PARALLEL:.+]], label {{%?}}[[BAR_PARALLEL:.+]]
//
// CHECK: [[EXEC_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[TERM_PARALLEL:.+]]
//
// CHECK: [[TERM_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[BAR_PARALLEL]]
//
// CHECK: [[BAR_PARALLEL]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[AWAIT_WORK]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
// CHECK: define {{.*}}void [[T4]](
// Create local storage for each capture.
// CHECK: [[LOCAL_A:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_B:%.+]] = alloca [10 x float]*
// CHECK: [[LOCAL_VLA1:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_BN:%.+]] = alloca float*
// CHECK: [[LOCAL_C:%.+]] = alloca [5 x [10 x double]]*
// CHECK: [[LOCAL_VLA2:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_VLA3:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_CN:%.+]] = alloca double*
// CHECK: [[LOCAL_D:%.+]] = alloca [[TT:%.+]]*
// CHECK-DAG: store i[[SZ]] [[ARG_A:%.+]], i[[SZ]]* [[LOCAL_A]]
// CHECK-DAG: store [10 x float]* [[ARG_B:%.+]], [10 x float]** [[LOCAL_B]]
// CHECK-DAG: store i[[SZ]] [[ARG_VLA1:%.+]], i[[SZ]]* [[LOCAL_VLA1]]
// CHECK-DAG: store float* [[ARG_BN:%.+]], float** [[LOCAL_BN]]
// CHECK-DAG: store [5 x [10 x double]]* [[ARG_C:%.+]], [5 x [10 x double]]** [[LOCAL_C]]
// CHECK-DAG: store i[[SZ]] [[ARG_VLA2:%.+]], i[[SZ]]* [[LOCAL_VLA2]]
// CHECK-DAG: store i[[SZ]] [[ARG_VLA3:%.+]], i[[SZ]]* [[LOCAL_VLA3]]
// CHECK-DAG: store double* [[ARG_CN:%.+]], double** [[LOCAL_CN]]
// CHECK-DAG: store [[TT]]* [[ARG_D:%.+]], [[TT]]** [[LOCAL_D]]
//
// CHECK-64-DAG: [[REF_A:%.+]] = bitcast i64* [[LOCAL_A]] to i32*
// CHECK-DAG: [[REF_B:%.+]] = load [10 x float]*, [10 x float]** [[LOCAL_B]],
// CHECK-DAG: [[VAL_VLA1:%.+]] = load i[[SZ]], i[[SZ]]* [[LOCAL_VLA1]],
// CHECK-DAG: [[REF_BN:%.+]] = load float*, float** [[LOCAL_BN]],
// CHECK-DAG: [[REF_C:%.+]] = load [5 x [10 x double]]*, [5 x [10 x double]]** [[LOCAL_C]],
// CHECK-DAG: [[VAL_VLA2:%.+]] = load i[[SZ]], i[[SZ]]* [[LOCAL_VLA2]],
// CHECK-DAG: [[VAL_VLA3:%.+]] = load i[[SZ]], i[[SZ]]* [[LOCAL_VLA3]],
// CHECK-DAG: [[REF_CN:%.+]] = load double*, double** [[LOCAL_CN]],
// CHECK-DAG: [[REF_D:%.+]] = load [[TT]]*, [[TT]]** [[LOCAL_D]],
//
// CHECK: [[NTID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
// CHECK-NEXT: [[WS:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.warpsize()
// CHECK-NEXT: [[A:%.+]] = sub i32 [[WS]], 1
// CHECK-NEXT: [[B:%.+]] = sub i32 [[NTID]], 1
// CHECK-NEXT: [[C:%.+]] = xor i32 [[A]], -1
// CHECK-NEXT: [[MID:%.+]] = and i32 [[B]], [[C]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[EXCESS:%.+]] = icmp ugt i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[EXCESS]], label {{%?}}[[EXIT:.+]], label {{%?}}[[CHECK_WORKER:.+]]
//
// CHECK: [[CHECK_WORKER]]
// CHECK-NEXT: [[IS_WORKER:%.+]] = icmp ult i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[IS_WORKER]], label {{%?}}[[WORKER:.+]], label {{%?}}[[MASTER:.+]]
//
// CHECK: [[WORKER]]
// CHECK-NEXT: call void [[T4]]_worker()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[MASTER]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: call void @__kmpc_kernel_init(i32 0, i32 [[TID]])
//
// Use captures.
// CHECK-64-DAG: load i32, i32* [[REF_A]]
// CHECK-32-DAG: load i32, i32* [[LOCAL_A]]
// CHECK-DAG: getelementptr inbounds [10 x float], [10 x float]* [[REF_B]], i[[SZ]] 0, i[[SZ]] 2
// CHECK-DAG: getelementptr inbounds float, float* [[REF_BN]], i[[SZ]] 3
// CHECK-DAG: getelementptr inbounds [5 x [10 x double]], [5 x [10 x double]]* [[REF_C]], i[[SZ]] 0, i[[SZ]] 1
// CHECK-DAG: getelementptr inbounds double, double* [[REF_CN]], i[[SZ]] %{{.+}}
// CHECK-DAG: getelementptr inbounds [[TT]], [[TT]]* [[REF_D]], i32 0, i32 0
//
// CHECK: br label {{%?}}[[TERM:.+]]
//
// CHECK: [[TERM]]
// CHECK-NEXT: store i64 0, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
#pragma omp target if(n>20)
{
a += 1;
b[2] += 1.0;
bn[3] += 1.0;
c[1][2] += 1.0;
cn[1][3] += 1.0;
d.X += 1;
d.Y += 1;
}
return a;
}
template<typename tx>
tx ftemplate(int n) {
tx a = 0;
short aa = 0;
tx b[10];
#pragma omp target if(n>40)
{
a += 1;
aa += 1;
b[2] += 1;
}
return a;
}
static
int fstatic(int n) {
int a = 0;
short aa = 0;
char aaa = 0;
int b[10];
#pragma omp target if(n>50)
{
a += 1;
aa += 1;
aaa += 1;
b[2] += 1;
}
return a;
}
struct S1 {
double a;
int r1(int n){
int b = n+1;
short int c[2][n];
#pragma omp target if(n>60)
{
this->a = (double)b + 1.5;
c[1][1] = ++a;
}
return c[1][1] + (int)b;
}
};
int bar(int n){
int a = 0;
a += foo(n);
S1 S;
a += S.r1(n);
a += fstatic(n);
a += ftemplate<int>(n);
return a;
}
// CHECK: define {{.*}}void [[T5:@__omp_offloading_.+static.+]]_worker()
// CHECK: br label {{%?}}[[AWAIT_WORK:.+]]
//
// CHECK: [[AWAIT_WORK]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: [[WORK:%.+]] = load i64, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: [[SHOULD_EXIT:%.+]] = icmp eq i64 [[WORK]], 0
// CHECK-NEXT: br i1 [[SHOULD_EXIT]], label {{%?}}[[EXIT:.+]], label {{%?}}[[SEL_WORKERS:.+]]
//
// CHECK: [[SEL_WORKERS]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[NT:%.+]] = load i32, i32 addrspace(3)* [[OMP_NT]]
// CHECK-NEXT: [[IS_ACTIVE:%.+]] = icmp slt i32 [[TID]], [[NT]]
// CHECK-NEXT: br i1 [[IS_ACTIVE]], label {{%?}}[[EXEC_PARALLEL:.+]], label {{%?}}[[BAR_PARALLEL:.+]]
//
// CHECK: [[EXEC_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[TERM_PARALLEL:.+]]
//
// CHECK: [[TERM_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[BAR_PARALLEL]]
//
// CHECK: [[BAR_PARALLEL]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[AWAIT_WORK]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
// CHECK: define {{.*}}void [[T5]](
// Create local storage for each capture.
// CHECK: [[LOCAL_A:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_AA:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_AAA:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_B:%.+]] = alloca [10 x i32]*
// CHECK-DAG: store i[[SZ]] [[ARG_A:%.+]], i[[SZ]]* [[LOCAL_A]]
// CHECK-DAG: store i[[SZ]] [[ARG_AA:%.+]], i[[SZ]]* [[LOCAL_AA]]
// CHECK-DAG: store i[[SZ]] [[ARG_AAA:%.+]], i[[SZ]]* [[LOCAL_AAA]]
// CHECK-DAG: store [10 x i32]* [[ARG_B:%.+]], [10 x i32]** [[LOCAL_B]]
// Store captures in the context.
// CHECK-64-DAG: [[REF_A:%.+]] = bitcast i[[SZ]]* [[LOCAL_A]] to i32*
// CHECK-DAG: [[REF_AA:%.+]] = bitcast i[[SZ]]* [[LOCAL_AA]] to i16*
// CHECK-DAG: [[REF_AAA:%.+]] = bitcast i[[SZ]]* [[LOCAL_AAA]] to i8*
// CHECK-DAG: [[REF_B:%.+]] = load [10 x i32]*, [10 x i32]** [[LOCAL_B]],
//
// CHECK: [[NTID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
// CHECK-NEXT: [[WS:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.warpsize()
// CHECK-NEXT: [[A:%.+]] = sub i32 [[WS]], 1
// CHECK-NEXT: [[B:%.+]] = sub i32 [[NTID]], 1
// CHECK-NEXT: [[C:%.+]] = xor i32 [[A]], -1
// CHECK-NEXT: [[MID:%.+]] = and i32 [[B]], [[C]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[EXCESS:%.+]] = icmp ugt i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[EXCESS]], label {{%?}}[[EXIT:.+]], label {{%?}}[[CHECK_WORKER:.+]]
//
// CHECK: [[CHECK_WORKER]]
// CHECK-NEXT: [[IS_WORKER:%.+]] = icmp ult i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[IS_WORKER]], label {{%?}}[[WORKER:.+]], label {{%?}}[[MASTER:.+]]
//
// CHECK: [[WORKER]]
// CHECK-NEXT: call void [[T5]]_worker()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[MASTER]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: call void @__kmpc_kernel_init(i32 0, i32 [[TID]])
//
// CHECK-64-DAG: load i32, i32* [[REF_A]]
// CHECK-32-DAG: load i32, i32* [[LOCAL_A]]
// CHECK-DAG: load i16, i16* [[REF_AA]]
// CHECK-DAG: getelementptr inbounds [10 x i32], [10 x i32]* [[REF_B]], i[[SZ]] 0, i[[SZ]] 2
//
// CHECK: br label {{%?}}[[TERM:.+]]
//
// CHECK: [[TERM]]
// CHECK-NEXT: store i64 0, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
// CHECK: define {{.*}}void [[T6:@__omp_offloading_.+S1.+]]_worker()
// CHECK: br label {{%?}}[[AWAIT_WORK:.+]]
//
// CHECK: [[AWAIT_WORK]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: [[WORK:%.+]] = load i64, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: [[SHOULD_EXIT:%.+]] = icmp eq i64 [[WORK]], 0
// CHECK-NEXT: br i1 [[SHOULD_EXIT]], label {{%?}}[[EXIT:.+]], label {{%?}}[[SEL_WORKERS:.+]]
//
// CHECK: [[SEL_WORKERS]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[NT:%.+]] = load i32, i32 addrspace(3)* [[OMP_NT]]
// CHECK-NEXT: [[IS_ACTIVE:%.+]] = icmp slt i32 [[TID]], [[NT]]
// CHECK-NEXT: br i1 [[IS_ACTIVE]], label {{%?}}[[EXEC_PARALLEL:.+]], label {{%?}}[[BAR_PARALLEL:.+]]
//
// CHECK: [[EXEC_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[TERM_PARALLEL:.+]]
//
// CHECK: [[TERM_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[BAR_PARALLEL]]
//
// CHECK: [[BAR_PARALLEL]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[AWAIT_WORK]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
// CHECK: define {{.*}}void [[T6]](
// Create local storage for each capture.
// CHECK: [[LOCAL_THIS:%.+]] = alloca [[S1:%struct.*]]*
// CHECK: [[LOCAL_B:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_VLA1:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_VLA2:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_C:%.+]] = alloca i16*
// CHECK-DAG: store [[S1]]* [[ARG_THIS:%.+]], [[S1]]** [[LOCAL_THIS]]
// CHECK-DAG: store i[[SZ]] [[ARG_B:%.+]], i[[SZ]]* [[LOCAL_B]]
// CHECK-DAG: store i[[SZ]] [[ARG_VLA1:%.+]], i[[SZ]]* [[LOCAL_VLA1]]
// CHECK-DAG: store i[[SZ]] [[ARG_VLA2:%.+]], i[[SZ]]* [[LOCAL_VLA2]]
// CHECK-DAG: store i16* [[ARG_C:%.+]], i16** [[LOCAL_C]]
// Store captures in the context.
// CHECK-DAG: [[REF_THIS:%.+]] = load [[S1]]*, [[S1]]** [[LOCAL_THIS]],
// CHECK-64-DAG:[[REF_B:%.+]] = bitcast i[[SZ]]* [[LOCAL_B]] to i32*
// CHECK-DAG: [[VAL_VLA1:%.+]] = load i[[SZ]], i[[SZ]]* [[LOCAL_VLA1]],
// CHECK-DAG: [[VAL_VLA2:%.+]] = load i[[SZ]], i[[SZ]]* [[LOCAL_VLA2]],
// CHECK-DAG: [[REF_C:%.+]] = load i16*, i16** [[LOCAL_C]],
// CHECK: [[NTID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
// CHECK-NEXT: [[WS:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.warpsize()
// CHECK-NEXT: [[A:%.+]] = sub i32 [[WS]], 1
// CHECK-NEXT: [[B:%.+]] = sub i32 [[NTID]], 1
// CHECK-NEXT: [[C:%.+]] = xor i32 [[A]], -1
// CHECK-NEXT: [[MID:%.+]] = and i32 [[B]], [[C]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[EXCESS:%.+]] = icmp ugt i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[EXCESS]], label {{%?}}[[EXIT:.+]], label {{%?}}[[CHECK_WORKER:.+]]
//
// CHECK: [[CHECK_WORKER]]
// CHECK-NEXT: [[IS_WORKER:%.+]] = icmp ult i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[IS_WORKER]], label {{%?}}[[WORKER:.+]], label {{%?}}[[MASTER:.+]]
//
// CHECK: [[WORKER]]
// CHECK-NEXT: call void [[T6]]_worker()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[MASTER]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: call void @__kmpc_kernel_init(i32 0, i32 [[TID]])
// Use captures.
// CHECK-DAG: getelementptr inbounds [[S1]], [[S1]]* [[REF_THIS]], i32 0, i32 0
// CHECK-64-DAG:load i32, i32* [[REF_B]]
// CHECK-32-DAG:load i32, i32* [[LOCAL_B]]
// CHECK-DAG: getelementptr inbounds i16, i16* [[REF_C]], i[[SZ]] %{{.+}}
// CHECK: br label {{%?}}[[TERM:.+]]
//
// CHECK: [[TERM]]
// CHECK-NEXT: store i64 0, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
// CHECK: define {{.*}}void [[T7:@__omp_offloading_.+template.+]]_worker()
// CHECK: br label {{%?}}[[AWAIT_WORK:.+]]
//
// CHECK: [[AWAIT_WORK]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: [[WORK:%.+]] = load i64, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: [[SHOULD_EXIT:%.+]] = icmp eq i64 [[WORK]], 0
// CHECK-NEXT: br i1 [[SHOULD_EXIT]], label {{%?}}[[EXIT:.+]], label {{%?}}[[SEL_WORKERS:.+]]
//
// CHECK: [[SEL_WORKERS]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[NT:%.+]] = load i32, i32 addrspace(3)* [[OMP_NT]]
// CHECK-NEXT: [[IS_ACTIVE:%.+]] = icmp slt i32 [[TID]], [[NT]]
// CHECK-NEXT: br i1 [[IS_ACTIVE]], label {{%?}}[[EXEC_PARALLEL:.+]], label {{%?}}[[BAR_PARALLEL:.+]]
//
// CHECK: [[EXEC_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[TERM_PARALLEL:.+]]
//
// CHECK: [[TERM_PARALLEL]]
// CHECK-NEXT: br label {{%?}}[[BAR_PARALLEL]]
//
// CHECK: [[BAR_PARALLEL]]
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[AWAIT_WORK]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
// CHECK: define {{.*}}void [[T7]](
// Create local storage for each capture.
// CHECK: [[LOCAL_A:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_AA:%.+]] = alloca i[[SZ]]
// CHECK: [[LOCAL_B:%.+]] = alloca [10 x i32]*
// CHECK-DAG: store i[[SZ]] [[ARG_A:%.+]], i[[SZ]]* [[LOCAL_A]]
// CHECK-DAG: store i[[SZ]] [[ARG_AA:%.+]], i[[SZ]]* [[LOCAL_AA]]
// CHECK-DAG: store [10 x i32]* [[ARG_B:%.+]], [10 x i32]** [[LOCAL_B]]
// Store captures in the context.
// CHECK-64-DAG:[[REF_A:%.+]] = bitcast i[[SZ]]* [[LOCAL_A]] to i32*
// CHECK-DAG: [[REF_AA:%.+]] = bitcast i[[SZ]]* [[LOCAL_AA]] to i16*
// CHECK-DAG: [[REF_B:%.+]] = load [10 x i32]*, [10 x i32]** [[LOCAL_B]],
//
// CHECK: [[NTID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
// CHECK-NEXT: [[WS:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.warpsize()
// CHECK-NEXT: [[A:%.+]] = sub i32 [[WS]], 1
// CHECK-NEXT: [[B:%.+]] = sub i32 [[NTID]], 1
// CHECK-NEXT: [[C:%.+]] = xor i32 [[A]], -1
// CHECK-NEXT: [[MID:%.+]] = and i32 [[B]], [[C]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: [[EXCESS:%.+]] = icmp ugt i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[EXCESS]], label {{%?}}[[EXIT:.+]], label {{%?}}[[CHECK_WORKER:.+]]
//
// CHECK: [[CHECK_WORKER]]
// CHECK-NEXT: [[IS_WORKER:%.+]] = icmp ult i32 [[TID]], [[MID]]
// CHECK-NEXT: br i1 [[IS_WORKER]], label {{%?}}[[WORKER:.+]], label {{%?}}[[MASTER:.+]]
//
// CHECK: [[WORKER]]
// CHECK-NEXT: call void [[T7]]_worker()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[MASTER]]
// CHECK-NEXT: [[TID:%.+]] = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
// CHECK-NEXT: call void @__kmpc_kernel_init(i32 0, i32 [[TID]])
//
// CHECK-64-DAG: load i32, i32* [[REF_A]]
// CHECK-32-DAG: load i32, i32* [[LOCAL_A]]
// CHECK-DAG: load i16, i16* [[REF_AA]]
// CHECK-DAG: getelementptr inbounds [10 x i32], [10 x i32]* [[REF_B]], i[[SZ]] 0, i[[SZ]] 2
//
// CHECK: br label {{%?}}[[TERM:.+]]
//
// CHECK: [[TERM]]
// CHECK-NEXT: store i64 0, i64 addrspace(3)* [[OMP_WID]],
// CHECK-NEXT: call void @llvm.nvvm.barrier0()
// CHECK-NEXT: br label {{%?}}[[EXIT]]
//
// CHECK: [[EXIT]]
// CHECK-NEXT: ret void
#endif