Weak symbols can be overridden while they're in the NeverSearched state, but
should not be able to be overridden once they've been bound by some lookup.
Historically we guaranteed this by stripping the weak flag once a symbol as
bound, causing it to appear as if it were strong. In ffe2dda29f we changed
that behavior to retain weak flags on symbols (to facilitate tracking for
dynamic re-binding during dlopen). This test checks that we still fail as
required after ffe2dda29f.
Discarding the init symbol is expected to be uncommon (it represents metadata
in the MaterializationUnit that is relevant to dlopen, and this will not
usually be fully duplicated in some other location), however if a client has
marked an InitSymbol as weak and it is selected to be discarded then we should
keep the data structure consistent.
Idiomatic llvm::Error usage can result in a FailedToMaterialize error tearing
down an ExecutionSession instance. Since the FailedToMaterialize error holds
SymbolStringPtrs and JITDylib references this leads to crashes when accessing
or logging the error.
This patch modifies FailedToMaterialize to retain the SymbolStringPool and
JITDylibs involved in the failure so that we can safely report an error message
to the client, even if the error tears down the session.
The contract for JITDylibs allows the getName method to be used even after the
session has been torn down, but no other JITDylib fields should be accessed via
the FailedToMaterialize error if the ssesion has been torn down. Logging the
error is guaranteed to be safe in all cases.
Clients are required to call ExecutionSession::endSession before destroying the
ExecutionSession. Failure to do so can lead to memory leaks and other difficult
to debug issues. Enforcing this requirement by assertion makes it easy to spot
or debug situations where the contract was not followed.
Calls to JITDylib's getDFSLinkOrder and getReverseDFSLinkOrder methods (both
static an non-static versions) are now valid to make on defunct JITDylibs, but
will return an error if any JITDylib in the link order is defunct.
This means that platforms can safely lookup link orders by name in response to
jit-dlopen calls from the ORC runtime, even if the call names a defunct
JITDylib -- the call will just fail with an error.
This allows JITDylibs to be removed from the ExecutionSession. Calling
ExecutionSession::removeJITDylib will disconnect the JITDylib from the
ExecutionSession and clear it (removing all trackers associated with it). The
JITDylib object will then be destroyed as soon as the last JITDylibSP pointing
at it is destroyed.
Wrapper function call and dispatch handler helpers are moved to
ExecutionSession, and existing EPC-based tools are re-written to take an
ExecutionSession argument instead.
Requiring an ExecutorProcessControl instance simplifies existing EPC based
utilities (which only need to take an ES now), and should encourage more
utilities to use the EPC interface. It also simplifies process termination,
since the session can automatically call ExecutorProcessControl::disconnect
(previously this had to be done manually, and carefully ordered with the
rest of JIT tear-down to work correctly).
Don't run tasks until their corresponding thread has been added to the running
threads vector. This is an extention to fda4300da8, which doesn't seem to have
been enough to fix the synchronization issues on its own.
Generalizing this API allows work to be distributed more evenly. In particular,
query callbacks can now be dispatched (rather than running immediately on the
thread that satisfied the query). This avoids the pathalogical case where an
operation on one thread satisfies many queries simultaneously, causing large
amounts of work to be run on that thread while other threads potentially sit
idle.
This patch moves definition generation out from the session lock, instead
running it under a per-dylib generator lock. It also makes the
DefinitionGenerator::tryToGenerate method optionally asynchronous: Generators
are handed an opaque LookupState object which can be captured to stop/restart
the lookup process.
The new scheme provides the following benefits and guarantees:
(1) Queries that do not need to attempt definition generation (because all
requested symbols matched against existing definitions in the JITDylib)
can proceed without being blocked by any running definition generators.
(2) Definition generators can capture the LookupState to continue their work
asynchronously. This allows generators to run for an arbitrary amount of
time without blocking a thread. Definition generators that do not need to
run asynchronously can return without capturing the LookupState to eliminate
unnecessary recursion and improve lookup performance.
(3) Definition generators still do not need to worry about concurrency or
re-entrance: Since they are still run under a (per-dylib) lock, generators
will never be re-entered concurrently, or given overlapping symbol sets to
generate.
Finally, the new system distinguishes between symbols that are candidates for
generation (generation candidates) and symbols that failed to match for a query
(due to symbol visibility). This fixes a bug where an unresolved symbol could
trigger generation of a duplicate definition for an existing hidden symbol.
This patch introduces new APIs to support resource tracking and removal in Orc.
It is intended as a thread-safe generalization of the removeModule concept from
OrcV1.
Clients can now create ResourceTracker objects (using
JITDylib::createResourceTracker) to track resources for each MaterializationUnit
(code, data, aliases, absolute symbols, etc.) added to the JIT. Every
MaterializationUnit will be associated with a ResourceTracker, and
ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib
has a default ResourceTracker that will be used for MaterializationUnits added
to that JITDylib if no ResourceTracker is explicitly specified.
Two operations can be performed on ResourceTrackers: transferTo and remove. The
transferTo operation transfers tracking of the resources to a different
ResourceTracker object, allowing ResourceTrackers to be merged to reduce
administrative overhead (the source tracker is invalidated in the process). The
remove operation removes all resources associated with a ResourceTracker,
including any symbols defined by MaterializationUnits associated with the
tracker, and also invalidates the tracker. These operations are thread safe, and
should work regardless of the the state of the MaterializationUnits. In the case
of resource transfer any existing resources associated with the source tracker
will be transferred to the destination tracker, and all future resources for
those units will be automatically associated with the destination tracker. In
the case of resource removal all already-allocated resources will be
deallocated, any if any program representations associated with the tracker have
not been compiled yet they will be destroyed. If any program representations are
currently being compiled then they will be prevented from completing: their
MaterializationResponsibility will return errors on any attempt to update the
JIT state.
Clients (usually Layer writers) wishing to track resources can implement the
ResourceManager API to receive notifications when ResourceTrackers are
transferred or removed. The MaterializationResponsibility::withResourceKeyDo
method can be used to create associations between the key for a ResourceTracker
and an allocated resource in a thread-safe way.
RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the
ResourceManager API to enable tracking and removal of memory allocated by the
JIT linker.
The new JITDylib::clear method can be used to trigger removal of every
ResourceTracker associated with the JITDylib (note that this will only
remove resources for the JITDylib, it does not run static destructors).
This patch includes unit tests showing basic usage. A follow-up patch will
update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will
use this API to release code associated with anonymous expressions.
This removes all legacy layers, legacy utilities, the old Orc C bindings,
OrcMCJITReplacement, and OrcMCJITReplacement regression tests.
ExecutionEngine and MCJIT are not affected by this change.
Making MaterializationResponsibility instances immovable allows their
associated VModuleKeys to be updated by the ExecutionSession while the
responsibility is still in-flight. This will be used in the upcoming
removable code feature to enable safe merging of resource keys even if
there are active compiles using the keys being merged.
DFS and Reverse-DFS linkage orders are used to order execution of
deinitializers and initializers respectively.
This patch replaces uses of special purpose DFS order functions in
MachOPlatform and LLJIT with uses of the new methods.
MaterializationResponsibility.
MaterializationResponsibility objects provide a connection between a
materialization process (compiler, jit linker, etc.) and the JIT state held in
the ExecutionSession and JITDylib objects. Switching to shared ownership
extends the lifetime of JITDylibs to ensure they remain accessible until all
materializers targeting them have completed. This will allow (in a follow-up
patch) JITDylibs to be removed from the ExecutionSession and placed in a
pending-destruction state while they are kept alive to communicate errors
to/from any still-runnning materialization processes. The intent is to enable
JITDylibs to be safely removed even if they have running compiles targeting
them.
This flag can be used to mark a symbol as existing only for the purpose of
enabling materialization. Such a symbol can be looked up to trigger
materialization with the lookup returning only once materialization is
complete. Symbols with this flag will never resolve however (to avoid
permanently polluting the symbol table), and should only be looked up using
the SymbolLookupFlags::WeaklyReferencedSymbol flag. The primary use case for
this flag is initialization symbols.
Initializers and deinitializers are used to implement C++ static constructors
and destructors, runtime registration for some languages (e.g. with the
Objective-C runtime for Objective-C/C++ code) and other tasks that would
typically be performed when a shared-object/dylib is loaded or unloaded by a
statically compiled program.
MCJIT and ORC have historically provided limited support for discovering and
running initializers/deinitializers by scanning the llvm.global_ctors and
llvm.global_dtors variables and recording the functions to be run. This approach
suffers from several drawbacks: (1) It only works for IR inputs, not for object
files (including cached JIT'd objects). (2) It only works for initializers
described by llvm.global_ctors and llvm.global_dtors, however not all
initializers are described in this way (Objective-C, for example, describes
initializers via specially named metadata sections). (3) To make the
initializer/deinitializer functions described by llvm.global_ctors and
llvm.global_dtors searchable they must be promoted to extern linkage, polluting
the JIT symbol table (extra care must be taken to ensure this promotion does
not result in symbol name clashes).
This patch introduces several interdependent changes to ORCv2 to support the
construction of new initialization schemes, and includes an implementation of a
backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a
MachO specific scheme that handles Objective-C runtime registration (if the
Objective-C runtime is available) enabling execution of LLVM IR compiled from
Objective-C and Swift.
The major changes included in this patch are:
(1) The MaterializationUnit and MaterializationResponsibility classes are
extended to describe an optional "initializer" symbol for the module (see the
getInitializerSymbol method on each class). The presence or absence of this
symbol indicates whether the module contains any initializers or
deinitializers. The initializer symbol otherwise behaves like any other:
searching for it triggers materialization.
(2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h
which provides the following callback interface:
- Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols
in JITDylibs upon creation. E.g. __dso_handle.
- Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally
used to record initializer symbols.
- Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform
that a module is being removed.
Platform implementations can use these callbacks to track outstanding
initializers and implement a platform-specific approach for executing them. For
example, the MachOPlatform installs a plugin in the JIT linker to scan for both
__mod_inits sections (for C++ static constructors) and ObjC metadata sections.
If discovered, these are processed in the usual platform order: Objective-C
registration is carried out first, then static initializers are executed,
ensuring that calls to Objective-C from static initializers will be safe.
This patch updates LLJIT to use the new scheme for initialization. Two
LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO
platform. The GenericIR platform implements a modified version of the previous
llvm.global-ctor scraping scheme to provide support for Windows and
Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO
specific initialization as described above.
Reviewers: sgraenitz, dblaikie
Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74300
libraries.
This patch substantially updates ORCv2's lookup API in order to support weak
references, and to better support static archives. Key changes:
-- Each symbol being looked for is now associated with a SymbolLookupFlags
value. If the associated value is SymbolLookupFlags::RequiredSymbol then
the symbol must be defined in one of the JITDylibs being searched (or be
able to be generated in one of these JITDylibs via an attached definition
generator) or the lookup will fail with an error. If the associated value is
SymbolLookupFlags::WeaklyReferencedSymbol then the symbol is permitted to be
undefined, in which case it will simply not appear in the resulting
SymbolMap if the rest of the lookup succeeds.
Since lookup now requires these flags for each symbol, the lookup method now
takes an instance of a new SymbolLookupSet type rather than a SymbolNameSet.
SymbolLookupSet is a vector-backed set of (name, flags) pairs. Clients are
responsible for ensuring that the set property (i.e. unique elements) holds,
though this is usually simple and SymbolLookupSet provides convenience
methods to support this.
-- Lookups now have an associated LookupKind value, which is either
LookupKind::Static or LookupKind::DLSym. Definition generators can inspect
the lookup kind when determining whether or not to generate new definitions.
The StaticLibraryDefinitionGenerator is updated to only pull in new objects
from the archive if the lookup kind is Static. This allows lookup to be
re-used to emulate dlsym for JIT'd symbols without pulling in new objects
from archives (which would not happen in a normal dlsym call).
-- JITLink is updated to allow externals to be assigned weak linkage, and
weak externals now use the SymbolLookupFlags::WeaklyReferencedSymbol value
for lookups. Unresolved weak references will be assigned the default value of
zero.
Since this patch was modifying the lookup API anyway, it alo replaces all of the
"MatchNonExported" boolean arguments with a "JITDylibLookupFlags" enum for
readability. If a JITDylib's associated value is
JITDylibLookupFlags::MatchExportedSymbolsOnly then the lookup will only
match against exported (non-hidden) symbols in that JITDylib. If a JITDylib's
associated value is JITDylibLookupFlags::MatchAllSymbols then the lookup will
match against any symbol defined in the JITDylib.
In r369808 the failure scheme for ORC symbols was changed to make
MaterializationResponsibility objects responsible for failing the symbols
they represented. This simplifies error logic in the case where symbols are
still covered by a MaterializationResponsibility, but left a gap in error
handling: Symbols that have been emitted but are not yet ready (due to a
dependence on some unemitted symbol) are not covered by a
MaterializationResponsibility object. Under the scheme introduced in r369808
such symbols would be moved to the error state, but queries on those symbols
were never notified. This led to deadlocks when such symbols were failed.
This commit updates error logic to immediately fail queries on any symbol that
has already been emitted if one of its dependencies fails.
llvm-svn: 369976
Symbols that have not been queried will not have MaterializingInfo entries,
so remove the assert that all failed symbols should have these entries.
Also updates the loop to only remove entries that were found earlier.
llvm-svn: 369975
If the dependencies are not removed then a late failure (one symbol covered by
the query failing after others have already been resolved) can result in an
attempt to detach the query from already finalized symbol, resulting in an
assert/crash. This patch fixes the issue by removing query dependencies in
JITDylib::resolve for symbols that meet the required state.
llvm-svn: 369809
When symbols are failed (via MaterializationResponsibility::failMaterialization)
any symbols depending on them will now be moved to an error state. Attempting
to resolve or emit a symbol in the error state (via the notifyResolved or
notifyEmitted methods on MaterializationResponsibility) will result in an error.
If notifyResolved or notifyEmitted return an error due to failure of a
dependence then the caller should log or discard the error and call
failMaterialization to propagate the failure to any queries waiting on the
symbols being resolved/emitted (plus their dependencies).
llvm-svn: 369808
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
This patch replaces the JITDylib::DefinitionGenerator typedef with a class of
the same name, and adds support for attaching a sequence of DefinitionGeneration
objects to a JITDylib.
This patch also adds a new definition generator,
StaticLibraryDefinitionGenerator, that can be used to add symbols fom a static
library to a JITDylib. An object from the static library will be added (via
a supplied ObjectLayer reference) whenever a symbol from that object is
referenced.
To enable testing, lli is updated to add support for the --extra-archive option
when running in -jit-kind=orc-lazy mode.
llvm-svn: 368707
notifyResolved/notifyEmitted.
The 'notify' prefix better describes what these methods do: they update the JIT
symbol states and notify any pending queries that the 'resolved' and 'emitted'
states have been reached (rather than actually performing the resolution or
emission themselves). Since new states are going to be introduced in the near
future (to track symbol registration/initialization) it's worth changing the
convention pre-emptively to avoid further confusion.
llvm-svn: 363322
rather than two callbacks.
The asynchronous lookup API (which the synchronous lookup API wraps for
convenience) used to take two callbacks: OnResolved (called once all requested
symbols had an address assigned) and OnReady to be called once all requested
symbols were safe to access). This patch updates the asynchronous lookup API to
take a single 'OnComplete' callback and a required state (SymbolState) to
determine when the callback should be made. This simplifies the common use case
(where the client is interested in a specific state) and will generalize neatly
as new states are introduced to track runtime initialization of symbols.
Clients who were making use of both callbacks in a single query will now need to
issue two queries (one for SymbolState::Resolved and another for
SymbolState::Ready). Synchronous lookup API clients who were explicitly passing
the WaitOnReady argument will now need neeed to pass a SymbolState instead (for
'WaitOnReady == true' use SymbolState::Ready, for 'WaitOnReady == false' use
SymbolState::Resolved). Synchronous lookup API clients who were using default
arugment values should see no change.
llvm-svn: 362832
Background: A definition generator can be attached to a JITDylib to generate
new definitions in response to queries. For example: a generator that forwards
calls to dlsym can map symbols from a dynamic library into the JIT process on
demand.
If definition generation fails then the generator should be able to return an
error. This allows the JIT API to distinguish between the case where a
generator does not provide a definition, and the case where it was not able to
determine whether it provided a definition due to an error.
The immediate motivation for this is cross-process symbol lookups: If the
remote-lookup generator is attached to a JITDylib early in the search list, and
if a generator failure is misinterpreted as "no definition in this JITDylib" then
lookup may continue and bind to a different definition in a later JITDylib, which
is a bug.
llvm-svn: 359521
When failing materialization of a symbol X, remove X from the dependants list
of any of X's dependencies. This ensures that when X's dependencies are
emitted (or fail themselves) they do not try to access the no-longer-existing
MaterializationInfo for X.
llvm-svn: 359252
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Doesn't build on Windows. The call to 'lookup' is ambiguous. Clang and
MSVC agree, anyway.
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/787
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): error C2668: 'llvm::orc::ExecutionSession::lookup': ambiguous call to overloaded function
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(823): note: could be 'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(llvm::ArrayRef<llvm::orc::JITDylib *>,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(817): note: or 'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(const llvm::orc::JITDylibSearchList &,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): note: while trying to match the argument list '(initializer list, llvm::orc::SymbolStringPtr)'
llvm-svn: 345078
In the new scheme the client passes a list of (JITDylib&, bool) pairs, rather
than a list of JITDylibs. For each JITDylib the boolean indicates whether or not
to match against non-exported symbols (true means that they should be found,
false means that they should not). The MatchNonExportedInJD and MatchNonExported
parameters on lookup are removed.
The new scheme is more flexible, and easier to understand.
This patch also updates JITDylib search orders to be lists of (JITDylib&, bool)
pairs to match the new lookup scheme. Error handling is also plumbed through
the LLJIT class to allow regression tests to fail predictably when a lookup from
a lazy call-through fails.
llvm-svn: 345077
Renames:
JITDylib's setFallbackDefinitionGenerator method to setGenerator.
DynamicLibraryFallbackGenerator class to DynamicLibrarySearchGenerator.
ReexportsFallbackDefinitionGenerator to ReexportsGenerator.
llvm-svn: 344489