This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Implements the ThinLTO summary support for memprof related metadata.
This includes support for the assembly format, and for building the
summary from IR during ModuleSummaryAnalysis.
To reduce space in both the bitcode format and the in memory index,
we do 2 things:
1. We keep a single vector of all uniq stack id hashes, and record the
index into this vector in the callsite and allocation memprof
summaries.
2. When building the combined index during the LTO link, the callsite
and allocation memprof summaries are only kept on the FunctionSummary
of the prevailing copy.
Differential Revision: https://reviews.llvm.org/D135714
Fixes https://github.com/llvm/llvm-project/issues/56544
AsmWriter always writes ", ..." when a tail call has a varargs argument. This patch only writes the ", " when there is an argument before the varargs argument.
I did not write a dedicated test this for this change, but I modified an existing test that will test for a regression.
Reviewed By: avogelsgesang
Differential Revision: https://reviews.llvm.org/D137893
Signed-off-by: Adrian Vogelsgesang <avogelsgesang@salesforce.com>
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add the DIAssignID metadata attachment boilerplate. Includes a textual-bitcode
roundtrip test and tests that the verifier and parser catch badly formed IR.
This piece of metadata links together stores (used as an attachment) and the
yet-to-be-added llvm.dbg.assign debug intrinsic (used as an operand).
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132222
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
Add the DIAssignID metadata attachment boilerplate. Includes a textual-bitcode
roundtrip test and tests that the verifier and parser catch badly formed IR.
This piece of metadata links together stores (used as an attachment) and the
yet-to-be-added llvm.dbg.assign debug intrinsic (used as an operand).
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D132222
This patch renames FuncletPadInst::getNumArgOperands to arg_size for
consistency with CallBase, where getNumArgOperands was removed in
favor of arg_size in commit 3e1c787b31
Differential Revision: https://reviews.llvm.org/D136048
A thread may not have access to SME or TPIDR2_EL0, so in order to
safely query PSTATE.SM in a streaming-compatible function, the
code should call `__arm_sme_state()`, as described in the ABI:
c2bb09c4d4
This means that the value of pstate.sm is:
* 0 if the function is non-streaming.
* 1 if the function has `arm_streaming` or `arm_locally_streaming`.
* evaluated at runtime by a call to __arm_sme_state() otherwise.
This patch also adds a calling convention for calls to SME support routines.
At some point we can remove the need for the llvm.aarch64.get.pstatesm() intrinsic
and use function calls (with the corresponding cc) directly instead.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D131571
This allows the construct to be shared between different backends. However, it
still remains illegal to use TypedPointerType in LLVM IR--the type is intended
to remain an auxiliary type, not a real LLVM type. So no support is provided for
LLVM-C, nor bitcode, nor LLVM assembly (besides the bare minimum needed to make
Type->dump() work properly).
Reviewed By: beanz, nikic, aeubanks
Differential Revision: https://reviews.llvm.org/D130592
For MTE globals, we should have clang emit the attribute for all GV's
that it creates, and then use that in the upcoming AArch64 global
tagging IR pass. We need a positive attribute for this sanitizer (rather
than implicit sanitization of all globals) because it needs to interact
with other parts of LLVM, including:
1. Suppressing certain global optimisations (like merging),
2. Emitting extra directives by the ASM writer, and
3. Putting extra information in the symbol table entries.
While this does technically make the LLVM IR / bitcode format
non-backwards-compatible, nobody should have used this attribute yet,
because it's a no-op.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D128950
With opaque pointers address of pointer variable and its value have
same type (`ptr`). As a result, cmpxchg is printed without values
types in LLVM assembly and cannot be read back. Add AtomicCmpXchg
to the list of instructions which always have operand types printed.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D129276
This removes the insertvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
This is very similar to the extractvalue removal from D125795.
insertvalue is also not supported in bitcode, so no auto-ugprade
is necessary.
ConstantExpr::getInsertValue() can be replaced with
IRBuilder::CreateInsertValue() or ConstantFoldInsertValueInstruction(),
depending on whether a constant result is required (with the latter
being fallible).
The ConstantExpr::hasIndices() and ConstantExpr::getIndices()
methods also go away here, because there are no longer any constant
expressions with indices.
Differential Revision: https://reviews.llvm.org/D128719
Plan is the migrate the global variable metadata for sanitizers, that's
currently carried around generally in the 'llvm.asan.globals' section,
onto the global variable itself.
This patch adds the attribute and plumbs it through the LLVM IR and
bitcode formats, but is a no-op other than that so far.
Reviewed By: vitalybuka, kstoimenov
Differential Revision: https://reviews.llvm.org/D126100
As implemented this patch assumes that Typed pointer support remains in
the llvm::PointerType class, however this could be modified to use a
different subclass of llvm::Type that could be disallowed from use in
other contexts.
This does not rely on inserting typed pointers into the Module, it just
uses the llvm::PointerType class to track and unique types.
Fixes#54918
Reviewed By: kuhar
Differential Revision: https://reviews.llvm.org/D122268
specifying DW_AT_trampoline as a string. Also update the signature
of DIBuilder::createFunction to reflect this addition.
Differential Revision: https://reviews.llvm.org/D123697
DIStringType is used to encode the debug info of a character object
in Fortran. A Fortran deferred-length character object is typically
implemented as a pair of the following two pieces of info: An address
of the raw storage of the characters, and the length of the object.
The stringLocationExp field contains the DIExpression to get to the
raw storage.
This patch also enables the emission of DW_AT_data_location attribute
in a DW_TAG_string_type debug info entry based on stringLocationExp
in DIStringType.
A test is also added to ensure that the bitcode reader is backward
compatible with the old DIStringType format.
Differential Revision: https://reviews.llvm.org/D117586
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
With Control-Flow Integrity (CFI), the LowerTypeTests pass replaces
function references with CFI jump table references, which is a problem
for low-level code that needs the address of the actual function body.
For example, in the Linux kernel, the code that sets up interrupt
handlers needs to take the address of the interrupt handler function
instead of the CFI jump table, as the jump table may not even be mapped
into memory when an interrupt is triggered.
This change adds the no_cfi constant type, which wraps function
references in a value that LowerTypeTestsModule::replaceCfiUses does not
replace.
Link: https://github.com/ClangBuiltLinux/linux/issues/1353
Reviewed By: nickdesaulniers, pcc
Differential Revision: https://reviews.llvm.org/D108478
In-loop vector reductions which use the llvm.fmuladd intrinsic involve
the creation of two recipes; a VPReductionRecipe for the fadd and a
VPInstruction for the fmul. If the call to llvm.fmuladd has fast-math flags
these should be propagated through to the fmul instruction, so an
interface setFastMathFlags has been added to the VPInstruction class to
enable this.
Differential Revision: https://reviews.llvm.org/D113125
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:
* DIExpression can currently be parsed from IR or read from bitcode
as `distinct`, but this property is silently dropped when printing
to IR. This causes accepted IR to fail to round-trip. As DIExpression
appears inline at each use in the canonical form of IR, it cannot
actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
restricted to only appearing in contexts where there is no syntax for
`distinct`, but for consistency it is treated equivalently to
DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
along with adding general support for the inverse restriction I went
ahead and described this in Metadata.def and updated the parser to be
general. Future nodes which have this restriction can share this
support.
The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.
The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.
A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:
!named = !{!0}
!0 = !DIExpression()
Instead we would only accept the equivalent inlined version:
!named = !{!DIExpression()}
This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:
!named = !{!0}
; error: 'distinct' not allowed for !DIExpression()
!0 = distinct !DIExpression()
Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.
Reviewed By: StephenTozer, t-tye
Differential Revision: https://reviews.llvm.org/D104827
As discussed in:
* https://reviews.llvm.org/D94166
* https://lists.llvm.org/pipermail/llvm-dev/2020-September/145031.html
The GlobalIndirectSymbol class lost most of its meaning in
https://reviews.llvm.org/D109792, which disambiguated getBaseObject
(now getAliaseeObject) between GlobalIFunc and everything else.
In addition, as long as GlobalIFunc is not a GlobalObject and
getAliaseeObject returns GlobalObjects, a GlobalAlias whose aliasee
is a GlobalIFunc cannot currently be modeled properly. Creating
aliases for GlobalIFuncs does happen in the wild (e.g. glibc). In addition,
calling getAliaseeObject on a GlobalIFunc will currently return nullptr,
which is undesirable because it should return the object itself for
non-aliases.
This patch refactors the GlobalIFunc class to inherit directly from
GlobalObject, and removes GlobalIndirectSymbol (while inlining the
relevant parts into GlobalAlias and GlobalIFunc). This allows for
calling getAliaseeObject() on a GlobalIFunc to return the GlobalIFunc
itself, making getAliaseeObject() more consistent and enabling
alias-to-ifunc to be properly modeled in the IR.
I exercised some judgement in the API clients of GlobalIndirectSymbol:
some were 'monomorphized' for GlobalAlias and GlobalIFunc, and
some remained shared (with the type adapted to become GlobalValue).
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D108872
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
This patch adds the functionalities to print MDNode in tree shape. For
example, instead of printing a MDNode like this:
```
<0x5643e1166888> = !DILocalVariable(name: "foo", arg: 2, scope: <0x5643e11c9740>, file: <0x5643e11c6ec0>, line: 8, type: <0x5643e11ca8e0>, flags: DIFlagPublic | DIFlagFwdDecl, align: 8)
```
The printTree/dumpTree functions can give you:
```
<0x5643e1166888> = !DILocalVariable(name: "foo", arg: 2, scope: <0x5643e11c9740>, file: <0x5643e11c6ec0>, line: 8, type: <0x5643e11ca8e0>, flags: DIFlagPublic | DIFlagFwdDecl, align: 8)
<0x5643e11c9740> = distinct !DISubprogram(scope: null, spFlags: 0)
<0x5643e11c6ec0> = distinct !DIFile(filename: "file.c", directory: "/path/to/dir")
<0x5643e11ca8e0> = distinct !DIDerivedType(tag: DW_TAG_pointer_type, baseType: <0x5643e11668d8>, size: 1, align: 2)
<0x5643e11668d8> = !DIBasicType(tag: DW_TAG_unspecified_type, name: "basictype")
```
Which is useful when using it in debugger. Where sometimes printing the
whole module to see all MDNodes is too expensive.
Differential Revision: https://reviews.llvm.org/D110113
AsmWriterContext is a simple compound that stores TypePrinting,
SlotTracker (i.e. "Machine" in AsmWriter), and Module instances -- three
of the most commonly used objects in the AsmWriter infrastructure.
Previously these three objects are passed as separate function arguments
to most of the printer functions in this file. Tidying them up can bring
easier code refactoring on printer functions in the future (e.g. when we
want to pass additional objects to all printer functions).
NOTE: Theoritically, this patch should be NFC.
Differential Revision: https://reviews.llvm.org/D110112
Thinlink provides an opportunity to propagate function attributes across modules, enabling additional propagation opportunities.
This change propagates (currently default off, turn on with `disable-thinlto-funcattrs=1`) noRecurse and noUnwind based off of function summaries of the prevailing functions in bottom-up call-graph order. Testing on clang self-build:
1. There's a 35-40% increase in noUnwind functions due to the additional propagation opportunities.
2. Throughput is measured at 10-15% increase in thinlink time which itself is 1.5% of E2E link time.
Implementation-wise this adds the following summary function attributes:
1. noUnwind: function is noUnwind
2. mayThrow: function contains a non-call instruction that `Instruction::mayThrow` returns true on (e.g. windows SEH instructions)
3. hasUnknownCall: function contains calls that don't make it into the summary call-graph thus should not be propagated from (e.g. indirect for now, could add no-opt functions as well)
Testing:
Clang self-build passes and 2nd stage build passes check-all
ninja check-all with newly added tests passing
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D36850
New field `elements` is added to '!DIImportedEntity', representing
list of aliased entities.
This is needed to dump optimized debugging information where all names
in a module are imported, but a few names are imported with overriding
aliases.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D109343
Generate btf_tag annotations for function parameters.
A field "annotations" is introduced to DILocalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DILocalVariable(name: "info",, arg: 1, ..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106620
Generate btf_tag annotations for DIGlobalVariable.
A field "annotations" is introduced to DIGlobalVariable, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DIGlobalVariable(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106619
Generate btf_tag annotations for DISubprogram types.
A field "annotations" is introduced to DISubprogram, and
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates how
annotations are encoded in IR:
distinct !DISubprogram(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Differential Revision: https://reviews.llvm.org/D106618