When the first commutative instruction in a region using the same value in both positions was compared to a corresponding instruction with two different values, there was an early check that determined that since the values were new, it was true that these values acted in the same way structurally. If this was not contradicted later in the program, the regions were marked as similar. This removes that check, so that it is clear that the same value cannot be mapped to two different values.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D124775
When constructing canonical relationships between two regions, the first instruction of a basic block from the first region is used to find the corresponding basic block from the second region. However, debug instructions are not included in similarity matching, and therefore do not have a canonical numbering. This patch makes sure to ignore the debug instructions when finding the first instruction in a basic block.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D123903
Issue: https://github.com/llvm/llvm-project/issues/54431
PHINodes that need to be generated to accommodate a PHINode outside the region due to different output paths need to have their own numbering to determine the number of output schemes required to properly handle all the outlined regions. This numbering was previously only determined by the order and values of the incoming values, as well as the parent block of the PHINode. This adds the incoming blocks to the calculation of a hash value for these PHINodes as well, and the supporting infrastructure to give each block in a region a corresponding canonical numbering.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D122207
If an instruction is first legal instruction in the module, and is the only legal instruction in its basic block, it will be ignored by the outliner due to a length check inherited from the older version of the outliner that was restricted to outlining within a single basic block. This removes that check, and updates any tests that broke because of it.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D120786
Musttail calls require extra handling to properly propagate the calling convention information and tail call information. The outliner does not currently do this, so we ignore call instructions that utilize the swifttailcc and tailcc calling convention as well as functions marked with the attribute musttail.
Reviewers: paquette, aschwaighofer
Differential Revision: https://reviews.llvm.org/D120733
Created to fix: https://github.com/llvm/llvm-project/issues/53537
Some intrinsics functions are considered commutative since they are performing operations like addition or multiplication. Some of these have extra parameters to provide extra information that are not part of the operation itself and are not commutative. This makes sure that if an instruction that is an intrinsic takes the non commutative path to handle this case.
Reviewer: paquette
Closes Issue #53537
Differential Revision: https://reviews.llvm.org/D118807
Due to some complications with lifetime, and assume-like intrinsics, intrinsics were not included as outlinable instructions. This patch opens up most intrinsics, excluding lifetime and assume-like intrinsics, to be outlined. For similarity, it is required that the intrinsic IDs, and the intrinsics names match exactly, as well as the function type. This puts intrinsics in a different class than normal call instructions (https://reviews.llvm.org/D109448), where the name will no longer have to match.
This also adds an additional command line flag debug option to disable outlining intrinsics.
Recommit of: 8de76bd569
Adds extra checking of intrinsic function calls names to avoid taking the address of intrinsic calls when extracting function calls.
Reviewers: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D109450
We use the same similarity scheme we used for branch instructions for phi nodes, and allow them to be outlined. There is not a lot of special handling needed for these phi nodes when outlining, as they simply act as outputs. The code extractor does not currently allow for non entry blocks within the extracted region to have predecessors, so there are not conflicts to handle with respect to predecessors no longer contained in the function.
Recommit of 515eec3553
Reviewers: paquette
Differential Revision: https://reviews.llvm.org/D106997
Due to some complications with lifetime, and assume-like intrinsics, intrinsics were not included as outlinable instructions. This patch opens up most intrinsics, excluding lifetime and assume-like intrinsics, to be outlined. For similarity, it is required that the intrinsic IDs, and the intrinsics names match exactly, as well as the function type. This puts intrinsics in a different class than normal call instructions (https://reviews.llvm.org/D109448), where the name will no longer have to match.
This also adds an additional command line flag debug option to disable outlining intrinsics.
Reviewers: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D109450
The outliner currently requires that function calls not be indirect calls, and have that the function name, and function type must match, as well as other attributes such as calling conventions. This patch treats called functions as values, and just another operand, and named function calls as constants. This allows functions to be treated like any other constant, or input and output into the outlined functions.
There are also debugging flags added to enforce the old behaviors where indirect calls not be allowed, and to enforce the old rule that function calls names must also match.
Reviewers: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D109448
The current IRSimilarityIdentifier does not try to find similarity across blocks, this patch provides a mechanism to compare two branches against one another, to find similarity across basic blocks, rather than just within them.
This adds a step in the similarity identification process that labels all of the basic blocks so that we can identify the relative branching locations. Within an IRSimilarityCandidate we use these relative locations to determine whether if the branching to other relative locations in the same region is the same between branches. If they are, we consider them similar.
We do not consider the relative location of the branch if the target branch is outside of the region. In this case, both branches must exit to a location outside the region, but the exact relative location does not matter.
Reviewers: paquette, yroux
Differential Revision: https://reviews.llvm.org/D106989
When the initial relationship between two pairs of values between
similar sections is ambiguous to commutativity, arguments to the
outlined functions can be passed in such that the order is incorrect,
causing miscompilations. This adds a canonical mapping to each
similarity section, so that we can maintain the relationship of global
value numbering from one section to another.
Added Tests:
Transforms/IROutliner/outlining-commutative-operands-opposite-order.ll
unittests/Analysis/IRSimilarityIdentifierTest.cpp - IRSimilarityCandidate:CanonicalNumbering
Reviewers: jroelofs, jpaquette, yroux
Differential Revision: https://reviews.llvm.org/D104143
Both doInitialize and runOnModule were running the entire analysis
due to the actual work being done in the constructor. Strip it out here
and only get the similarity during runOnModule.
Author: lanza
Reviewers: AndrewLitteken, paquette, plofti
Differential Revision: https://reviews.llvm.org/D92524
Every invocation this was copying the Mapper for no reason. Take a const
ref instead.
Author: lanza
Reviewers: AndrewLitteken, plofti, paquette,
Differential Review: https://reviews.llvm.org/D92532
When doing some recent debugging of the IROutliner, and using the similarity pass for debugging, just having the basic block and function isn't really enough to get all the information. This adds the first and last instruction to the output of the IRSimilarityPrinting pass to give better information to a user.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D94304
Here we let non-intrinsic calls be considered legal and valid for
similarity only if the call is not indirect, and has a name.
For two calls to be considered similar, they must have the same name,
the same function types, and the same set of parameters, including tail
calls and calling conventions.
Tests are found in unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87312
GetElementPtr instructions require the extra check that all operands
after the first must only be constants and be exactly the same to be
considered similar.
Tests are found in unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Some predicates, can be considered the same as long as the operands are
flipped. For example, a > b gives the same result as b > a. This maps
instructions in a greater than form, to their appropriate less than
form, swapping the operands in the IRInstructionData only, allowing for
more flexible matching.
Tests:
llvm/test/Transforms/IROutliner/outlining-isomorphic-predicates.ll
llvm/unittests/Analysis/IRSimilarityIdentifierTest.cpp
Reviewers: jroelofs, paquette
Recommit of commit 0503926602
Differential Revision: https://reviews.llvm.org/D87310
Some predicates, can be considered the same as long as the operands are
flipped. For example, a > b gives the same result as b > a. This maps
instructions in a greater than form, to their appropriate less than
form, swapping the operands in the IRInstructionData only, allowing for
more flexible matching.
Tests:
llvm/test/Transforms/IROutliner/outlining-isomorphic-predicates.ll
llvm/unittests/Analysis/IRSimilarityIdentifierTest.cpp
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87310
Certain instructions, such as adds and multiplies can have the operands
flipped and still be considered the same. When we are analyzing
structure, this gives slightly more flexibility to create a mapping from
one region to another. We can add both operands in a corresponding
instruction to an operand rather than just the exact match. We then try
to eliminate items from the set, until there is only one valid mapping
between the regions of code.
We do this for adds, multiplies, and equality checking. However, this is
not done for floating point instructions, since the order can still
matter in some cases.
Tests:
llvm/test/Transforms/IROutliner/outlining-commutative-fp.ll
llvm/test/Transforms/IROutliner/outlining-commutative.ll
llvm/unittests/Analysis/IRSimilarityIdentifierTest.cpp
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87311
This introduces an analysis pass that wraps IRSimilarityIdentifier,
and adds a printer pass to examine in what function similarities are
being found.
Test for what the printer pass can find are in
test/Analysis/IRSimilarityIdentifier.
Reviewed by: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D86973
This takes the mapped instructions from the IRInstructionMapper, and
passes it to the Suffix Tree to find the repeated substrings. Within
each set of repeated substrings, the IRSimilarityCandidates are compared
against one another for structure, and ensuring that the operands in the
instructions are used in the same way. Each of these structurally
similarity IRSimilarityCandidates are contained in a SimilarityGroup.
Tests checking for identifying identity of structure, different
isomorphic structure, and different
nonisomoprhic structure are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Differential Revision: https://reviews.llvm.org/D86972