Summary:
For SDAG, we pretend patchpoints aren't special at all until we emit the code for the pseudo.
Then the verifier runs and it seems like we have a use of an undefined register (the register will
be reserved later, but the verifier doesn't know that).
So this patch call setUsesTOCBasePtr before emit the code for the pseudo, so verifier can know
X2 is a reserved register.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D56148
llvm-svn: 350165
This seems to be getting in the way more than its helping. This does mean we stop scalarizing some cases, but I'm not convinced the scalarization was really better.
Some of the changes to vsel-cmp-load.ll are a regression but D56156 should fix it.
llvm-svn: 350159
This allows us to sign extend to v4i32 first. And then share that extension to implement the final steps to v4i64 using a pcmpgt and punpckl and punpckh.
We already do something similar for SIGN_EXTEND with -x86-experimental-vector-widening-legalization.
llvm-svn: 350158
We have some unfortunate code in the back end that defines a bunch of register
sets for the Asm Parser. Every time another class is needed in the parser, we
have to add another one of those definitions with explicit lists of registers.
This NFC patch simply provides macros to use to condense that code a little bit.
Differential revision: https://reviews.llvm.org/D54433
llvm-svn: 350156
A recent patch has added custom legalization of vector conversions of
v2i16 -> v2f64. This just rounds it out for other types where the input vector
has an illegal (narrower) type than the result vector. Specifically, this will
handle the following conversions:
v2i8 -> v2f64
v4i8 -> v4f32
v4i16 -> v4f32
Differential revision: https://reviews.llvm.org/D54663
llvm-svn: 350155
The current CRBIT spill pseudo-op expansion creates a KILL instruction
that kills the CRBIT and defines the enclosing CR field. However, this
paints a false picture to the register allocator that all bits in the CR
field are killed so copies of other bits out of the field become dead and
removable.
This changes the expansion to preserve the KILL flag on the CRBIT as an
implicit use and to treat the CR field as an undef input.
Thanks to Hal Finkel for the review and Uli Weigand for implementation input.
Differential revision: https://reviews.llvm.org/D55996
llvm-svn: 350153
The following code requests 64-bit PC-relative relocations unsupported
by MIPS ABI. Now it triggers an assertion. It's better to show an error
message.
```
foo:
.quad bar - foo
```
llvm-svn: 350152
This was tricking us into making these operations and then letting them get scalarized later. But I can't prove that the scalarized version is actually better.
llvm-svn: 350141
Previously we emitted a multiply and some masking that was supposed to matched to PMULUDQ, but the masking could sometimes be removed before we got a chance to match it. So instead just emit the PMULUDQ directly.
Remove the DAG combine that was added when the ReplaceNodeResults code was originally added. Add a new DAG combine to avoid regressions in shrink_vmul.ll
Some of the shrink_vmul.ll test cases now pick PMULUDQ instead of PMADDWD/PMULLD, but I think this should be an improvement on most CPUs.
I think all of this can go away if/when we switch to -x86-experimental-vector-widening-legalization
llvm-svn: 350134
SB (Speculative Barrier) is only mandatory from 8.5
onwards but is optional from Armv8.0-A. This patch adds a command
line option to enable SB, as it was previously only possible to
enable by selecting -march=armv8.5-a.
This patch also moves to FeatureSB the old FeatureSpecRestrict.
Reviewers: pbarrio, olista01, t.p.northover, LukeCheeseman
Differential Revision: https://reviews.llvm.org/D55921
llvm-svn: 350126
This is the last one in a series of patches to support better code generation for bitfield insert.
BitPermutationSelector already support ISD::ZERO_EXTEND but not TRUNCATE.
This patch adds support for ISD:TRUNCATE in BitPermutationSelector.
For example of this test case,
struct s64b {
int a:4;
int b:16;
int c:24;
};
void bitfieldinsert64b(struct s64b *p, unsigned char v) {
p->b = v;
}
the selection DAG loos like:
t14: i32,ch = load<(load 4 from %ir.0)> t0, t2, undef:i64
t18: i32 = and t14, Constant:i32<-1048561>
t4: i64,ch = CopyFromReg t0, Register:i64 %1
t22: i64 = AssertZext t4, ValueType:ch:i8
t23: i32 = truncate t22
t16: i32 = shl nuw nsw t23, Constant:i32<4>
t19: i32 = or t18, t16
t20: ch = store<(store 4 into %ir.0)> t14:1, t19, t2, undef:i64
By handling truncate in the BitPermutationSelector, we can use information from AssertZext when selecting t19 and skip the mask operation corresponding to t18.
So the generated sequences with and without this patch are
without this patch
rlwinm 5, 5, 0, 28, 11 # corresponding to t18
rlwimi 5, 4, 4, 20, 27
with this patch
rlwimi 5, 4, 4, 12, 27
Differential Revision: https://reviews.llvm.org/D49076
llvm-svn: 350118
If we are changing the MI operand from Reg to Imm, we need also handle its implicit use if have.
Differential Revision: https://reviews.llvm.org/D56078
llvm-svn: 350115
For atomic value operand which less than 4 bytes need to be masked.
And the related operation to calculate the newvalue can be done in 32 bit gprc.
So just use gprc for mask and value calculation.
Differential Revision: https://reviews.llvm.org/D56077
llvm-svn: 350113
Create PMULDQ/PMULUDQ as long as the number of elements is a power of 2.
This seems to give some improvements in our ability to use SimplifyDemandedBits.
llvm-svn: 350084
Make each of the helper functions only return their comparison node and the condition code. Leave X86ISD::SETCC creation to the LowerSETCC function itself.
Looking into whether we can use this code directly in BRCOND and SELECT lowering instead of going through LowerSETCC which creates an X86ISD::SETCC node we need to look through.
llvm-svn: 350082
Only one of the 3 callers of LowerAndToBT need the SETCC node. Two of them have to look through it to find the operands they really need. Instead create it after the one call that needs it.
LowerAndToBT now returns both the BT node and the X86 specific condition code separately.
llvm-svn: 350081
Summary:
These instructions are currently unused in our backend, but for
completeness it is good to support them, so they can be used with
the assembler in hand-written code.
Tests are very basic, signature support missing much like other blocks.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55973
llvm-svn: 350079
Summary:
It does so using a simple nesting stack, and gives clear errors upon
violation. This is unique to wasm, since most CPUs do not have
any nested constructs.
Had to add an end of file check to the general assembler for this.
Note: if/else/end instructions are not currently supported in our
tablegen defs, so these tests will be enabled in a follow-up.
They already pass the nesting check.
Reviewers: dschuff, aheejin
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55797
llvm-svn: 350078
The patch adds a possibility to make library calls on NVPTX.
An important thing about library functions - they must be defined within
the current module. This basically should guarantee that we produce a
valid PTX assembly (without calls to not defined functions). The one who
wants to use the libcalls is probably will have to link against
compiler-rt or any other implementation.
Currently, it's completely impossible to make library calls because of
error LLVM ERROR: Cannot select: i32 = ExternalSymbol '...'. But we can
lower ExternalSymbol to TargetExternalSymbol and verify if the function
definition is available.
Also, there was an issue with a DAG during legalisation. When we expand
instruction into libcall, the inner call-chain isn't being "integrated"
into outer chain. Since the last "data-flow" (call retval load) node is
located in call-chain earlier than CALLSEQ_END node, the latter becomes
a leaf and therefore a dead node (and is being removed quite fast).
Proposed here solution relies on another data-flow pseudo nodes
(ProxyReg) which purpose is only to keep CALLSEQ_END at legalisation and
instruction selection phases - we remove the pseudo instructions before
register scheduling phase.
Patch by Denys Zariaiev!
Differential Revision: https://reviews.llvm.org/D34708
llvm-svn: 350069
Add widen scalar for type index 1 (i1 condition) for G_SELECT.
Select G_SELECT for pointer, s32(integer) and smaller low level
types on MIPS32.
Differential Revision: https://reviews.llvm.org/D56001
llvm-svn: 350063
Summary:
This patch is to fix the bug imported by rL341634.
In above submit , the the return type of ISD::ADDE is
14224: SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i64),
but in fact, the second return type of ISD::ADDE should be
MVT::Glue not MVT::i64.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D55977
llvm-svn: 350061
This is an alternative to what I attempted in D56057.
GetDemandedBits is a special version of SimplifyDemandedBits that allows simplifications even when the operand has other uses. GetDemandedBits will only do simplifications that allow a node to be bypassed. It won't create new nodes or alter any of the other users.
I had to add support for bypassing SIGN_EXTEND_INREG to GetDemandedBits.
Based on a patch that Simon Pilgrim sent me in email.
Fixes PR40142.
llvm-svn: 350059
Both of these places reference memset-like loops. Memset is precise.
Trying to keep these patches super small so they're easily post-commit
verifiable, as requested in D44748.
llvm-svn: 350044
Remove the TESTmr isel patterns and add another postprocessing combine for TESTrr+ANDrm->TESTmr. We already have a postprocessing combine for TESTrr+ANDrr->TESTrr. With this we can give ANDN a chance to match first. And clean it up during post processing if we ended up with just a regular AND.
This is another step towards my plan to gut EmitTest and do more flag handling during isel matching or by using optimizeCompare.
llvm-svn: 350038
The missed load folding noticed in D55898 is visible independent of that change
either with an adjusted IR pattern to start or with AVX2/AVX512 (where the build
vector becomes a broadcast first; movddup is not produced until we get into isel
via tablegen patterns).
Differential Revision: https://reviews.llvm.org/D55936
llvm-svn: 350005
NVPTXAsmPrinter::doInitialization() was creating an NVPTXSubtarget on
the stack. This object is huge, about 80kb. Also it's slow to create.
And it's all redundant; we have one in NVPTXTargetMachine anyway!
llvm-svn: 349982
Summary:
Added a pair of APIs for encoding/decoding the 3 components of a DWARF discriminator described in http://lists.llvm.org/pipermail/llvm-dev/2016-October/106532.html: the base discriminator, the duplication factor (useful in profile-guided optimization) and the copy index (used to identify copies of code in cases like loop unrolling)
The encoding packs 3 unsigned values in 32 bits. This CL addresses 2 issues:
- communicates overflow back to the user
- supports encoding all 3 components together. Current APIs assume a sequencing of events. For example, creating a new discriminator based on an existing one by changing the base discriminator was not supported.
Reviewers: davidxl, danielcdh, wmi, dblaikie
Reviewed By: dblaikie
Subscribers: zzheng, dmgreen, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D55681
llvm-svn: 349973
This fixes the patterns that have or/and as a root. 'and' is handled differently since thy usually have a CMP wrapped around them.
I had to look for uses of the CF flag because all these nodes have non-standard CF flag behavior. A real or/xor would always clear CF. In practice we shouldn't be using the CF flag from these nodes as far as I know.
Differential Revision: https://reviews.llvm.org/D55813
llvm-svn: 349962
The BEXTR instruction documents the SF bit as undefined.
The TBM BEXTR instruction has the same issue, but I'm not sure how to test it. With the control being an immediate we can determine the sign bit is 0 or the BEXTR would have been removed.
Fixes PR40060
Differential Revision: https://reviews.llvm.org/D55807
llvm-svn: 349956
Summary:
Don't peel of the offset if the resulting base could possibly be negative in Indirect addressing.
This is because the M0 field is of unsigned.
This patch achieves the similar goal as https://reviews.llvm.org/D55241, but keeps the optimization
if the base is known unsigned.
Reviewers:
arsemn
Differential Revision:
https://reviews.llvm.org/D55568
llvm-svn: 349951
This is admittedly a narrow fix for the problem:
https://bugs.llvm.org/show_bug.cgi?id=37502
...but as the XOP restriction shows, it's a maze to get this right.
In the motivating example, note that we have movddup before SSE4.1 and
again with AVX2. That's because insertps isn't available pre-SSE41 and
vbroadcast is (more generally) available with AVX2 (and the splat is
reduced to movddup via isel pattern).
Differential Revision: https://reviews.llvm.org/D55898
llvm-svn: 349937
This adds support for widening G_FCEIL in LegalizerHelper and
AArch64LegalizerInfo. More specifically, it teaches the AArch64 legalizer to
widen G_FCEIL from a 16-bit float to a 32-bit float when the subtarget doesn't
support full FP 16.
This also updates AArch64/f16-instructions.ll to show that we perform the
correct transformation.
llvm-svn: 349927
- When signing return addresses with -msign-return-address=<scope>{+<key>},
either the A key instructions or the B key instructions can be used. To
correctly authenticate the return address, the unwinder/debugger must know
which key was used to sign the return address.
- When and exception is thrown or a break point reached, it may be necessary to
unwind the stack. To accomplish this, the unwinder/debugger must be able to
first authenticate an the return address if it has been signed.
- To enable this, the augmentation string of CIEs has been extended to allow
inclusion of a 'B' character. Functions that are signed using the B key
variant of the instructions should have and FDE whose associated CIE has a 'B'
in the augmentation string.
- One must also be able to preserve these semantics when first stepping from a
high level language into assembly and then, as a second step, into an object
file. To achieve this, I have introduced a new assembly directive
'.cfi_b_key_frame ', that tells the assembler the current frame uses return
address signing with the B key.
- This ensures that the FDE is associated with a CIE that has 'B' in the
augmentation string.
Differential Revision: https://reviews.llvm.org/D51798
llvm-svn: 349895
It seems better to avoid using the callback if possible since
there are coverage assertions which are disabled if this is used.
Also fix missing tests. Only test the legal cases since it seems
legalization for build_vector is quite lacking.
llvm-svn: 349878
This shortens the switches in X86ISelDAGToDAG.cpp to only need to check condition code instead of a list of opcodes.
This also fixes a bug where the memory forms of SETcc were missing from hasNoCarryFlagUses.
llvm-svn: 349868
This saves materializing the immediate. The additional forms are less
common (they don't usually show up for bitfield insert/extract), but
they're still relevant.
I had to add a new target hook to prevent DAGCombine from reversing the
transform. That isn't the only possible way to solve the conflict, but
it seems straightforward enough.
Differential Revision: https://reviews.llvm.org/D55630
llvm-svn: 349857
If you don't do this, then if you hit a G_LOAD in getInstrMapping, you'll end
up with GPRs on the G_FCEIL instead of FPRs. This causes a fallback.
Add it to the switch, and add a test verifying that this happens.
llvm-svn: 349822
We have to treat constructs like this as if they were "symbolic", to use
the correct codepath to resolve them. This mostly only affects movz
etc. because the other uses of classifySymbolRef conservatively treat
everything that isn't a constant as if it were a symbol.
Differential Revision: https://reviews.llvm.org/D55906
llvm-svn: 349800
This requires a bit more code than other fixups, to distingush between
abs_g0/abs_g1/etc. Actually, I think some of the other fixups are
missing some checks, but I won't try to address that here.
I haven't seen any real-world code that uses a construct like this, but
it clearly should work, and we're considering using it in the
implementation of localescape/localrecover on Windows (see
https://reviews.llvm.org/D53540). I've verified that binutils produces
the same code as llvm-mc for the testcase.
This currently doesn't include support for the *_s variants (that
requires a bit more work to set the opcode).
Differential Revision: https://reviews.llvm.org/D55896
llvm-svn: 349799
Build llvm with assertion on, and then build bcc against this llvm.
Run any bcc tool with debug=8 (turning on -g for clang compilation),
you will get the following assertion errors,
/home/yhs/work/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp:888:
void llvm::RuntimeDyldELF::resolveBPFRelocation(const llvm::SectionEntry&, uint64_t,
uint64_t, uint32_t, int64_t): Assertion `Value <= (4294967295U)' failed.
The .BTF.ext ELF section uses Fixup's to get the instruction
offsets. The data width of the Fixup is 4 bytes since we only need
the insn offset within the section.
This caused the above error though since R_BPF_64_32 expects
4-byte value and the Runtime Dyld tried to resolve the actual
insn address which is 8 bytes.
Actually the offset within the section is all what we need.
Therefore, there is no need to perform any kind of relocation
for .BTF.ext section and such relocation will actually cause
incorrect result.
This patch changed BPFELFObjectWriter::getRelocType() such that
for Fixup Kind FK_Data_4, if the relocation Target is a temporary
symbol, let us skip the relocation (ELF::R_BPF_NONE).
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 349778
This is a update to D43157 to correctly handle fixup_riscv_pcrel_lo12.
Notable changes:
Rebased onto trunk
Handle and test S-type
Test case pcrel-hilo.s is merged into relocations.s
D43157 description:
VK_RISCV_PCREL_LO has to be handled specially. The MCExpr inside is
actually the location of an auipc instruction with a VK_RISCV_PCREL_HI fixup
pointing to the real target.
Differential Revision: https://reviews.llvm.org/D54029
Patch by Chih-Mao Chen and Michael Spencer.
llvm-svn: 349764
There are several vector instructions which may or may not set the
condition code register, depending on the value of an argument.
For codegen, we use two versions of the instruction, one that sets
CC and one that doesn't, which hard-code appropriate values of that
argument. But we also have a "generic" version of the instruction
that is used for the assembler/disassembler. These generic versions
should always be considered to clobber CC just to be safe.
llvm-svn: 349761
This patch fixes two deficiencies in current code that recognizes
the VLLEZ idiom:
- For the floating-point versions, we have ISel patterns that match
on a bitconvert as the top node. In more complex cases, that
bitconvert may already have been merged into something else.
Fix the patterns to match the inner nodes instead.
- For the 64-bit integer versions, depending on the surrounding code,
we may get either a DAG tree based on JOIN_DWORDS or one based on
INSERT_VECTOR_ELT. Use a PatFrags to simply match both variants.
llvm-svn: 349749
Current code in SystemZDAGToDAGISel::tryGather refuses to perform
any transformation if the Load SDNode has more than one use. This
(erronously) counts uses of the chain result, which prevents the
optimization in many cases unnecessarily. Fixed by this patch.
llvm-svn: 349748
We already have special code (DAG combine support for FP_ROUND)
to recognize cases where we an use a vector version of VLEDB to
perform two floating-point truncates in parallel, but equivalent
support for VLEDB (vector floating-point extends) has been
missing so far. This patch adds corresponding DAG combine
support for FP_EXTEND.
llvm-svn: 349746
Summary:
This allows expanding {7,11,13,14,15,21,22,23,25,26,27,28,29,30,31}-byte memcmp
in just two loads on X86. These were previously calling memcmp.
Reviewers: spatel, gchatelet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55263
llvm-svn: 349731
Summary:
PowerPC has scalar selects (isel) and vector mask selects (xxsel). But PowerPC
does not have vector CR selects, PowerPC does not support scalar condition
selects on vectors.
In addition to implementing this hook, isSelectSupported() should return false
when the SelectSupportKind is ScalarCondVectorVal, so that predictable selects
are converted into branch sequences.
Reviewed By: steven.zhang, hfinkel
Differential Revision: https://reviews.llvm.org/D55754
llvm-svn: 349727
Summary:
This is a code size savings and is also important to get runnable code
while engines do not support v128.const.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55910
llvm-svn: 349724
Summary:
Gates v128.const, f32x4.sqrt, f32x4.div, i8x16.extract_lane_u, and
i16x8.extract_lane_u on the --wasm-enable-unimplemented-simd flag,
since these ops are not implemented yet in V8.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D55904
llvm-svn: 349720
This code pattern is an unfortunate side effect of the way some types get split
at call lowering. Ideally we'd either not generate it at all or combine it away
in the legalizer artifact combiner.
Until then, add selection support anyway which is a significant proportion of
our current fallbacks on CTMark.
rdar://46491420
llvm-svn: 349712
This adds a G_FCEIL generic instruction and uses it in AArch64. This adds
selection for floating point ceil where it has a supported, dedicated
instruction. Other cases aren't handled here.
It updates the relevant gisel tests and adds a select-ceil test. It also adds a
check to arm64-vcvt.ll which ensures that we don't fall back when we run into
one of the relevant cases.
llvm-svn: 349664
The (cmp (and X, Y) 0) pattern is greedy and ends up forming a TESTrr and consuming the and when it might be better to use one of the BMI/TBM like BLSR or BLSI.
This patch moves removes the pattern from isel and adds a post processing check to combine TESTrr+ANDrr into just a TESTrr. With this patch we are able to select the BMI/TBM instructions, but we'll also emit a TESTrr when the result is compared to 0. In many cases the peephole pass will be able to use optimizeCompareInstr to remove the TEST, but its probably not perfect.
Differential Revision: https://reviews.llvm.org/D55870
llvm-svn: 349661
Fixes https://bugs.llvm.org/show_bug.cgi?id=38743
The function removeRedundantBlockingStores is supposed to remove any blocking stores contained in each other in lockingStoresDispSizeMap.
But it currently looks only at the previous one, which will miss some cases that result in assert.
This patch refine the function to check all previous layouts until find the uncontained one. So all redundant stores will be removed.
Patch by Pengfei Wang
Differential Revision: https://reviews.llvm.org/D55642
llvm-svn: 349660