For some reductions like G_VECREDUCE_OR on AArch64, we need to scalarize
completely if the source is <= 64b. This change adds support for that in
the legalizer. If the source has a pow-2 num elements, then we can do
a tree reduction using the scalar operation in the individual elements.
Otherwise, we just create a sequential chain of operations.
For AArch64, we only need to scalarize if the input is <64b. If it's great than
64b then we can first do a fewElements step to 64b, taking advantage of vector
instructions until we reach the point of scalarization.
I also had to relax the verifier checks for reductions because the intrinsics
support <1 x EltTy> types, which we lower to scalars for GlobalISel.
Differential Revision: https://reviews.llvm.org/D108276
The COFF specific `DataReferencedByCode` complexity (D103372 D103717) is due to
a link.exe limitation: an external symbol in IMAGE_COMDAT_SELECT_ASSOCIATIVE is
not really dropped, so it can cause duplicate definition error.
When support for copying vector s8 lanes was added recently, this also
had the side effect of fixing a fallback for <16 x s8> extracts since
both used the same helper. However, there was a bug in another helper
to get the regclass for a specific FPR-native type, which was assigning
FPR16 to s8 instead of FPR8.
Clang patch D106614 added attribute btf_tag support. This patch
generates btf_tag annotations for DIComposite types.
A field "annotations" is introduced to DIComposite, and the
annotations are represented as an DINodeArray, similar to
DIComposite elements. The following example illustrates
how annotations are encoded in IR:
distinct !DICompositeType(..., annotations: !10)
!10 = !{!11, !12}
!11 = !{!"btf_tag", !"a"}
!12 = !{!"btf_tag", !"b"}
Each btf_tag annotation is represented as a 2D array of
meta strings. Each record may have more than one
btf_tag annotations, as in the above example.
Differential Revision: https://reviews.llvm.org/D106615
The convert_low and promote_low instructions can widen the lower two lanes of a
four-lane vector, but we were previously scalarizing patterns that widened lanes
besides the low two lanes. The commit adds a shuffle to move the widened lanes
into the low lane positions so the convert_low and promote_low instructions can
be used instead of scalarizing.
Depends on D108266.
Differential Revision: https://reviews.llvm.org/D108341
Since the simplest DAG patterns for convert_low and promote_low instructions
involved v2i32, v2f32, v4i64, and v4f64 types, which are not legal in the
WebAssembly backend and would be eliminated by type legalization, we were
previously matching those patterns in a DAG combine before the type legalization
stage. However in cases where the vectors were wider than 128 bits, the patterns
we matched were not created until the type legalization stage when the wide
vectors were split up. Type legalization would continue to eliminate the illegal
types we were matching as well, so the code ended up scalarized.
To make the ISel for these instructions more robust, match the scalarized
patterns rather than the patterns containing illegal types. Add tests with
double-wide vectors to show that this works as intended.
Fixes PR51098.
Depends on D107502.
Differential Revision: https://reviews.llvm.org/D108266
The default legalization of unsupported vector types is to promote the integers
in each lane, which leads to extra sign or zero extending and masking when
moving data into and out of vectors. Switch our preferred type legalization from
the default to vector widening, which keeps the data in the low lanes of the
vector rather than in the low bits of each lane. The unused high lanes can be
ignored.
Half-wide vectors are now loaded from memory into the low 64 bits of the v128
rather than spread out among the lanes. As a result, v128.load64_splat is a much
more common operation, so add new patterns to support it.
Differential Revision: https://reviews.llvm.org/D107502
This patch extends the runtime unrolling infrastructure to support unrolling a loop with multiple exiting blocks branching to the same exit block used by the latch. It intentionally does not include a cost model change to enable this functionality unless appropriate force flags are used.
This is the prolog companion to D107381. Since this was LGTMed, a problem with DT updating was reported against that patch. I roled in the analogous fix here as it seemed obvious, and not worth re-review.
As an aside, our prolog form leaves a lot of potential value on the floor when there is an invariant load or invariant condition in the loop being runtime unrolled. We should probably consider a "required prolog" heuristic. (Alternatively, maybe we should be peeling these cases more aggressively?)
Differential Revision: https://reviews.llvm.org/D108262
Alias analysis is unable to disambiguate accesses to the structure
fields without it unlike distinct variables. As a result we cannot
combine ds_read and ds_write operations in a case of any store in
between which always considered clobbering.
Differential Revision: https://reviews.llvm.org/D108315
As reported on https://bugs.llvm.org/show_bug.cgi?id=51020, the
guard widening pass doesn't preserve MemorySSA, so it can no
longer be scheduled in the same loop pass manager as LICM. However,
the loop-schedule.ll test indicates that this is supposed to work.
Fix this by preserving MemorySSA if available, as this seems to be
trivial in this case (we only need to drop the memory access for
the removed guards).
Differential Revision: https://reviews.llvm.org/D108386
In 94d0914, I added support for unrolling of multiple exit loops which have multiple exits reaching the latch. Per reports on the review post commit, I'd missed updating the domtree for one case. This fix addresses that ommission.
There's no new test as this is covered by existing tests with expensive verification turned on.
Folding a GEP from outside to inside a loop will materialize an add where there wasn't an equivalent operation before. Check the containing loops before making this fold.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D107935
This allows the instruction selector to realize that it can directly
broadcast the low byte of the memset value, rather than replicating
it to a 64-bit GPR before broadcasting.
This fixes PR50985.
Differential Revision: https://reviews.llvm.org/D108354
This was probably bugging more than is reasonable, but it makes merging
changes in this file slightly less annoying to have the trailing comma
here. I only noticed this because Rust is currently carrying a patch to
this file and it kept making life a little difficult.
This changes the lowering of saddsat and ssubsat so that instead of
using:
r,o = saddo x, y
c = setcc r < 0
s = c ? INTMAX : INTMIN
ret o ? s : r
into using asr and xor to materialize the INTMAX/INTMIN constants:
r,o = saddo x, y
s = ashr r, BW-1
x = xor s, INTMIN
ret o ? x : r
https://alive2.llvm.org/ce/z/TYufgD
This seems to reduce the instruction count in most testcases across most
architectures. X86 has some custom lowering added to compensate for
cases where it can increase instruction count.
Differential Revision: https://reviews.llvm.org/D105853
Previously we pre-calculated this and cached it for every
instruction in the function. Most of the calculated results will
never be used. So instead calculate it only on the first use, and
then cache it.
The cache was originally added to fix a compile time issue which
caused r216066 to be reverted.
This change exposed that we weren't pre-computing the Value for
Arguments. I've explicitly disabled that for now as it seemed to
regress some tests on AArch64 which has sext built into its compare
instructions.
Spotted while investigating how to improve heuristics to work better
with RISCV preferring sign extend for unsigned compares for i32 on RV64.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D107976
This encapsulates the APInt creation and worklist management into
a helper function.
To keep one common interface I've use Log2_32 in places that
previously created a mask by subtracting 1 from a power of 2.
Differential Revision: https://reviews.llvm.org/D108324
This reverts commit 9934a5b2ed.
This patch may cause miscompiles because it missed a constraint
as shown in the examples from:
https://llvm.org/PR51531
This makes the intrinsic logic match the cmp+select idiom folds
just below. It's not clearly a win either way unless we think
that a 'not' op costs more than min/max.
The cmp+select folds on these patterns are more extensive than
the intrinsics currently and may have some complicated interactions,
so I'm trying to make those line up and bring the optimizations
for intrinsics up to parity.
There is an assertion failure in computeOverflowForUnsignedMul
(used in checkOverflow) due to the inner and outer trip counts
having different types. This occurs when the IV has been widened,
but the loop components are not successfully rediscovered.
This is fixed by some refactoring of the code in findLoopComponents
which identifies the trip count of the loop.
Differential Revision: https://reviews.llvm.org/D108107
This patch adds the beginnings of more thorough support in the
legalizers for vector-predicated (VP) operations.
The first step is the ability to widen illegal vectors. The more
complicated scenario in which the result/operands need widening but the
mask doesn't has not been handled here. That would require a lot of code
without an in-tree target on which to test it.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D107904
Refactored implementation of AddressSanitizerPass and
HWAddressSanitizerPass to use pass options similar to passes like
MemorySanitizerPass. This makes sure that there is a single mapping
from class name to pass name (needed by D108298), and options like
-debug-only and -print-after makes a bit more sense when (despite
that it is the unparameterized pass name that should be used in those
options).
A result of the above is that some pass names are removed in favor
of the parameterized versions:
- "khwasan" is now "hwasan<kernel;recover>"
- "kasan" is now "asan<kernel>"
- "kmsan" is now "msan<kernel>"
Differential Revision: https://reviews.llvm.org/D105007
Currently, `printHelp` behaves differently for options that:
* do not define `HelpText` (such options _are not printed_), and
* define its `HelpText` as `HelpText<"">` (such options _are printed_).
In practice, both approaches lead to no help text and `printHelp` should
treat them consistently. This patch addresses that by making
`printHelpt` check the length of the help text to be printed.
All affected tests have been updated accordingly. The option definitions
for llvm-cvtres have been updated with a short description or "Not
implemented" for options that are ignored by the tool.
Differential Revision: https://reviews.llvm.org/D107557
I have added a new TTI interface called enableOrderedReductions() that
controls whether or not ordered reductions should be enabled for a
given target. By default this returns false, whereas for AArch64 it
returns true and we rely upon the cost model to make sensible
vectorisation choices. It is still possible to override the new TTI
interface by setting the command line flag:
-force-ordered-reductions=true|false
I have added a new RUN line to show that we use ordered reductions by
default for SVE and Neon:
Transforms/LoopVectorize/AArch64/strict-fadd.ll
Transforms/LoopVectorize/AArch64/scalable-strict-fadd.ll
Differential Revision: https://reviews.llvm.org/D106653
This change enables llvm-profgen to use accurate context-sensitive post-optimization function byte size as a cost proxy to drive global preinline decisions.
To do this, BinarySizeContextTracker is introduced to track function byte size under different inline context during disassembling. In preinliner, we can not query context byte size under switch `context-cost-for-preinliner`. The tracker uses a reverse trie to keep size of functions under different context (callee as parent, caller as child), and it can give best/longest possible matching context size for given input context.
The new size cost is off by default. There're a few TODOs that needs to addressed: 1) avoid dangling string from `Offset2LocStackMap`, which will be addressed in split context work; 2) using inlinee's entry probe to make sure we have correct zero size for inlinee that's completely optimized away after inlining. Some tuning is also needed.
Differential Revision: https://reviews.llvm.org/D108180
This patch optimize the GOTPCRELX Reloations, which is described in X86-64 psabi chapter B.2. And Not all optimization of this chapter is implemented.
1. Convert call and jmp has been implemented
2. Convert mov, but the optimization that when the symbol is defined in the lower 32-bit address space, memory operand in `mov` can be convertted into immediate operand has not been implemented.
3. Conver Test and Binop has not been implemented.
The new test file named ELF_got_plt_optimizations.s has been added, and I moved some test cases about optimization of got/plt from ELF_x86_64_small_pic_relocations.s to the new test file.
By referencing the lld, so, the optimization `Convert call and jmp` is not same as what psabi says, and I have explained it in the comment.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D108280
According to the langref, it is valid to have multiple consecutive
lifetime start or end intrinsics on the same object.
For llvm.lifetime.start:
"If ptr [...] is a stack object that is already alive, it simply
fills all bytes of the object with poison."
For llvm.lifetime.end:
"Calling llvm.lifetime.end on an already dead alloca is no-op."
However, we currently fail an assertion in such cases. I've observed
the assertion failure when the loop vectorization pass duplicates
the intrinsic.
We can conservatively handle these intrinsics by ignoring all but
the first one, which can be implemented by removing the assertions.
Differential Revision: https://reviews.llvm.org/D108337
This patch implements Flow Sensitive Sample FDO (FSAFDO) profile
loader. We have two profile loaders for FS profile,
one before RegAlloc and one before BlockPlacement.
To enable it, when -fprofile-sample-use=<profile> is specified,
add "-enable-fs-discriminator=true \
-disable-ra-fsprofile-loader=false \
-disable-layout-fsprofile-loader=false"
to turn on the FS profile loaders.
Differential Revision: https://reviews.llvm.org/D107878
getAPFloatFromSize doesn't support s128, so we can't lower this without
asserting right now.
To fix the buildbots, don't allow any scalars other than s16, s32, and s64.
We need to ensure that these end up on FPR to allow imported patterns to
select them.
This will also ensure that we get good regbank selection when dealing with
instructions like G_PHI/G_LOAD/G_STORE which deduce their banks from their
uses/users.
Differential Revision: https://reviews.llvm.org/D108260
For subtargets with full FP16, this is legal for s16, s32, and s64. Without
full FP16, it's legal for s32 and s64.
For s128, this is a libcall.
We also support some vector types, but for now, let's just support scalars.
Differential Revision: https://reviews.llvm.org/D108259