Summary: The LocationE parameter of evalStore is documented as "The location expression that is stored to". When storing from an increment / decrement operator this was not satisfied. In user code this causes an inconsistency between the SVal and Stmt parameters of checkLocation.
Reviewers: NoQ, dcoughlin, george.karpenkov
Reviewed By: NoQ
Subscribers: xazax.hun, baloghadamsoftware, szepet, a.sidorin, mikhail.ramalho, Szelethus, donat.nagy, dkrupp, cfe-commits
Differential Revision: https://reviews.llvm.org/D55701
llvm-svn: 350528
Previously, argument effects were stored in a method variable, which was
effectively global.
The global state was reset at each (hopefully) entrance point to the
summary construction,
and every function could modify it.
Differential Revision: https://reviews.llvm.org/D56036
llvm-svn: 350057
This patch is a different approach to landing the reverted r349701.
It is expected to have the same object (memory region) treated as if it has
different types in different program points. The correct behavior for
RegionStore when an object is stored as an object of type T1 but loaded as
an object of type T2 is to store the object as if it has type T1 but cast it
to T2 during load.
Note that the cast here is some sort of a "reinterpret_cast" (even in C). For
instance, if you store an integer and load a float, you won't get your integer
represented as a float; instead, you will get garbage.
Admit that we cannot perform the cast and return an unknown value.
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349984
If it ends with "Retain" like CFRetain and returns a CFTypeRef like CFRetain,
then it is not necessarily a CFRetain. But it is indeed true that these two
return something retained.
Differential Revision: https://reviews.llvm.org/D55907
rdar://problem/39390714
llvm-svn: 349862
This adds anchors to all of the documented checks so that you can directly link to a check by a stable name. This is useful because the SARIF file format has a field for specifying a URI to documentation for a rule and some viewers, like CodeSonar, make use of this information. These links are then exposed through the SARIF exporter.
llvm-svn: 349812
This reverts commit r349701.
The patch was incorrect. The whole point of CastRetrievedVal()
is to handle the case in which the type from which the cast is made
(i.e., the "type" of value `V`) has nothing to do with the type of
the region it was loaded from (i.e., `R->getValueType()`).
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349798
It is expected to have the same object (memory region) treated as if it has
different types in different program points. The correct behavior for
RegionStore when an object is stored as an object of type T1 but loaded as
an object of type T2 is to store the object as if it has type T1 but cast it
to T2 during load.
Note that the cast here is some sort of a "reinterpret_cast" (even in C). For
instance, if you store a float and load an integer, you won't have your float
rounded to an integer; instead, you will have garbage.
Admit that we cannot perform the cast as long as types we're dealing with are
non-trivial (neither integers, nor pointers).
Of course, if the cast is not necessary (eg, T1 == T2), we can still load the
value just fine.
Differential Revision: https://reviews.llvm.org/D55875
rdar://problem/45062567
llvm-svn: 349701
Static Analyzer processes the program function-by-function, sometimes diving
into other functions ("inlining" them). When an object is returned from an
inlined function, Return Value Optimization is modeled, and the returned object
is constructed at its return location directly.
When an object is returned from the function from which the analysis has started
(the top stack frame of the analysis), the return location is unknown. Model it
with a SymbolicRegion based on a conjured symbol that is specifically tagged for
that purpose, because this is generally the correct way to symbolicate
unknown locations in Static Analyzer.
Fixes leak false positives when an object is returned from top frame in C++17:
objects that are put into a SymbolicRegion-based memory region automatically
"escape" and no longer get reported as leaks. This only applies to C++17 return
values with destructors, because it produces a redundant CXXBindTemporaryExpr
in the call site, which confuses our liveness analysis. The actual fix
for liveness analysis is still pending, but it is no longer causing problems.
Additionally, re-enable temporary destructor tests in C++17.
Differential Revision: https://reviews.llvm.org/D55804
rdar://problem/46217550
llvm-svn: 349696
ClangCheckerRegistry is a very non-obvious, poorly documented, weird concept.
It derives from CheckerRegistry, and is placed in lib/StaticAnalyzer/Frontend,
whereas it's base is located in lib/StaticAnalyzer/Core. It was, from what I can
imagine, used to circumvent the problem that the registry functions of the
checkers are located in the clangStaticAnalyzerCheckers library, but that
library depends on clangStaticAnalyzerCore. However, clangStaticAnalyzerFrontend
depends on both of those libraries.
One can make the observation however, that CheckerRegistry has no place in Core,
it isn't used there at all! The only place where it is used is Frontend, which
is where it ultimately belongs.
This move implies that since
include/clang/StaticAnalyzer/Checkers/ClangCheckers.h only contained a single function:
class CheckerRegistry;
void registerBuiltinCheckers(CheckerRegistry ®istry);
it had to re purposed, as CheckerRegistry is no longer available to
clangStaticAnalyzerCheckers. It was renamed to BuiltinCheckerRegistration.h,
which actually describes it a lot better -- it does not contain the registration
functions for checkers, but only those generated by the tblgen files.
Differential Revision: https://reviews.llvm.org/D54436
llvm-svn: 349275
Renaming collectCheckers to getEnabledCheckers
Changing the functionality to acquire all enabled checkers, rather then collect
checkers for a specific CheckerOptInfo (for example, collecting all checkers for
{ "core", true }, which meant enabling all checkers from the core package, which
was an unnecessary complication).
Removing CheckerOptInfo, instead of storing whether the option was claimed via a
field, we handle errors immediately, as getEnabledCheckers can now access a
DiagnosticsEngine. Realize that the remaining information it stored is directly
accessible through AnalyzerOptions.CheckerControlList.
Fix a test with -analyzer-disable-checker -verify accidentally left in.
llvm-svn: 349274
Right now they report to have one parameter with null decl,
because initializing an ArrayRef of pointers with a nullptr
yields an ArrayRef to an array of one null pointer.
Fixes a crash in the OSObject section of RetainCountChecker.
Differential Revision: https://reviews.llvm.org/D55671
llvm-svn: 349229
Functional changes include:
* The run.files property is now an array instead of a mapping.
* fileLocation objects now have a fileIndex property specifying the array index into run.files.
* The resource.rules property is now an array instead of a mapping.
* The result object was given a ruleIndex property that is an index into the resource.rules array.
* rule objects now have their "id" field filled out in addition to the name field.
* Updated the schema and spec version numbers to 11-28.
llvm-svn: 349188
Allow enabling and disabling tracking of ObjC/CF objects
separately from tracking of OS objects.
Differential Revision: https://reviews.llvm.org/D55400
llvm-svn: 348638
Summary:
With a new switch we may be able to print to stderr if a new TU is being loaded
during CTU. This is very important for higher level scripts (like CodeChecker)
to be able to parse this output so they can create e.g. a zip file in case of
a Clang crash which contains all the related TU files.
Reviewers: xazax.hun, Szelethus, a_sidorin, george.karpenkov
Subscribers: whisperity, baloghadamsoftware, szepet, rnkovacs, a.sidorin, mikhail.ramalho, donat.nagy, dkrupp,
Differential Revision: https://reviews.llvm.org/D55135
llvm-svn: 348594
If an iterator is represented by a derived C++ class but its comparison operator
is for its base the iterator checkers cannot recognize the iterators compared.
This results in false positives in very straightforward cases (range error when
dereferencing an iterator after disclosing that it is equal to the past-the-end
iterator).
To overcome this problem we always use the region of the topmost base class for
iterators stored in a region. A new method called getMostDerivedObjectRegion()
was added to the MemRegion class to get this region.
Differential Revision: https://reviews.llvm.org/D54466
llvm-svn: 348244
This continues the work that was started in r342313, which now gets applied to
object-under-construction tracking in C++. Makes it possible to debug
temporaries by dumping exploded graphs again.
Differential Revision: https://reviews.llvm.org/D54459
llvm-svn: 348200
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
In earlier patches regarding AnalyzerOptions, a lot of effort went into
gathering all config options, and changing the interface so that potential
misuse can be eliminited.
Up until this point, AnalyzerOptions only evaluated an option when it was
querried. For example, if we had a "-no-false-positives" flag, AnalyzerOptions
would store an Optional field for it that would be None up until somewhere in
the code until the flag's getter function is called.
However, now that we're confident that we've gathered all configs, we can
evaluate off of them before analysis, so we can emit a error on invalid input
even if that prticular flag will not matter in that particular run of the
analyzer. Another very big benefit of this is that debug.ConfigDumper will now
show the value of all configs every single time.
Also, almost all options related class have a similar interface, so uniformity
is also a benefit.
The implementation for errors on invalid input will be commited shorty.
Differential Revision: https://reviews.llvm.org/D53692
llvm-svn: 348031
From what I can see, this should be the last patch needed to replicate macro
argument expansions.
Differential Revision: https://reviews.llvm.org/D52988
llvm-svn: 348025
During the review of D41938 a condition check with an early exit accidentally
slipped into a branch, leaving the other branch unprotected. This may result in
an assertion later on. This hotfix moves this contition check outside of the
branch.
Differential Revision: https://reviews.llvm.org/D55051
llvm-svn: 347981
It's an old bug that consists in stale references to symbols remaining in the
GDM if they disappear from other program state sections as a result of any
operation that isn't the actual dead symbol collection. The most common example
here is:
FILE *fp = fopen("myfile.txt", "w");
fp = 0; // leak of file descriptor
In this example the leak were not detected previously because the symbol
disappears from the public part of the program state due to evaluating
the assignment. For that reason the checker never receives a notification
that the symbol is dead, and never reports a leak.
This patch not only causes leak false negatives, but also a number of other
problems, including false positives on some checkers.
What's worse, even though the program state contains a finite number of symbols,
the set of symbols that dies is potentially infinite. This means that is
impossible to compute the set of all dead symbols to pass off to the checkers
for cleaning up their part of the GDM.
No longer compute the dead set at all. Disallow iterating over dead symbols.
Disallow querying if any symbols are dead. Remove the API for marking symbols
as dead, as it is no longer necessary. Update checkers accordingly.
Differential Revision: https://reviews.llvm.org/D18860
llvm-svn: 347953
The "free" call frees the object immediately, ignoring the reference count.
Sadly, it is actually used in a few places, so we need to model it.
Differential Revision: https://reviews.llvm.org/D55092
llvm-svn: 347950
Summary: Left only the constructors that are actually required, and marked the move constructors as deleted. They are not used anymore and we were never sure they've actually worked correctly.
Reviewers: george.karpenkov, NoQ
Reviewed By: george.karpenkov
Subscribers: xazax.hun, baloghadamsoftware, szepet, a.sidorin, Szelethus, donat.nagy, dkrupp
Differential Revision: https://reviews.llvm.org/D54974
llvm-svn: 347777
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
Summary:
A __builtin_constant_p may end up with a constant after inlining. Use
the is.constant intrinsic if it's a variable that's in a context where
it may resolve to a constant, e.g., an argument to a function after
inlining.
Reviewers: rsmith, shafik
Subscribers: jfb, kristina, cfe-commits, nickdesaulniers, jyknight
Differential Revision: https://reviews.llvm.org/D54355
llvm-svn: 347294
CheckerOptInfo feels very much out of place in CheckerRegistration.cpp, so I
moved it to CheckerRegistry.h.
Differential Revision: https://reviews.llvm.org/D54397
llvm-svn: 347157
With z3-4.8.1:
../tools/clang/lib/StaticAnalyzer/Core/Z3ConstraintManager.cpp:49:40: error:
'Z3_get_error_msg_ex' was not declared in this scope
../tools/clang/lib/StaticAnalyzer/Core/Z3ConstraintManager.cpp:49:40: note:
suggested alternative: 'Z3_get_error_msg'
Formerly used Z3_get_error_msg_ex() as one could find in z3-4.7.1 states:
"Retained function name for backwards compatibility within v4.1"
And it is implemented only as a forwarding call:
return Z3_get_error_msg(c, err);
Differential Revision: https://reviews.llvm.org/D54391
llvm-svn: 346635