to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
Summary:
The `ClangUserExpression::GetLanguageForExpr` method is currently a big
source of sadness, as it's name implies that it's an accessor method, but it actually
is also initializing some variables that we need for parsing. This caused that we
currently call this getter just for it's side effects while ignoring it's return value,
which is confusing for the reader.
This patch renames it to `UpdateLanguageForExpr` and merges all calls to the
method into a single call in `ClangUserExpression::PrepareForParsing` (as calling
this method is anyway mandatory for parsing to succeed)
While looking at the code, I also found that we actually have two language
variables in this class hierarchy. The normal `Language` from the UserExpression
class and the `LanguageForExpr` that we implemented in this subclass. Both
don't seem to actually contain the same value, so we probably should look at this
next.
Reviewers: xbolva00
Reviewed By: xbolva00
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D52561
llvm-svn: 343191
AbsPosToLineColumnPos is the only reader of m_user_expression_start_pos
and actually treats it like a size_t. Also the value we store in
m_user_expression_start_pos is originally a size_t, so it makes sense
to change the type of this variable to size_t.
llvm-svn: 342804
The patch was originally written before we had a CompletionRequest,
so it still used a StringList to pass back the completions to
the request.
llvm-svn: 341124
Summary:
This patch adds initial code completion support for the `expr` command.
We now have a completion handler in the expression CommandObject that
essentially just attempts to parse the given user expression with Clang with
an attached code completion consumer. We filter and prepare the
code completions provided by Clang and send them back to the completion
API.
The current completion is limited to variables that are in the current scope.
This includes local variables and all types used by local variables. We however
don't do any completion of symbols that are not used in the local scope (or
in some other way already in the ASTContext).
This is partly because there is not yet any code that manually searches for additiona
information in the debug information. Another cause is that for some reason the existing
code for loading these additional symbols when requested by Clang doesn't seem to work.
This will be fixed in a future patch.
Reviewers: jingham, teemperor
Reviewed By: teemperor
Subscribers: labath, aprantl, JDevlieghere, friss, lldb-commits
Differential Revision: https://reviews.llvm.org/D48465
llvm-svn: 341086
Summary:
This patch splits out functionality from the `Parse` method into different methods.
This benefits the code completion work (which should reuse those methods) and makes the
code a bit more readable.
Note that this patch is as minimal as possible. Some of the code in the new methods definitely
needs more refactoring.
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D48339
llvm-svn: 336734
This brings the LLDB configuration closer to LLVM's and removes visual
clutter in the source code by removing the @brief commands from
comments.
This patch also reflows the paragraphs in all doxygen comments.
See also https://reviews.llvm.org/D46290.
Differential Revision: https://reviews.llvm.org/D46321
llvm-svn: 331373
so it can be shared across multiple language plugins.
In a multi-language project it is counterintuitive to have a result
variables reuse numbers just because they are using a different
language plugin in LLDB (but not for example, when they are
Objective-C versus C++, since they are both handled by Clang).
This is NFC on llvm.org except for the Go plugin.
rdar://problem/39299889
Differential Revision: https://reviews.llvm.org/D46083
llvm-svn: 331234
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
This patch adds a new ExecutionPolicy, eExecutionPolicyTopLevel, which
tells the expression parser that the expression should be JITted as top
level code but nothing (except static initializers) should be run. I
have modified the Clang expression parser to recognize this execution
policy. On top of the existing patches that support storing IR and
maintaining a map of arbitrary Decls, this is mainly just patching up a
few places in the expression parser.
I intend to submit a patch for review that exposes this functionality
through the "expression" command and through the SB API. That patch
also includes a testcase for all of this.
<rdar://problem/22864976>
llvm-svn: 264095
We want to do a better job presenting errors that occur when evaluating
expressions. Key to this effort is getting away from a model where all
errors are spat out onto a stream where the client has to take or leave
all of them.
To this end, this patch adds a new class, DiagnosticManager, which
contains errors produced by the compiler or by LLDB as an expression
is created. The DiagnosticManager can dump itself to a log as well as
to a string. Clients will (in the future) be able to filter out the
errors they're interested in by ID or present subsets of these errors
to the user.
This patch is not intended to change the *users* of errors - only to
thread DiagnosticManagers to all the places where streams are used. I
also attempt to standardize our use of errors a bit, removing trailing
newlines and making clients omit 'error:', 'warning:' etc. and instead
pass the Severity flag.
The patch is testsuite-neutral, with modifications to one part of the
MI tests because it relied on "error: error:" being erroneously
printed. This patch fixes the MI variable handling and the testcase.
<rdar://problem/22864976>
llvm-svn: 263859
callers had to do this by hand and we ended up never actually adding initial arguments and then
reusing them by passing in the struct address separately, so the distinction wasn't needed.
llvm-svn: 252108
The Go interpreter doesn't JIT or use LLVM, so this also
moves all the JIT related code from UserExpression to a new class LLVMUserExpression.
Differential Revision: http://reviews.llvm.org/D13073
Fix merge
llvm-svn: 251820
The concept here is that languages may have different ways of communicating
results. In particular, languages may have different names for their result
variables and in fact may have multiple types of result variables (e.g.,
error results). Materializer was tied to one specific model of result handling.
Instead, now UserExpressions can register their own handlers for the result
variables they inject. This allows language-specific code in Materializer to
be moved into the expression parser plug-in, and it simplifies Materializer.
These delegates are subclasses of PersistentVariableDelegate.
PersistentVariableDelegate can provide the name of the result variable, and is
notified when the result variable is populated. It can also be used to touch
persistent variables if need be, updating language-specific state. The
UserExpression owns the delegate and can decide on its result based on
consulting all of its (potentially multiple) delegates.
The user expression itself now makes the determination of what the final result
of the expression is, rather than relying on the Materializer, and I've added a
virtual function to UserExpression to allow this.
llvm-svn: 249233
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612