OpenMP 4.1 is now OpenMP 4.5. Any mention of 41 or 4.1 is replaced with
45 or 4.5. Also, if the CMake option LIBOMP_OMP_VERSION is 41, CMake warns that
41 is deprecated and to use 45 instead.
llvm-svn: 272687
This patch implements the new kmp_sch_static_balanced_chunked schedule kind that
the compiler will generate when it encounters schedule(simd: static). It just
adds the new constant and the new switch case __kmp_for_static_init.
Patch by Alex Duran.
Differential Revision: http://reviews.llvm.org/D20699
llvm-svn: 271320
This change removes the current timers with ones that partition time properly.
The current timers are nested, so that if a new timer, B, starts when the
current timer, A, is already timing, A's time will include B's. To eliminate
this problem, the partitioned timers are designed to stop the current timer (A),
let the new timer run (B), and when the new timer is finished, restart the
previously running timer (A). With this partitioning of time, a threads' timers
all sum up to the OMP_worker_thread_life time and can now easily show the
percentage of time a thread is spending in different parts of the runtime or
user code.
There is also a new state variable associated with each thread which tells where
it is executing a task. This corresponds with the timers: OMP_task_*, e.g., if
time is spent in OMP_task_taskwait, then that thread executed tasks inside a
#pragma omp taskwait construct.
The changes are mostly changing the MACROs to use the new PARITIONED_* macros,
the new partitionedTimers class and its methods, and new state logic.
Differential Revision: http://reviews.llvm.org/D19229
llvm-svn: 268640
The trip count calculation was incorrect for loops with large bounds. For example,
for(int i=-2,000,000,000; i < 2,000,000,000; i+=50000000), the trip count
calculation had overflow (trying to calculate 2,000,000,000 + 2,000,000,000 with
signed integers) and wasn't giving the right value. This patch fixes this error
in the runtime by using unsigned integers instead. There is still a bug in the
clang compiler component because it warns that there is overflow in the
test case file when there isn't. This error isn't there for the Intel Compiler.
So for now, the test case is designated as XFAIL.
Differential Revision: http://reviews.llvm.org/D19078
llvm-svn: 266677
The monotonic/non-monotonic flags are sent to the runtime via the sched_type by
setting the 30th (non-monotonic) or 29th (monotonic) bit in the sched_type.
Macros are added to probe if monotonic or non-monotonic is specified
(SCHEDULE_HAS_[NON]MONOTONIC & SCHEDULE_HAS_NO_MODIFIERS)
and also to to get the base sched_type (SCHEDULE_WITHOUT_MODIFIERS)
Currently, nothing is done with the modifiers.
Also, this patch adds some comments on the use of the enumerations in at least
one place where it is subtle.
Differential Revision: http://reviews.llvm.org/D17406
llvm-svn: 261906
* Avoid computing state needed only by OMPT unless the ompt_enabled flag is set.
* Properly handle a corner case in OMPT where team == NULL.
Patch by John Mellor-Crummey
Differential Revision: http://reviews.llvm.org/D13502
llvm-svn: 249857
Prior to this change, OMPT had a status flag ompt_status, which could take
several values. This was due to an earlier OMPT design that had several levels
of enablement (ready, disabled, tracking state, tracking callbacks). The
current OMPT design has OMPT support either on or off.
This revision replaces ompt_status with a boolean flag ompt_enabled, which
simplifies the runtime logic for OMPT.
Patch by John Mellor-Crummey
Differential Revision: http://reviews.llvm.org/D12999
llvm-svn: 248189
This removes some statistics counters and timers which were not used,
adds new counters and timers for some language features that were not
monitored previously and separates the counters and timers into those
which are of interest for investigating user code and those which are
only of interest to the developer of the runtime itself.
The runtime developer statistics are now ony collected if the
additional #define KMP_DEVELOPER_STATS is set.
Additional user statistics which are now collected include:
* Count of nested parallelism (omp parallel inside a parallel region)
* Count of omp distribute occurrences
* Count of omp teams occurrences
* Counts of task related statistics (taskyield, task execution, task
cancellation, task steal)
* Values passed to omp_set_numtheads
* Time spent in omp single and omp master
None of this affects code compiled without stats gathering enabled,
which is the normal library build mode.
This also fixes the CMake build by linking to the standard c++ library
when building the stats library as it is a requirement. The normal library
does not have this requirement and its link phase is left alone.
Differential Revision: http://reviews.llvm.org/D11759
llvm-svn: 244677
understand that this is not friendly, and are working to change our
internal code-development to make it easier to make development
features available more frequently and in finer (more functional)
chunks. Unfortunately we haven't got that in place yet, and unpicking
this into multiple separate check-ins would be non-trivial, so please
bear with me on this one. We should be better in the future.
Apologies over, what do we have here?
GGC 4.9 compatibility
--------------------
* We have implemented the new entrypoints used by code compiled by GCC
4.9 to implement the same functionality in gcc 4.8. Therefore code
compiled with gcc 4.9 that used to work will continue to do so.
However, there are some other new entrypoints (associated with task
cancellation) which are not implemented. Therefore user code compiled
by gcc 4.9 that uses these new features will not link against the LLVM
runtime. (It remains unclear how to handle those entrypoints, since
the GCC interface has potentially unpleasant performance implications
for join barriers even when cancellation is not used)
--- new parallel entry points ---
new entry points that aren't OpenMP 4.0 related
These are implemented fully :-
GOMP_parallel_loop_dynamic()
GOMP_parallel_loop_guided()
GOMP_parallel_loop_runtime()
GOMP_parallel_loop_static()
GOMP_parallel_sections()
GOMP_parallel()
--- cancellation entry points ---
Currently, these only give a runtime error if OMP_CANCELLATION is true
because our plain barriers don't check for cancellation while waiting
GOMP_barrier_cancel()
GOMP_cancel()
GOMP_cancellation_point()
GOMP_loop_end_cancel()
GOMP_sections_end_cancel()
--- taskgroup entry points ---
These are implemented fully.
GOMP_taskgroup_start()
GOMP_taskgroup_end()
--- target entry points ---
These are empty (as they are in libgomp)
GOMP_target()
GOMP_target_data()
GOMP_target_end_data()
GOMP_target_update()
GOMP_teams()
Improvements in Barriers and Fork/Join
--------------------------------------
* Barrier and fork/join code is now in its own file (which makes it
easier to understand and modify).
* Wait/release code is now templated and in its own file; suspend/resume code is also templated
* There's a new, hierarchical, barrier, which exploits the
cache-hierarchy of the Intel(r) Xeon Phi(tm) coprocessor to improve
fork/join and barrier performance.
***BEWARE*** the new source files have *not* been added to the legacy
Cmake build system. If you want to use that fixes wil be required.
Statistics Collection Code
--------------------------
* New code has been added to collect application statistics (if this
is enabled at library compile time; by default it is not). The
statistics code itself is generally useful, the lightweight timing
code uses the X86 rdtsc instruction, so will require changes for other
architectures.
The intent of this code is not for users to tune their codes but
rather
1) For timing code-paths inside the runtime
2) For gathering general properties of OpenMP codes to focus attention
on which OpenMP features are most used.
Nested Hot Teams
----------------
* The runtime now maintains more state to reduce the overhead of
creating and destroying inner parallel teams. This improves the
performance of code that repeatedly uses nested parallelism with the
same resource allocation. Set the new KMP_HOT_TEAMS_MAX_LEVEL
envirable to a depth to enable this (and, of course, OMP_NESTED=true
to enable nested parallelism at all).
Improved Intel(r) VTune(Tm) Amplifier support
---------------------------------------------
* The runtime provides additional information to Vtune via the
itt_notify interface to allow it to display better OpenMP specific
analyses of load-imbalance.
Support for OpenMP Composite Statements
---------------------------------------
* Implement new entrypoints required by some of the OpenMP 4.1
composite statements.
Improved ifdefs
---------------
* More separation of concepts ("Does this platform do X?") from
platforms ("Are we compiling for platform Y?"), which should simplify
future porting.
ScaleMP* contribution
---------------------
Stack padding to improve the performance in their environment where
cross-node coherency is managed at the page level.
Redesign of wait and release code
---------------------------------
The code is simplified and performance improved.
Bug Fixes
---------
*Fixes for Windows multiple processor groups.
*Fix Fortran module build on Linux: offload attribute added.
*Fix entry names for distribute-parallel-loop construct to be consistent with the compiler codegen.
*Fix an inconsistent error message for KMP_PLACE_THREADS environment variable.
llvm-svn: 219214