This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Try to simplify comparisons with the smallest normalized value. If
denormals will be treated as 0, we can simplify by using an equality
comparison with 0.
fcmp olt fabs(x), smallest_normalized_number -> fcmp oeq x, 0.0
fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0
fcmp oge fabs(x), smallest_normalized_number -> fcmp one x, 0.0
fcmp ult fabs(x), smallest_normalized_number -> fcmp ueq x, 0.0
The device libraries have a few range checks that look like
this for denormal handling paths.
This is safe when the mul does not overflow:
https://alive2.llvm.org/ce/z/LedVVP
This could be extended to handle non-zero compare constants
and non-squared multiplies.
(trunc (1 << Y) to iN) == 2**C --> Y == C
(trunc (1 << Y) to iN) != 2**C --> Y != C
https://alive2.llvm.org/ce/z/xnFPo5
Follow-up to d9e1f9d759. This was a suggested
enhancement mentioned in issue #51889.
(trunc (1 << Y) to iN) == 0 --> Y u>= N
(trunc (1 << Y) to iN) != 0 --> Y u< N
These can be generalized in several ways as noted by the TODO
items, but this handles the pattern in the motivating bug report.
Fixes#51889
Differential Revision: https://reviews.llvm.org/D115480
The existing predicate doesn't work for a single-element
vector, so make sure we are not crossing scalar/vector types.
Test (was crashing) based on the post-commit example for:
4827771234
The basic patterns look like this:
https://alive2.llvm.org/ce/z/MDj9EC
The tests have a use of the overflow value too.
Otherwise, existing folds should reduce already.
This was noted as a missing IR fold in:
926e7312b2
Hopefully, this makes it easier to implement a backend
fix because we should get the same IR regardless of
whether the source used builtins or inline code.
This is a follow-up to 2ebfda2417
(replace "if" with "else if" since the cases nuw/nsw
were meant to be handled separately).
Test plan:
1/ ninja check-llvm check-clang check-lld
2/ Bootstrapped LLVM/Clang pass tests
https://alive2.llvm.org/ce/z/3jYbEH
We should choose one of these forms, and the option that uses
the narrow type allows the motivating example from issue #56294
to reduce. In the best case (no 'not' needed and 'trunc' remains),
this does remove an instruction.
Note that there is what looks like a regression because there
is an existing canonicalization that turns trunc into and+icmp.
That is a long-standing transform, and I'm not sure what effect
reversing it would have.
As integer div/rem constant expressions are no longer supported,
constants can no longer trap and are always safe to speculate.
Remove the Constant::canTrap() method and its usages.
In D95959, the improve analysis for "C >> X" broken the fold
((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
It simplifies C, but fails to satisfy the fold condition.
This patch try to restore C before the fold.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D128790
I looked at canonicalizing in the other direction, but that causes
many potential regressions and infinite loops because we already
(possibly wrongly) canonicalize "trunc X to i1" into an and+icmp.
This has a data layout restriction to avoid creating illegal
mask instructions, but we could remove that if we can show
that the backend can undo this when needed.
The motivating example from issue #56119 is modeled by the
PhaseOrdering test.
The assert was added with 0399473de8 and is correct for that
pattern, but it is off-by-1 with the enhancement in d4f39d8333.
The transforms are still correct with the new pre-condition:
https://alive2.llvm.org/ce/z/6_6ghmhttps://alive2.llvm.org/ce/z/_GTBUt
And as shown in the new test, the transform is expected with
'ult' - in that case, the icmp reduces to test if the shift
amount is 0.
This removes the extractvalue constant expression, as part of
https://discourse.llvm.org/t/rfc-remove-most-constant-expressions/63179.
extractvalue is already not supported in bitcode, so we do not need
to worry about bitcode auto-upgrade.
Uses of ConstantExpr::getExtractValue() should be replaced with
IRBuilder::CreateExtractValue() (if the fact that the result is
constant is not important) or ConstantFoldExtractValueInstruction()
(if it is). Though for this particular case, it is also possible
and usually preferable to use getAggregateElement() instead.
The C API function LLVMConstExtractValue() is removed, as the
underlying constant expression no longer exists. Instead,
LLVMBuildExtractValue() should be used (which will constant fold
or create an instruction). Depending on the use-case,
LLVMGetAggregateElement() may also be used instead.
Differential Revision: https://reviews.llvm.org/D125795
Clang-format InstructionSimplify and convert all "FunctionName"s to
"functionName". This patch does touch a lot of files but gets done with
the cleanup of InstructionSimplify in one commit.
This is the alternative to the less invasive clang-format only patch: D126783
Reviewed By: spatel, rengolin
Differential Revision: https://reviews.llvm.org/D126889
Existing condition for
fold icmp ugt (ashr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
missed some boundary. It cause this fold don't work for some cases, and the
reason is due to signed number overflow.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D127188
X <=u (sext i1 Y) --> (X == 0) | Y
https://alive2.llvm.org/ce/z/W_tZzo
This is the conjugate/sibling pattern suggested with D126171
for a sign-extended bool value.
This extends the fold from D126410 / 3952c905ef
to allow for the only case where it works with signed
division:
https://alive2.llvm.org/ce/z/k7_ypu
(X s/ Y) == SMIN --> (X == SMIN) && (Y == 1)
(X s/ Y) != SMIN --> (X != SMIN) || (Y != 1)
This is another improvement based on #55695.
With large compare constant:
(X u/ Y) == C --> (X == C) && (Y == 1)
(X u/ Y) != C --> (X != C) || (Y != 1)
https://alive2.llvm.org/ce/z/EhKwh6
There are various potential missing icmp (div) transforms shown here:
https://github.com/llvm/llvm-project/issues/55695
This is a generalization for part of the udiv + equality.
I didn't check in detail, but some of those may only make sense as
codegen transforms.
This results in one extra instruction in IR, but it is better for
analysis, and looks much better in codegen on all targets that I tried.
Differential Revision: https://reviews.llvm.org/D126410
X <u (zext i1 Y) --> (X == 0) && Y
https://alive2.llvm.org/ce/z/avQDRY
This is a generalization of 4069cccf3b based on the post-commit suggestion.
This also adds the i1 type check and tests that were missing from the earlier
attempt; that commit caused several bot fails and was reverted.
Differential Revision: https://reviews.llvm.org/D126171
This is the specific pattern seen in #53432, but it can be extended
in multiple ways:
1. The 'zext' could be an 'and'
2. The 'sub' could be some other binop with a similar ==0 property (udiv).
There might be some way to generalize using knownbits, but that
would require checking that the 'bool' value is created with
some instruction that can be replaced with new icmp+logic.
https://alive2.llvm.org/ce/z/-KCfpa
In this patch we add a function foldICmpInstWithConstantAllowUndef
to fold integer comparisons with a constant operand: icmp Pred X, C
where X is some kind of instruction and C is AllowUndef.
We move this fold to the new function, so that it can solve undef elts in a vector.
Reviewed By: spatel, RKSimon
Differential Revision: https://reviews.llvm.org/D125220
We could do better by inserting a bitcast from scalar int
to vector int or using an insertelement (the alternate test
does not crash because there's an independent fold like that).
But this doesn't seem like a likely pattern, so just bail out
for now.
Fixes issue #55516.
There is a long function foldICmpInstWithConstant,
we can separate a function foldICmpBinOpWithConstant from it.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D125457
30a12f3f63 switched the type check
to use the GEP result type rather than the GEP operand type.
However, the GEP result types may match even if the operand types
don't, in case GEPs with scalar/vector base and vector index
are compared.
Fixes https://github.com/llvm/llvm-project/issues/55363.