SBTarget::AddModule currently handles the UUID parameter in a very
weird way: UUIDs with more than 16 bytes are trimmed to 16 bytes. On
the other hand, shorter-than-16-bytes UUIDs are completely ignored. In
this patch, we change the parsing code to handle UUIDs of arbitrary
size.
To support arbitrary size UUIDs in SBTarget::AddModule, this patch
changes UUID::SetFromStringRef to parse UUIDs of arbitrary length. We
subtly change the semantics of SetFromStringRef - SetFromStringRef now
only succeeds if the entire input is consumed to prevent some
prefix-parsing confusion. This is up for discussion, but I believe
this is more consistent - we always return false for invalid UUIDs
rather than sometimes truncating to a valid prefix. Also, all the
call-sites except the API and interpreter seem to expect to consume
the entire input.
This also adds tests for adding existing modules 4-, 16-, and 20-byte
build-ids. Finally, we took the liberty of testing the minidump
scenario we care about - removing placeholder module from minidump and
replacing it with the real module.
Reviewed By: labath, friss
Differential Revision: https://reviews.llvm.org/D80755
Greg Clayton a few years ago.
My patch to augment the symbol table in Mach-O files with the
dyld trie exports data structure only categorized symbols as code
or data, but Greg Clayton had a patch to do something similar to
swift a few years ago that had a more extensive categorization of
symbols, as well as extracting some objc class/ivar names from the
entries. This patch is basically just Greg's, updated a bit and
with a test case added to it.
<rdar://problem/50791451>
Differential Revision: https://reviews.llvm.org/D77369
The RuntimeFunction struct, which PECallFrameInfo interprets, has a
different layout and differnet semantics on all architectures.
Differential Revision: https://reviews.llvm.org/D77000
Leverage ARM ELF build attribute section to create ELF attribute section
for RISC-V. Extract the common part of parsing logic for this section
into ELFAttributeParser.[cpp|h] and ELFAttributes.[cpp|h].
Differential Revision: https://reviews.llvm.org/D74023
In ObjectFileMachO we construct the symbol table from multiple
sources -- primarily the binary's nlist records, but when the nlist
symbols have been stripped, we would augment those with function
start address from the LC_FUNCTION_STARTS or eh_frame. This patch
adds another source of symbols - the exported symbols that the
dynamic linker, dyld, uses at runtime from its trie structure. This
provides us names and addresses for these functions/data.
This patch removes the code from ParseSymtab that would reject an
empty symbol table / nlist source. It adds a new symbols_added
set which tracks the address of every symbol we've added to the
symtab. We add symbols in most-information-ful order, and before
adding a symbol from less-informational-ful source (e.g.
LC_FUNCTION_STARTS with no function name), we check if that symbol
has already been added.
On targets with thumb code generation, instead of using the 0th bit
in these addresses in FunctionStarts (or now the trie entries), we
use the data field of FunctionStarts (formerly used to track if the
func_start should be added) and a flag for the trie entries to
encode this, and only store the actual addresses in the symbols_seen
and these vectors.
<rdar://problem/50791451>
Differential revision: https://reviews.llvm.org/D76758
The two classes are equivalent, except:
- the former uses a llvm::SmallVector (with a configurable size), while
the latter uses std::vector.
- the former has a typo in one of the functions name
This patch just leaves one class, using llvm::SmallVector, and defaults
the small size to zero. This is the same thing we did with the
RangeDataVector class in D56170.
LLDB has a few different styles of header guards and they're not very
consistent because things get moved around or copy/pasted. This patch
unifies the header guards across LLDB and converts everything to match
LLVM's style.
Differential revision: https://reviews.llvm.org/D74743
This patch changes the way we initialize and terminate the plugins in
the system initializer. It uses an approach similar to LLVM's
TARGETS_TO_BUILD with a def file that enumerates the plugins.
The previously landed patch got reverted because it was lacking:
(1) A plugin definition for the Objective-C language runtime,
(2) The dependency between the Static and WASM dynamic loader,
(3) Explicit initialization of ScriptInterpreterNone for lldb-test.
All issues have been addressed in this patch.
Differential revision: https://reviews.llvm.org/D73067
This patch changes the way we initialize and terminate the plugins in
the system initializer. It uses an approach similar to LLVM's
TARGETS_TO_BUILD with a def file that enumerates the plugins.
Differential revision: https://reviews.llvm.org/D73067
This is a step towards making the initialize and terminate calls be
generated by CMake, which in turn is towards making it possible to
disable plugins at configuration time.
Differential revision: https://reviews.llvm.org/D74245
This patch has a couple of outstanding issues. The test is not python3
compatible, and it also seems to fail with python2 (at least under some
circumstances) due to an overambitious assertion.
This reverts the patch as well as subsequent fixup attempts:
014ea93376,
f5f70d1c8f.
4697e701b8.
5c15e8e682.
3ec28da6d6.
Scale segment identifier up to user_id_t before negating it. This fixes
the identifers being wrongly e.g. 0x00000000fffffffe instead of
0xfffffffffffffffe. Fix suggested by Pavel Labath.
This fixes 5 tests failing on i386 (PR #44748):
lldb-shell :: ObjectFile/ELF/PT_LOAD-overlap-PT_INTERP.yaml
lldb-shell :: ObjectFile/ELF/PT_LOAD-overlap-PT_TLS.yaml
lldb-shell :: ObjectFile/ELF/PT_LOAD-overlap-section.yaml
lldb-shell :: ObjectFile/ELF/PT_LOAD.yaml
lldb-shell :: ObjectFile/ELF/PT_TLS-overlap-PT_LOAD.yaml
Differential Revision: https://reviews.llvm.org/D73914
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
size_t and uint64_t are spelled slightly differently on macOS, which was
causing the compiler to error out calling std::min - since the two types have
to be the same.
I fixed this by casting the uint64_t computation to a size_t. That's probably
not the cleanest solution, but it gets us back to building.
Summary:
This is the first in a series of patches to enable LLDB debugging of
WebAssembly targets.
Current versions of Clang emit (partial) DWARF debug information in WebAssembly
modules and we can leverage this debug information to give LLDB the ability to
do source-level debugging of Wasm code that runs in a WebAssembly engine.
A way to do this could be to use the remote debugging functionalities provided
by LLDB via the GDB-remote protocol. Remote debugging can indeed be useful not
only to connect a debugger to a process running on a remote machine, but also to
connect the debugger to a managed VM or script engine that runs locally,
provided that the engine implements a GDB-remote stub that offers the ability to
access the engine runtime internal state.
To make this work, the GDB-remote protocol would need to be extended with a few
Wasm-specific custom query commands, used to access aspects of the Wasm engine
state (like the Wasm memory, Wasm local and global variables, and so on).
Furthermore, the DWARF format would need to be enriched with a few Wasm-specific
extensions, here detailed: https://yurydelendik.github.io/webassembly-dwarf.
This CL introduce classes **ObjectFileWasm**, a file plugin to represent a Wasm
module loaded in a debuggee process. It knows how to parse Wasm modules and
store the Code section and the DWARF-specific sections.
Reviewers: jasonmolenda, clayborg, labath
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71575
These are the last sections not managed by the DWARFContext object. I
also introduce separate SectionType enums for dwo section variants, as
this is necessary for proper handling of single-file split dwarf.
This fixes a failing testcase on Fedora 30 x86_64 (regression Fedora 29->30):
PASS:
./bin/lldb ./lldb-test-build.noindex/functionalities/unwind/noreturn/TestNoreturnUnwind.test_dwarf/a.out -o 'settings set symbols.enable-external-lookup false' -o r -o bt -o quit
* frame #0: 0x00007ffff7aa6e75 libc.so.6`__GI_raise + 325
frame #1: 0x00007ffff7a91895 libc.so.6`__GI_abort + 295
frame #2: 0x0000000000401140 a.out`func_c at main.c:12:2
frame #3: 0x000000000040113a a.out`func_b at main.c:18:2
frame #4: 0x0000000000401134 a.out`func_a at main.c:26:2
frame #5: 0x000000000040112e a.out`main(argc=<unavailable>, argv=<unavailable>) at main.c:32:2
frame #6: 0x00007ffff7a92f33 libc.so.6`__libc_start_main + 243
frame #7: 0x000000000040106e a.out`_start + 46
vs.
FAIL - unrecognized abort() function:
./bin/lldb ./lldb-test-build.noindex/functionalities/unwind/noreturn/TestNoreturnUnwind.test_dwarf/a.out -o 'settings set symbols.enable-external-lookup false' -o r -o bt -o quit
* frame #0: 0x00007ffff7aa6e75 libc.so.6`.annobin_raise.c + 325
frame #1: 0x00007ffff7a91895 libc.so.6`.annobin_loadmsgcat.c_end.unlikely + 295
frame #2: 0x0000000000401140 a.out`func_c at main.c:12:2
frame #3: 0x000000000040113a a.out`func_b at main.c:18:2
frame #4: 0x0000000000401134 a.out`func_a at main.c:26:2
frame #5: 0x000000000040112e a.out`main(argc=<unavailable>, argv=<unavailable>) at main.c:32:2
frame #6: 0x00007ffff7a92f33 libc.so.6`.annobin_libc_start.c + 243
frame #7: 0x000000000040106e a.out`.annobin_init.c.hot + 46
The extra ELF symbols are there due to Annobin (I did not investigate why this
problem happened specifically since F-30 and not since F-28).
It is due to:
Symbol table '.dynsym' contains 2361 entries:
Valu e Size Type Bind Vis Name
0000000000022769 5 FUNC LOCAL DEFAULT _nl_load_domain.cold
000000000002276e 0 NOTYPE LOCAL HIDDEN .annobin_abort.c.unlikely
...
000000000002276e 0 NOTYPE LOCAL HIDDEN .annobin_loadmsgcat.c_end.unlikely
...
000000000002276e 0 NOTYPE LOCAL HIDDEN .annobin_textdomain.c_end.unlikely
000000000002276e 548 FUNC GLOBAL DEFAULT abort
000000000002276e 548 FUNC GLOBAL DEFAULT abort@@GLIBC_2.2.5
000000000002276e 548 FUNC LOCAL DEFAULT __GI_abort
0000000000022992 0 NOTYPE LOCAL HIDDEN .annobin_abort.c_end.unlikely
GDB has some more complicated preferences between overlapping and/or sharing
address symbols, I have made here so far the most simple fix for this case.
Differential revision: https://reviews.llvm.org/D63540
This error message didn't specify which file was malformed, so
there's some hunting-around required if it comes up. We have the
filename; include it in the error message.
Remove the hack that populates the cpsr register in the gpr struct by
writing past the end of the array. This was tripping up ASan.
Patch by: Reva Cuthbertson
If not set, the address byte size was implied to be the one of the
host process.
This allows reverting the functional change from 31087b2ae9154, since
now PECOFF does the same as ELF and MachO wrt setting both byte order
and address size on m_data within ParseHeader.
Differential Revision: https://reviews.llvm.org/D71108
COFF section names can either be stored truncated to 8 chars, in the
section header, or as a longer section name, stored separately in the
string table.
libunwind locates the .eh_frame section by runtime introspection,
which only works for section names stored in the section header (as
the string table isn't mapped at runtime). To support this behaviour,
lld always truncates the section names for sections that will be
mapped, like .eh_frame.
Differential Revision: https://reviews.llvm.org/D70745
llvm::object::createBinary returns an Expected<>, which requires
not only checking the object for success, but also requires consuming
the Error, if one was set.
Use LLDB_LOG_ERROR for this case, and change an existing similar log
statement to use it as well, to make sure the Error is consumed even
if the log channel is disabled.
Differential Revision: https://reviews.llvm.org/D69646
Summary:
This enables us to reason about whether a given address can be
executable, for instance during unwinding.
Reviewers: amccarth, mstorsjo
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D69102
The virtual container/header section caused the section list to be
offset by one, but by using FindSectionByID, the layout of the
section list shouldn't matter.
Differential Revision: https://reviews.llvm.org/D69366
In an attempt to ensure that every part of the module's memory image is
accounted for, D56537 created a special "container section" spanning the
entire image. While that seemed reasonable at the time (and it still
mostly does), it did create a problem of what to put as the "file size"
of the section, because the image is not continuous on disk, as we
generally assume (which is why I put zero there). Additionally, this
arrangement makes it unclear what kind of permissions should be assigned
to that section (which is what my next patch does).
To get around these, this patch partially reverts D56537, and goes back
to top-level sections. Instead, what I do is create a new "section" for
the object file header, which is also being loaded into memory, though
its not considered to be a section in the strictest sense. This makes it
possible to correctly assign file size section, and we can later assign
permissions to it as well.
Reviewers: amccarth, mstorsjo
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D69100
This patch removes the size_t return value and the append parameter
from the remainder of the Find.* functions in LLDB's internal API. As
in the previous patches, this is motivated by the fact that these
parameters aren't really used, and in the case of the append parameter
were frequently implemented incorrectly.
Differential Revision: https://reviews.llvm.org/D69119
llvm-svn: 375160
This matches all other architectures listed in the same file.
This fixes debugging aarch64 executables with lldb-server, which
otherwise fails, with log messages like these:
Target::SetArchitecture changing architecture to aarch64 (aarch64-pc-windows-msvc)
Target::SetArchitecture Trying to select executable file architecture aarch64 (aarch64-pc-windows-msvc)
ArchSpec::SetArchitecture sets the vendor to llvm::Triple::PC
for any coff/win32 combination, and if this doesn't match the triple
set by the PECOFF module, things doesn't seem to work with when
using lldb-server.
Differential Revision: https://reviews.llvm.org/D68939
llvm-svn: 374867
This patch adds an implementation of unwinding using PE EH info. It allows to
get almost ideal call stacks on 64-bit Windows systems (except some epilogue
cases, but I believe that they can be fixed with unwind plan disassembly
augmentation in the future).
To achieve the goal the CallFrameInfo abstraction was made. It is based on the
DWARFCallFrameInfo class interface with a few changes to make it less
DWARF-specific.
To implement the new interface for PECOFF object files the class PECallFrameInfo
was written. It uses the next helper classes:
- UnwindCodesIterator helps to iterate through UnwindCode structures (and
processes chained infos transparently);
- EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram;
- EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction
over the low-level unwind codes and simplifies work with them. It contains
only the information that is relevant to unwinding in the unified form. Also
the required unwind codes are read from the object file only once with it;
- EHProgramRange allows to take a range of EHProgram and to build an unwind row
for it.
So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges
corresponding to every offset in prologue and builds the rows of the resulted
unwind plan. The resulted plan covers the whole range of the function except the
epilogue.
Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola
Reviewed By: jasonmolenda
Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67347
llvm-svn: 374528
Testing whether a name is mangled or not is extremely cheap and can be
done by looking at the first two characters. Mangled knows how to do
it. On the flip side, many call sites that currently pass in an
is_mangled determination do not know how to correctly do it (for
example, they leave out Swift mangling prefixes).
This patch removes this entry point and just forced Mangled to
determine the mangledness of a string itself.
Differential Revision: https://reviews.llvm.org/D68674
llvm-svn: 374180
David added the JamCRC implementation in r246590. More recently, Eugene
added a CRC-32 implementation in r357901, which falls back to zlib's
crc32 function if present.
These checksums are essentially the same, so having multiple
implementations seems unnecessary. This replaces the CRC-32
implementation with the simpler one from JamCRC, and implements the
JamCRC interface in terms of CRC-32 since this means it can use zlib's
implementation when available, saving a few bytes and potentially making
it faster.
JamCRC took an ArrayRef<char> argument, and CRC-32 took a StringRef.
This patch changes it to ArrayRef<uint8_t> which I think is the best
choice, and simplifies a few of the callers nicely.
Differential revision: https://reviews.llvm.org/D68570
llvm-svn: 374148
Summary:
This is a redo of D68069 because I reverted it due to some concerns that were now addressed along with the new comments that @labath added.
I found a case where the main android binary (app_process32) had thumb code at its entry point but no entry in the symbol table indicating this. This made lldb set a 4 byte breakpoint at that address (we default to arm code) instead of a 2 byte one (like we should for thumb).
The big deal with this is that the expression evaluator uses the entry point as a way to know when a JITed expression has finished executing by putting a breakpoint there. Because of this, evaluating expressions on certain android devices (Google Pixel something) made the process crash.
This was fixed by checking this specific situation when we parse the symbol table and add an artificial symbol for this 2 byte range and indicating that it's arm thumb.
I created 2 unit tests for this, one to check that now we know that the entry point is arm thumb, and the other to make sure we didn't change the behaviour for arm code.
I also run the following on the command line with the `app_process32` where I found the issue:
**Before:**
```
(lldb) dis -s 0x1640 -e 0x1644
app_process32[0x1640]: .long 0xf0004668 ; unknown opcode
```
**After:**
```
(lldb) dis -s 0x1640 -e 0x1644
app_process32`:
app_process32[0x1640] <+0>: mov r0, sp
app_process32[0x1642]: andeq r0, r0, r0
```
Reviewers: clayborg, labath, wallace, espindola
Reviewed By: labath
Subscribers: labath, lldb-commits, MaskRay, kristof.beyls, arichardson, emaste, srhines
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68533
llvm-svn: 374132
This makes parsing the symbol table of clang marginally faster. (Hashtable versus tree).
Differential Revision: https://reviews.llvm.org/D68605
llvm-svn: 374084
The symtab parser in ObjectFileMachO has logic to coalesce debug (STAB)
and non-debug symbols, based on the address and the symbol name for
static (STSYM) and global symbols (GSYM) respectively. It makes the
assumption that the debug variant is always encountered first. Rather
than creating a second entry in the symbol table for the non-debug
symbol, the latter gets merged into the existing debug symbol.
This breaks when the linker emits the non-debug symbol first. We'd end
up with two entries in the symbol table, each containing part of the
information LLDB relies on. Indeed, commenting out the merging logic
breaks the test suite spectacularly.
This patch solves that problem by always parsing the debug symbols
first. This guarantees that the assumption for merging holds.
I'm not particularly happy with adding a lambda, but after numerous
attempts this is the best solution I could come up with. The symtab
parsing logic is pretty complex in that it touches a lot of things. I've
experienced first hand that it's very easy to break things. I believe
this approach strikes a balance between fixing the issue while limiting
the risk of regressions.
Differential revision: https://reviews.llvm.org/D68536
llvm-svn: 373994
Summary:
If the .symtab section is stripped from the binary it might be that
there's a .gnu_debugdata section which contains a smaller .symtab in
order to provide enough information to create a backtrace with function
names or to set and hit a breakpoint on a function name.
This change looks for a .gnu_debugdata section in the ELF object file.
The .gnu_debugdata section contains a xz-compressed ELF file with a
.symtab section inside. Symbols from that compressed .symtab section
are merged with the main object file's .dynsym symbols (if any).
In addition we always load the .dynsym even if there's a .symtab
section.
For example, the Fedora and RHEL operating systems strip their binaries
but keep a .gnu_debugdata section. While gdb already can read this
section, LLDB until this patch couldn't. To test this patch on a
Fedora or RHEL operating system, try to set a breakpoint on the "help"
symbol in the "zip" binary. Before this patch, only GDB can set this
breakpoint; now LLDB also can do so without installing extra debug
symbols:
lldb /usr/bin/zip -b -o "b help" -o "r" -o "bt" -- -h
The above line runs LLDB in batch mode and on the "/usr/bin/zip -h"
target:
(lldb) target create "/usr/bin/zip"
Current executable set to '/usr/bin/zip' (x86_64).
(lldb) settings set -- target.run-args "-h"
Before the program starts, we set a breakpoint on the "help" symbol:
(lldb) b help
Breakpoint 1: where = zip`help, address = 0x00000000004093b0
Once the program is run and has hit the breakpoint we ask for a
backtrace:
(lldb) r
Process 10073 stopped
* thread #1, name = 'zip', stop reason = breakpoint 1.1
frame #0: 0x00000000004093b0 zip`help
zip`help:
-> 0x4093b0 <+0>: pushq %r12
0x4093b2 <+2>: movq 0x2af5f(%rip), %rsi ; + 4056
0x4093b9 <+9>: movl $0x1, %edi
0x4093be <+14>: xorl %eax, %eax
Process 10073 launched: '/usr/bin/zip' (x86_64)
(lldb) bt
* thread #1, name = 'zip', stop reason = breakpoint 1.1
* frame #0: 0x00000000004093b0 zip`help
frame #1: 0x0000000000403970 zip`main + 3248
frame #2: 0x00007ffff7d8bf33 libc.so.6`__libc_start_main + 243
frame #3: 0x0000000000408cee zip`_start + 46
In order to support the .gnu_debugdata section, one has to have LZMA
development headers installed. The CMake section, that controls this
part looks for the LZMA headers and enables .gnu_debugdata support by
default if they are found; otherwise or if explicitly requested, the
minidebuginfo support is disabled.
GDB supports the "mini debuginfo" section .gnu_debugdata since v7.6
(2013).
Reviewers: espindola, labath, jankratochvil, alexshap
Reviewed By: labath
Subscribers: rnkovacs, wuzish, shafik, emaste, mgorny, arichardson, hiraditya, MaskRay, lldb-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D66791
llvm-svn: 373891
This file really suffered from the Great Reformat. I'm adding a few
early returns to give the deeply nested code some more breathing room.
llvm-svn: 373778
Backing out because SymbolFile/Breakpad/symtab.test is failing and it seems to be a legit issue. Will investigate.
This reverts commit 72153f95ee4c1b52d2f4f483f0ea4f650ec863be.
llvm-svn: 373687
Summary:
I found a case where the main android binary (app_process32) had thumb code at its entry point but no entry in the symbol table indicating this. This made lldb set a 4 byte breakpoint at that address (we default to arm code) instead of a 2 byte one (like we should for thumb).
The big deal with this is that the expression evaluator uses the entry point as a way to know when a JITed expression has finished executing by putting a breakpoint there. Because of this, evaluating expressions on certain android devices (Google Pixel something) made the process crash.
This was fixed by checking this specific situation when we parse the symbol table and add an artificial symbol for this 2 byte range and indicating that it's arm thumb.
I created 2 unit tests for this, one to check that now we know that the entry point is arm thumb, and the other to make sure we didn't change the behaviour for arm code.
I also run the following on the command line with the `app_process32` where I found the issue:
**Before:**
```
(lldb) dis -s 0x1640 -e 0x1644
app_process32[0x1640]: .long 0xf0004668 ; unknown opcode
```
**After:**
```
(lldb) dis -s 0x1640 -e 0x1644
app_process32`:
app_process32[0x1640] <+0>: mov r0, sp
app_process32[0x1642]: andeq r0, r0, r0
```
Reviewers: clayborg, labath, wallace, espindola
Subscribers: srhines, emaste, arichardson, kristof.beyls, MaskRay, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68069
llvm-svn: 373680
Summary:
This patch converts FileSystem::Open from this prototype:
Status
Open(File &File, const FileSpec &file_spec, ...);
to this one:
llvm::Expected<std::unique_ptr<File>>
Open(const FileSpec &file_spec, ...);
This is beneficial on its own, as llvm::Expected is a more modern
and recommended error type than Status. It is also a necessary step
towards https://reviews.llvm.org/D67891, and further developments
for lldb_private::File.
Reviewers: JDevlieghere, jasonmolenda, labath
Reviewed By: labath
Subscribers: mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67996
llvm-svn: 373003
Add a test case for the change from SVN r372657, and for the
preexisting ARM identification.
Add a missing ArchDefinitionEntry for PECOFF/arm64, and tweak
the ArmNt case to set the architecture to armv7 (ArmNt never ran
on anything lower than that). (This avoids a case where
ArchSpec::MergeFrom would override the arch from arm to armv7 and
ArchSpec::CoreUpdated would reset the OS to unknown at the same time.)
Differential Revision: https://reviews.llvm.org/D67951
llvm-svn: 372741
The PECOFF object file plugin uses the dbghelp API, but doesn't
specify that it has to be linked in anywhere.
Current MSVC based builds have probably succeeded, as other parts
in LLDB have had a "#pragma comment(lib, "dbghelp.lib")", but there's
currently no such pragma in the PECOFF plugin.
The "#pragma comment(lib, ...)" approach doesn't work in MinGW mode
(unless the compiler is given the -fms-extensions option, and even
then, it's only supported by clang/lld, not by GCC/binutils), thus
add it to be linked via CMake. (The other parts of LLDB that use
dbghelp are within _MSC_VER ifdefs.)
Differential Revision: https://reviews.llvm.org/D67885
llvm-svn: 372587
Summary:
This change ensures that the .dynsym section will be parsed even when there's already is a .symtab.
It is motivated because of minidebuginfo (https://sourceware.org/gdb/current/onlinedocs/gdb/MiniDebugInfo.html#MiniDebugInfo).
There it says:
Keep all the function symbols not already in the dynamic symbol table.
That means the .symtab embedded inside the .gnu_debugdata does NOT contain the symbols from .dynsym. But in order to put a breakpoint on all symbols we need to load both. I hope this makes sense.
My other patch D66791 implements support for minidebuginfo, that's why I need this change.
Reviewers: labath, espindola, alexshap
Subscribers: JDevlieghere, emaste, arichardson, MaskRay, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67390
llvm-svn: 371599
The function had the same name as one of the member function, so
it was just copied to all classes so that the lookup works. We
could also give the function a more better and unique name
(because it's actually printing the register value and writing
to the stream, not writing to the register).
Also removes the unused return value.
llvm-svn: 370854
Summary: The fields that aren't useful for us right now are simply ignored.
Reviewers: amccarth, markmentovai
Subscribers: rnk, lldb-commits
Differential Revision: https://reviews.llvm.org/D66633
llvm-svn: 369892
On macOS one Mach-O slice can contain multiple load commands: One load
command for being loaded into a macOS process and one load command for
being loaded into a macCatalyst process. This patch adds support for
the new load command and makes sure ObjectFileMachO returns the
Architecture that matches the Module.
Differential Revision: https://reviews.llvm.org/D66626
llvm-svn: 369814
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368933
Summary:
In an attempt to make file-address-based lookups more predictable, in D55998
we started ignoring sections which would result in file address
overlaps. It turns out this was too aggressive because thread-local
sections typically will have file addresses which apear to overlap
regular data/code. This does not cause a problem at runtime because
thread-local sections are loaded into memory using special logic, but it
can cause problems for lldb when trying to lookup objects by their file
address.
This patch changes ObjectFileELF to permit thread-local sections to
overlap regular ones by essentially giving them a separate address
space. It also makes them more symmetrical to regular sections by
creating container sections from PT_TLS segments.
Simultaneously, the patch changes the regular file address lookup logic
to ignore sections with the thread-specific bit set. I believe this is
what the users looking up file addresses would typically expect, as
looking up thread-local data generally requires more complex logic (e.g.
DWARF has a special opcode for that).
Reviewers: clayborg, jingham, MaskRay
Subscribers: emaste, aprantl, arichardson, lldb-commits
Differential Revision: https://reviews.llvm.org/D65282
llvm-svn: 368010
Summary:
The contents of the gnu_debuglink section were passed through the
GetDebugSymbolFilePaths interface, which was more generic than needed.
As the only class implementing this function is ObjectFileELF, we can
modify the function to return just a single FileSpec (instead of a
list). Also, since the SymbolVendorELF already assumes ELF object files,
we don't have to make this method available on the generic ObjectFile
interface -- instead we can put it on ObjectFileELF directly.
This change also makes is so that if the Module has an explicit symbol
file spec set, we disregard the value the value of the debug link
(instead of doing a secondary lookup using that). I think it makes sense
to honor the users wishes if he had explicitly set the symbol file spec,
and this seems to be consistent with what SymbolVendorMacOSX is doing
(SymbolVendorMacOSX.cpp:125).
The main reason for making these changes is to make the treatment of
build-ids and debug links simpler in the follow-up patch.
Reviewers: clayborg, jankratochvil, mgorny, espindola
Subscribers: emaste, arichardson, MaskRay, lldb-commits
Differential Revision: https://reviews.llvm.org/D65560
llvm-svn: 367824
Summary:
On the heels of D62934, this patch uses the same approach to introduce
llvm RTTI support to the ObjectFile hierarchy. It also replaces the
existing uses of GetPluginName doing run-time type checks with
llvm::dyn_cast and friends.
This formally introduces new dependencies from some other plugins to
ObjectFile plugins. However, I believe this is fine because:
- these dependencies were already kind of there, and the only reason
we could get away with not modeling them explicitly was because the
code was relying on magically knowing what will GetPluginName() return
for a particular kind of object files.
- the dependencies themselves are logical (it makes sense for
SymbolVendorELF to depend on ObjectFileELF), or at least don't
actively get in the way (the JitLoaderGDB->MachO thing).
- they don't introduce any new dependency loops as ObjectFile plugins
don't depend on any other plugins
Reviewers: xiaobai, JDevlieghere, espindola
Subscribers: emaste, mgorny, arichardson, MaskRay, lldb-commits
Differential Revision: https://reviews.llvm.org/D65450
llvm-svn: 367413
This time, the warning pointed to an actual problem, because the
coff_opt_header structure contained a std::vector. I guess this happened
to work because the all-zero state was a valid representation of an
empty vector, but its not a good idea to rely on that.
I remove the memset, and have the structure clear its members in the
constructor instead.
llvm-svn: 367299
This patch replaces explicit calls to log::Printf with the new LLDB_LOGF
macro. The macro is similar to LLDB_LOG but supports printf-style format
strings, instead of formatv-style format strings.
So instead of writing:
if (log)
log->Printf("%s\n", str);
You'd write:
LLDB_LOG(log, "%s\n", str);
This change was done mechanically with the command below. I replaced the
spurious if-checks with vim, since I know how to do multi-line
replacements with it.
find . -type f -name '*.cpp' -exec \
sed -i '' -E 's/log->Printf\(/LLDB_LOGF\(log, /g' "{}" +
Differential revision: https://reviews.llvm.org/D65128
llvm-svn: 366936
Just delete the memset as the ELFHeader constructor already
zero-initializes the object. Also clean up the ObjectFileELF
constructors/desctructors while I'm in there.
llvm-svn: 366692
The new DriverKit user-land kernel drivers in macOS 10.15 / Catalina
do not have a main() function or an LC_MAIN load command. lldb uses
the address of main() as the return address for inferior function
calls; it puts a breakpoint on main, runs the inferior function call,
and when the main() breakpoint is hit, lldb knows unambiguously that
the inferior function call ran to completion - no other function calls
main.
This change hoists the logic for finding the "entry address" from
ThreadPlanCallFunction to Target. It changes the logic to first
try to get the entry address from the main executable module,
but if that module does not have one, it will iterate through all
modules looking for an entry address.
The patch also adds code to ObjectFileMachO to use dyld's
_dyld_start function as an entry address.
<rdar://problem/52343958>
Differential Revision: https://reviews.llvm.org/D64897
llvm-svn: 366493
Instead of having to write FileSpecList::Append(FileSpec(args)) you can
now call FileSpecList::EmplaceBack(args), similar to
std::vector<>::emplace_back.
llvm-svn: 366489
With this style, a compressed section is indicated by a "z" in the section
name, instead of a section header flag. This patch consists of two small tweaks:
- use an llvm Decompressor method in order to properly detect compressed sections
- make sure we recognise .zdebug_info (and friends) when classifying section types.
llvm-svn: 365654