Followup to D72573 - as detailed in https://blog.regehr.org/archives/1709 we don't make use of the known leading/trailing zeros for shifted values in cases where we don't know the shift amount value.
Stop ValueTracking returning zero for poison shift patterns and use the KnownBits shift helpers directly.
Extend KnownBits::shl to combine all possible shifted combinations if both min/max shift amount values are in range.
Differential Revision: https://reviews.llvm.org/D90479
Blocks that contain only a single branch instruction to the next block can be skipped in analyzing the loop-nest structure.
This is currently done by `getSingleSuccessor()`.
However, the branch instruction might have multiple targets which happen to all be the same.
In this case, the block should still be considered as empty and skipped.
An example is `test/Transforms/LoopInterchange/update-condbranch-duplicate-successors.ll` (the LIT test for this patch is modified from it as well).
Reviewed By: Whitney
Differential Revision: https://reviews.llvm.org/D97286
And delete the SmallPtrSetImpl overload.
While here, decrease inline element counts from 8 to 4. See D97128 for the choice.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D97257
Pulled out from D90479 - this recognises invalid nsw shl patterns with signbit changes that result in poison.
Differential Revision: https://reviews.llvm.org/D97305
As a followup to D95291, getOperandsScalarizationOverhead was still
using a VF as a vector factor if the arguments were scalar, and would
assert on certain matrix intrinsics with differently sized vector
arguments. This patch removes the VF arg, instead passing the Types
through directly. This should allow it to more accurately compute the
cost without having to guess at which operands will be vectorized,
something difficult with more complex intrinsics.
This adjusts one SVE test as it is now calling the wrong intrinsic vs
veccall. Without invalid InstructCosts the cost of the scalarized
intrinsic is too low. This should get fixed when the cost of
scalarization is accounted for with scalable types.
Differential Revision: https://reviews.llvm.org/D96287
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.
Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.
Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf working. ARM removed the fix in
dfac521da1, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.
Differential Revision: https://reviews.llvm.org/D95291
These verify calls are causing a lot of slowdown on some files, up to 8x.
The LazyCallGraph infra has been tested a lot over the years, so I'm fairly confident that we don't always need to run the verifys.
These verifies took >90% of total time in one of the compilations I looked at.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D97225
The result will have the same sign as the dividend unless the
result is 0. The magnitude of the result will always be less
than or equal to the dividend. So the result will have at least
as many sign bits as the dividend.
Previously we would do this if the divisor was a positive constant,
but that isn't required.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97170
FindAvailableLoadedValue() accepts an iterator by reference. If no
available value is found, then the iterator will either be left
at a clobbering instruction or the beginning of the basic block.
This allows using FindAvailableLoadedValue() across multiple blocks.
If this functionality is not needed, as is the case in InstCombine,
then we can use a much more efficient implementation: First try
to find an available value, and only perform clobber checks if
we actually found one. As this function only looks at a very small
number of instructions (6 by default) and usually doesn't find an
available value, this saves many expensive alias analysis queries.
The existing implementation was relying on order of evaluation to achieve a particular result. This got really confusing when wanting to change the handling for arguments in a later patch.
This is a fix for https://llvm.org/PR49215 either before/after
we make a verifier enhancement for vector reductions with D96904.
I'm not sure what the current thinking is for pointer math/logic
in IR. We allow icmp on pointer values. Therefore, we match min/max
patterns, so without this patch, the vectorizer could form a vector
reduction from that sequence.
But the LangRef definitions for min/max and vector reduction
intrinsics do not allow pointer types:
https://llvm.org/docs/LangRef.html#llvm-smax-intrinsichttps://llvm.org/docs/LangRef.html#llvm-vector-reduce-umax-intrinsic
So we would crash/assert at some point - either in IR verification,
in the cost model, or in codegen. If we do want to allow this kind
of transform, we will need to update the LangRef and all of those
parts of the compiler.
Differential Revision: https://reviews.llvm.org/D97047
When computing a range for a SCEVUnknown, today we use computeKnownBits for unsigned ranges, and computeNumSignBots for signed ranges. This means we miss opportunities to improve range results.
One common missed pattern is that we have a signed range of a value which CKB can determine is positive, but CNSB doesn't convey that information. The current range includes the negative part, and is thus double the size.
Per the removed comment, the original concern which delayed using both (after some code merging years back) was a compile time concern. CTMark results (provided by Nikita, thanks!) showed a geomean impact of about 0.1%. This doesn't seem large enough to avoid higher quality results.
Differential Revision: https://reviews.llvm.org/D96534
In both ADCE and BDCE (via DemandedBits) we should not remove
instructions that are not guaranteed to return. This issue was
pointed out by fhahn in the recent llvm-dev thread.
Differential Revision: https://reviews.llvm.org/D96993
This moves the willReturn() helper from CallBase to Instruction,
so that it can be used in a more generic manner. This will make
it easier to fix additional passes (ADCE and BDCE), and will give
us one place to change if additional instructions should become
non-willreturn (e.g. there has been talk about handling volatile
operations this way).
I have also included the IntrinsicInst workaround directly in
here, so that it gets applied consistently. (As such this change
is not entirely NFC -- FuncAttrs will now use this as well.)
Differential Revision: https://reviews.llvm.org/D96992
This is a simpler variant of D96647. It just adds a straightforward
depth limit with a high cutoff, without introducing complex logic
for BatchAA consistency. It accepts that we may cache a sub-optimal
result if the depth limit is hit.
Eventually this should be more fully addressed by D96647 or similar,
but in the meantime this avoids stack overflows in a cheap way.
Differential Revision: https://reviews.llvm.org/D96996
Found a problem in indirect call promotion in sample loader pass. Currently
if an indirect call is promoted for a target, and if the parent function is
inlined into some other function, the indirect call can be promoted for the
same target again. That is redundent which can harm performance and can cause
excessive compile time in some extreme case.
The patch fixes the issue. If a target is promoted for an indirect call, the
patch will write ICP metadata with the target call count being set to 0.
In the later ICP in sample profile loader, if it sees a target has 0 count
for an indirect call, it knows the target has been promoted and won't do
indirect call promotion for the indirect call.
The fix brings 0.1~0.2% performance on our search benchmark.
Differential Revision: https://reviews.llvm.org/D96806
We can always look through single-argument (LCSSA) phi nodes when
performing alias analysis. getUnderlyingObject() already does this,
but stripPointerCastsAndInvariantGroups() does not. We still look
through these phi nodes with the usual aliasPhi() logic, but
sometimes get sub-optimal results due to the restrictions on value
equivalence when looking through arbitrary phi nodes. I think it's
generally beneficial to keep the underlying object logic and the
pointer cast stripping logic in sync, insofar as it is possible.
With this patch we get marginally better results:
aa.NumMayAlias | 5010069 | 5009861
aa.NumMustAlias | 347518 | 347674
aa.NumNoAlias | 27201336 | 27201528
...
licm.NumPromoted | 1293 | 1296
I've renamed the relevant strip method to stripPointerCastsForAliasAnalysis(),
as we're past the point where we can explicitly spell out everything
that's getting stripped.
Differential Revision: https://reviews.llvm.org/D96668
SROA does not correctly account for offsets in TBAA/TBAA struct metadata.
This patch creates functionality for generating new MD with the corresponding
offset and updates SROA to use this functionality.
Differential Revision: https://reviews.llvm.org/D95826
This patch enables scalable vectorization of loops with integer/fast reductions, e.g:
```
unsigned sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
}
```
A new TTI interface, isLegalToVectorizeReduction, has been added to prevent
reductions which are not supported for scalable types from vectorizing.
If the reduction is not supported for a given scalable VF,
computeFeasibleMaxVF will fall back to using fixed-width vectorization.
Reviewed By: david-arm, fhahn, dmgreen
Differential Revision: https://reviews.llvm.org/D95245
The GPUDivergenceAnalysis is now renamed to just "DivergenceAnalysis"
since there is no conflict with LegacyDivergenceAnalysis. In the
legacy PM, this analysis can only be used through the legacy DA
serving as a wrapper. It is now made available as a pass in the new
PM, and has no relation with the legacy DA.
The new DA currently cannot handle irreducible control flow; its
presence can cause the analysis to run indefinitely. The analysis is
now modified to detect this and report all instructions in the
function as divergent. This is super conservative, but allows the
analysis to be used without hanging the compiler.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D96615
In the motivating example from https://llvm.org/PR49171 and
reduced test here, we would unroll and clone assumes so much
that compile-time effectively became infinite while analyzing
all of those assumes.
Currently, setting the `no-nans-fp-math` attribute to true will allow
loops with fmin/fmax to vectorize, though we should be requiring that
`no-signed-zeros-fp-math` is also set.
This patch adds the check for no-signed-zeros at the function level and includes
tests to make sure we don't vectorize functions with only one of the attributes
associated.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D96604
This patch adds a new intrinsic experimental.vector.reduce that takes a single
vector and returns a vector of matching type but with the original lane order
reversed. For example:
```
vector.reverse(<A,B,C,D>) ==> <D,C,B,A>
```
The new intrinsic supports fixed and scalable vectors types.
The fixed-width vector relies on shufflevector to maintain existing behaviour.
Scalable vector uses the new ISD node - VECTOR_REVERSE.
This new intrinsic is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker (@paulwalker-arm).
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Differential Revision: https://reviews.llvm.org/D94883
This refactors shouldFavorPostInc() and shouldFavorBackedgeIndex() into
getPreferredAddressingMode() so that we have one interface to steer LSR in
generating the preferred addressing mode.
Differential Revision: https://reviews.llvm.org/D96600
At this point, we can treat the case of GEP/GEP aliasing and
GEP/non-GEP aliasing in essentially the same way. The only
differences are that we need to do an additional negative GEP base
check, and that we perform a bailout on unknown sizes for the
GEP/non-GEP case (the latter exists only to limit compile-time).
This change is not quite NFC due to the peculiar effect that
the DecomposedGEP for V2 can actually be non-trivial even if V2
is not a GEP. The reason for this is that getUnderlyingObject()
can look through LCSSA phi nodes, while stripPointerCasts() doesn't.
This can lead to slightly better results if single-entry phi nodes
occur inside a loop, where looking through the phi node via aliasPhi()
would subject it to phi cycle equivalence restrictions. It would
probably make sense to adjust pointer cast stripping (for AA) to
handle this case, and ensure consistent results.
For two GEPs with identical offsets, we currently first perform
a base address query without size information, and then if it is
MayAlias, perform another with size information. This is pointless,
as the latter query should produce strictly better results.
This was not quite true historically due to the way that NoAlias
assumptions were handled, but that issue has since been resolved.
We currently detect GEPs that have exactly the same indexes by
comparing the Offsets and VarIndices. However, the latter implicitly
performs equality comparisons between two values, which is not
generally legal inside BasicAA, due to the possibility of comparisons
across phi cycles.
I believe that in this particular instance this actually ends up being
unproblematic, at least I wasn't able to come up with any cases that
could result in an incorrect root query result.
In the interest of being defensive, compute GetIndexDifference earlier
(which knows how to handle phi cycles properly) and use the result of
that to determine whether the offsets are identical.
This is a follow-up of D95238's LangRef update.
This patch updates `programUndefinedIfUndefOrPoison(V)` to return true if
`V` is used by any memory-accessing instruction.
Interestingly, this affected many tests in Attributors, mainly about adding noundefs.
The tests are updated using llvm/utils/update_test_checks.py. I checked that the diffs
are about updating noundefs.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96642
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
Rather than storing the query depth in AAResults, store it in AAQI.
This makes more sense, as it is a property of the query. This
sidesteps the issue of D94363, fixing slightly inaccurate AA
statistics. Additionally, I plan to use the Depth from BasicAA in
the future, where fetching it from AAResults would be unreliable.
This change is not quite as straightforward as it seems, because
we need to preserve the depth when creating a new AAQI for recursive
queries across phis. I'm adding a new method for this, as we may
need to preserve additional information here in the future.
explicitly emitting retainRV or claimRV calls in the IR
Background:
This fixes a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.attachedcall" to calls,
which indicates the call is implicitly followed by a marker
instruction and an implicit retainRV/claimRV call that consumes the
call result. In addition, it emits a call to
@llvm.objc.clang.arc.noop.use, which consumes the call result, to
prevent the middle-end passes from changing the return type of the
called function. This is currently done only when the target is arm64
and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
claimRV is attached to the call since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since the ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if retainRV is attached to the call and
does nothing if claimRV is attached to it.
- SCCP refrains from replacing the return value of a call with a
constant value if the call has the operand bundle. This ensures the
call always has at least one user (the call to
@llvm.objc.clang.arc.noop.use).
- This patch also fixes a bug in replaceUsesOfNonProtoConstant where
multiple operand bundles of the same kind were being added to a call.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
Changes `getScalarizationOverhead` to return an invalid cost for scalable VFs
and adds some simple tests for loops containing a function for which
there is a vectorized variant available.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D96356
The vector reduction intrinsics started life as experimental ops, so backend support
was lacking. As part of promoting them to 1st-class intrinsics, however, codegen
support was added/improved:
D58015
D90247
So I think it is safe to now remove this complication from IR.
Note that we still have an IR-level codegen expansion pass for these as discussed
in D95690. Removing that is another step in simplifying the logic. Also note that
x86 was already unconditionally forming reductions in IR, so there should be no
difference for x86.
I spot checked a couple of the tests here by running them through opt+llc and did
not see any asm diffs.
If we do find functional differences for other targets, it should be possible
to (at least temporarily) restore the shuffle IR with the ExpandReductions IR
pass.
Differential Revision: https://reviews.llvm.org/D96552
This patch changes the VecDesc struct to use ElementCount
instead of an unsigned VF value, in preparation for
future work that adds support for vectorized versions of
math functions using scalable vectors. Since all I'm doing
in this patch is switching the type I believe it's a
non-functional change. I changed getWidestVF to now return
both the widest fixed-width and scalable VF values, but
currently the widest scalable value will be zero.
Differential Revision: https://reviews.llvm.org/D96011
The motivation for this is that I'm looking at an example that uses shifts as induction variables. There's lots of other omissions, but one of the first I noticed is that we can't compute tight known bits. (This indirectly causes SCEV's range analysis to produce very poor results as well.)
Differential Revision: https://reviews.llvm.org/D96440
This reverts commit b7d870eae7 and the
subsequent fix "[Polly] Fix build after AssumptionCache change (D96168)"
(commit e6810cab09).
It caused indeterminism in the output, such that e.g. the
polly-x86_64-linux buildbot failed accasionally.
This will be needed in the loop-vectorizer where the minimum VF
requested may be a scalable VF. getMinimumVF now takes an additional
operand 'IsScalableVF' that indicates whether a scalable VF is required.
Reviewed By: kparzysz, rampitec
Differential Revision: https://reviews.llvm.org/D96020
The AssumptionCache mechanism is used to feed assumes into known bits computations. Most places in SCEV passed it in, but one place appears to have been missed.
Spotted via inspection, don't have a test case which actually exercises this, but it seemed like an obvious fixit.
Instcombine will convert the nonnull and alignment assumption that use the boolean condtion
to an assumption that uses the operand bundles when knowledge retention is enabled.
Differential Revision: https://reviews.llvm.org/D82703
When doing some recent debugging of the IROutliner, and using the similarity pass for debugging, just having the basic block and function isn't really enough to get all the information. This adds the first and last instruction to the output of the IRSimilarityPrinting pass to give better information to a user.
Reviewer: paquette
Differential Revision: https://reviews.llvm.org/D94304
This is based on the example/comments in:
https://llvm.org/PR48984
I tried just lifting the restriction in computeKnownBitsFromShiftOperator()
as suggested in the bug report, but that doesn't catch all of the cases
shown here. I didn't step through to see exactly why that happened. But it
seems like a reasonable compromise to cheaply check the special-case of
shifting a constant.
There's a slight regression on a cmp transform as noted, but this is likely
the more important/common pattern, so we can fix that icmp pattern later if
needed.
Differential Revision: https://reviews.llvm.org/D95959
This reverts commit 502a67dd7f.
This expose a failure in test-suite build on PowerPC,
revert to unblock buildbot first,
Dave will re-commit in https://reviews.llvm.org/D96287.
Thanks Dave.
PR49043 exposed a problem when it comes to RAUW llvm.assumes. While
D96106 would fix it for GVNSink, it seems a more general concern. To
avoid future problems this patch moves away from the vector of weak
reference model used in the assumption cache. Instead, we track the
llvm.assume calls with a callback handle which will remove itself from
the cache if the call is deleted.
Fixes PR49043.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96168
emitting retainRV or claimRV calls in the IR
This reapplies 3fe3946d9a without the
changes made to lib/IR/AutoUpgrade.cpp, which was violating layering.
Original commit message:
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
emitting retainRV or claimRV calls in the IR
Background:
This patch makes changes to the front-end and middle-end that are
needed to fix a longstanding problem where llvm breaks ARC's autorelease
optimization (see the link below) by separating calls from the marker
instructions or retainRV/claimRV calls. The backend changes are in
https://reviews.llvm.org/D92569.
https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue
What this patch does to fix the problem:
- The front-end adds operand bundle "clang.arc.rv" to calls, which
indicates the call is implicitly followed by a marker instruction and
an implicit retainRV/claimRV call that consumes the call result. In
addition, it emits a call to @llvm.objc.clang.arc.noop.use, which
consumes the call result, to prevent the middle-end passes from changing
the return type of the called function. This is currently done only when
the target is arm64 and the optimization level is higher than -O0.
- ARC optimizer temporarily emits retainRV/claimRV calls after the calls
with the operand bundle in the IR and removes the inserted calls after
processing the function.
- ARC contract pass emits retainRV/claimRV calls after the call with the
operand bundle. It doesn't remove the operand bundle on the call since
the backend needs it to emit the marker instruction. The retainRV and
claimRV calls are emitted late in the pipeline to prevent optimization
passes from transforming the IR in a way that makes it harder for the
ARC middle-end passes to figure out the def-use relationship between
the call and the retainRV/claimRV calls (which is the cause of
PR31925).
- The function inliner removes an autoreleaseRV call in the callee if
nothing in the callee prevents it from being paired up with the
retainRV/claimRV call in the caller. It then inserts a release call if
the call is annotated with claimRV since autoreleaseRV+claimRV is
equivalent to a release. If it cannot find an autoreleaseRV call, it
tries to transfer the operand bundle to a function call in the callee.
This is important since ARC optimizer can remove the autoreleaseRV
returning the callee result, which makes it impossible to pair it up
with the retainRV/claimRV call in the caller. If that fails, it simply
emits a retain call in the IR if the implicit call is a call to
retainRV and does nothing if it's a call to claimRV.
Future work:
- Use the operand bundle on x86-64.
- Fix the auto upgrader to convert call+retainRV/claimRV pairs into
calls annotated with the operand bundles.
rdar://71443534
Differential Revision: https://reviews.llvm.org/D92808
getIntrinsicInstrCost takes a IntrinsicCostAttributes holding various
parameters of the intrinsic being costed. It can either be called with a
scalar intrinsic (RetTy==Scalar, VF==1), with a vector instruction
(RetTy==Vector, VF==1) or from the vectorizer with a scalar type and
vector width (RetTy==Scalar, VF>1). A RetTy==Vector, VF>1 is considered
an error. Both of the vector modes are expected to be treated the same,
but because this is confusing many backends end up getting it wrong.
Instead of trying work with those two values separately this removes the
VF parameter, widening the RetTy/ArgTys by VF used called from the
vectorizer. This keeps things simpler, but does require some other
modifications to keep things consistent.
Most backends look like this will be an improvement (or were not using
getIntrinsicInstrCost). AMDGPU needed the most changes to keep the code
from c230965ccf working. ARM removed the fix in
dfac521da1, webassembly happens to get a fixup for an SLP cost
issue and both X86 and AArch64 seem to now be using better costs from
the vectorizer.
Differential Revision: https://reviews.llvm.org/D95291
MemorySSA currently treats lifetime.end intrinsics as not aliasing
anything. This breaks MemorySSA-based MemCpyOpt, because we'll happily
move a read of a pointer below a lifetime.end intrinsic, as no clobber
is reported.
I think the MemorySSA modelling here isn't correct: lifetime.end(p)
has approximately the same effect as doing a memcpy(p, undef), and
should be treated as a clobber.
This patch removes the special handling of lifetime.end, leaving
alias analysis to handle it appropriately.
Differential Revision: https://reviews.llvm.org/D95763
Extend applyLoopGuards() to take into account conditions/assumes proving some
value %v to be divisible by D by rewriting %v to (%v / D) * D. This lets the
loop unroller and the loop vectorizer identify more loops as not requiring
remainder loops.
Differential Revision: https://reviews.llvm.org/D95521
This is another step (see D95452) towards correcting fast-math-flags
bugs in vector reductions.
There are multiple bugs visible in the test diffs, and this is still
not working as it should. We still use function attributes (rather
than FMF) to drive part of the logic, but we are not checking for
the correct FP function attributes.
Note that FMF may not be propagated optimally on selects (example
in https://llvm.org/PR35607 ). That's why I'm proposing to union the
FMF of a fcmp+select pair and avoid regressions on existing vectorizer
tests.
Differential Revision: https://reviews.llvm.org/D95690
This is a (rather delayed) follow up to commit 0129cd5. This commit is entirely NFC, the semantic change to leverage the new information will be submitted separate with a test case.
We use `EquivalenceClasses` to cache the notion that two SCEVs are equivalent,
so save time in situation when `A` is equivalent to `B` and `B` is equivalent to `C`,
making check "if `A` is equivalent to `C`?" cheaper.
We also return `0` in the comparator when we reach max analysis depth to save
compile time. After doing this, we also cache them as being equivalent.
Now, imagine the following situation:
- `A` is proved equivalent to `B`;
- `C` is proved equivalent to `D`;
- Comparison of `A` against `D` is proved non-zero;
- Comparison of `B` against `C` reaches max depth (and gets cached as equivalence).
Now, before the invocation of compare(`B`, `C`), `A` and `D` belonged
to different equivalence classes, and their comparison returned non-zero.
After the the invocation of compare(`B`, `C`), equivalence classes get merged
and `A`, `B`, `C` and `D` all fall into the same equivalence class. So the comparator
will change its behavior for couple `A` and `D`, with weird consequences following it.
This comparator is finally used in `std::stable_sort`, and this behavior change
makes it crash (looks like it's causing a memory corruption).
Solution: this patch changes `CompareSCEVComplexity` to return `None`
when the max depth is reached. So in this case, we do not cache these SCEVs
(and their parents in the tree) as being equivalent.
Differential Revision: https://reviews.llvm.org/D94654
Reviewed By: lebedev.ri
Imported functions and variable get the visibility from the module supplying the
definition. However, non-imported definitions do not get the visibility from
(ELF) the most constraining visibility among all modules (Mach-O) the visibility
of the prevailing definition.
This patch
* adds visibility bits to GlobalValueSummary::GVFlags
* computes the result visibility and propagates it to all definitions
Protected/hidden can imply dso_local which can enable some optimizations (this
is stronger than GVFlags::DSOLocal because the implied dso_local can be
leveraged for ELF -shared while default visibility dso_local has to be cleared
for ELF -shared).
Note: we don't have summaries for declarations, so for ELF if a declaration has
the most constraining visibility, the result visibility may not be that one.
Differential Revision: https://reviews.llvm.org/D92900
In computeLoadConstantCompareExitLimit, the addrec used to compute the
exit count should be from the loop which the exiting block belongs to.
Reviewed by: mkazantsev
Differential Revision: https://reviews.llvm.org/D92367
This change leverages the work done in D83743 to replay in the SampleProfile inliner to also be used in the CGSCC inliner. NOTE: currently restricted to non-ML advisors only.
The added switch `-cgscc-inline-replay=<remarks file>` will replay the inlining decisions in that file where the remarks file is generated via `-Rpass=inline`. The aim here is to make it easier to analyze changes that would modify inlining heuristics to be separated from this behavior. Doing so allows easier examination of assembly and runtime behavior compared to the baseline rather than trying to dig through the large churn caused by inlining.
In LTO compilation, since inlining is done twice you can separately specify replay by passing the flag to the FE (`-cgscc-inline-replay=`) and to the linker (`-Wl,cgscc-inline-replay=`) with the remarks generated from their respective places.
Testing on mysqld by comparing the inline decisions between base (generates remarks.txt) and diff (replay using identical input/tools with remarks.txt) and examining the inlining sites with `diff` shows 14,000 mismatches out of 247,341 for a ~94% replay accuracy. I believe this gap can be narrowed further though for the general case we may never achieve full accuracy. For my personal use, this is close enough to be representative: I set the baseline as the one generated by the replay on identical input/toolset and compare that to my modified input/toolset using the same replay.
Testing:
ninja check-llvm
newly added test correctly replays CGSCC inlining decisions
Reviewed By: mtrofin, wenlei
Differential Revision: https://reviews.llvm.org/D94334
This is similar to D94106, but for the
isGuaranteedToTransferExecutionToSuccessor() helper. We should not
assume that readonly functions will return, as this is only true for
mustprogress functions (in which case we already infer willreturn).
As with the DCE change, for now continue assuming that readonly
intrinsics will return, as not all target intrinsics have been
annotated yet.
Differential Revision: https://reviews.llvm.org/D95288
This is to support the memory routines vec_malloc, vec_calloc, vec_realloc, and vec_free. These routines manage memory that is 16-byte aligned. And they are only available on AIX.
Differential Revision: https://reviews.llvm.org/D94710
We tend to assume that the AA pipeline is by default the default AA
pipeline and it's confusing when it's empty instead.
PR48779
Initially reverted due to BasicAA running analyses in an unspecified
order (multiple function calls as parameters), fixed by fetching
analyses before the call to construct BasicAA.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D95117
Having a custom inliner doesn't really fit in with the new PM's
pipeline. It's also extra technical debt.
amdgpu-inline only does a couple of custom things compared to the normal
inliner:
1) It disables inlining if the number of BBs in a function would exceed
some limit
2) It increases the threshold if there are pointers to private arrays(?)
These can all be handled as TTI inliner hooks.
There already exists a hook for backends to multiply the inlining
threshold.
This way we can remove the custom amdgpu-inline pass.
This caused inline-hint.ll to fail, and after some investigation, it
looks like getInliningThresholdMultiplier() was previously getting
applied twice in amdgpu-inline (https://reviews.llvm.org/D62707 fixed it
not applying at all, so some later inliner change must have fixed
something), so I had to change the threshold in the test.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D94153
This adds cost modelling for the inloop vectorization added in
745bf6cf44. Up until now they have been modelled as the original
underlying instruction, usually an add. This happens to works OK for MVE
with instructions that are reducing into the same type as they are
working on. But MVE's instructions can perform the equivalent of an
extended MLA as a single instruction:
%sa = sext <16 x i8> A to <16 x i32>
%sb = sext <16 x i8> B to <16 x i32>
%m = mul <16 x i32> %sa, %sb
%r = vecreduce.add(%m)
->
R = VMLADAV A, B
There are other instructions for performing add reductions of
v4i32/v8i16/v16i8 into i32 (VADDV), for doing the same with v4i32->i64
(VADDLV) and for performing a v4i32/v8i16 MLA into an i64 (VMLALDAV).
The i64 are particularly interesting as there are no native i64 add/mul
instructions, leading to the i64 add and mul naturally getting very
high costs.
Also worth mentioning, under NEON there is the concept of a sdot/udot
instruction which performs a partial reduction from a v16i8 to a v4i32.
They extend and mul/sum the first four elements from the inputs into the
first element of the output, repeating for each of the four output
lanes. They could possibly be represented in the same way as above in
llvm, so long as a vecreduce.add could perform a partial reduction. The
vectorizer would then produce a combination of in and outer loop
reductions to efficiently use the sdot and udot instructions. Although
this patch does not do that yet, it does suggest that separating the
input reduction type from the produced result type is a useful concept
to model. It also shows that a MLA reduction as a single instruction is
fairly common.
This patch attempt to improve the costmodelling of in-loop reductions
by:
- Adding some pattern matching in the loop vectorizer cost model to
match extended reduction patterns that are optionally extended and/or
MLA patterns. This marks the cost of the reduction instruction correctly
and the sext/zext/mul leading up to it as free, which is otherwise
difficult to tell and may get a very high cost. (In the long run this
can hopefully be replaced by vplan producing a single node and costing
it correctly, but that is not yet something that vplan can do).
- getExtendedAddReductionCost is added to query the cost of these
extended reduction patterns.
- Expanded the ARM costs to account for these expanded sizes, which is a
fairly simple change in itself.
- Some minor alterations to allow inloop reduction larger than the highest
vector width and i64 MVE reductions.
- An extra InLoopReductionImmediateChains map was added to the vectorizer
for it to efficiently detect which instructions are reductions in the
cost model.
- The tests have some updates to show what I believe is optimal
vectorization and where we are now.
Put together this can greatly improve performance for reduction loop
under MVE.
Differential Revision: https://reviews.llvm.org/D93476
This reverts commit d97f776be5.
The original problem was due to build failures in shared lib builds. D95079
moved ImportedFunctionsInliningStatistics under Analysis, unblocking
this.
This is related to D94982. We want to call these APIs from the Analysis
component, so we can't leave them under Transforms.
Differential Revision: https://reviews.llvm.org/D95079
When using 2 InlinePass instances in the same CGSCC - one for other
mandatory inlinings, the other for the heuristic-driven ones - the order
in which the ImportedFunctionStats would be output-ed would depend on
the destruction order of the inline passes, which is not deterministic.
This patch moves the ImportedFunctionStats responsibility to the
InlineAdvisor to address this problem.
Differential Revision: https://reviews.llvm.org/D94982
Currently LLVM is relying on ValueTracking's `isKnownNonZero` to attach `nonnull`, which can return true when the value is poison.
To make the semantics of `nonnull` consistent with the behavior of `isKnownNonZero`, this makes the semantics of `nonnull` to accept poison, and return poison if the input pointer isn't null.
This makes many transformations like below legal:
```
%p = gep inbounds %x, 1 ; % p is non-null pointer or poison
call void @f(%p) ; instcombine converts this to call void @f(nonnull %p)
```
Instead, this semantics makes propagation of `nonnull` to caller illegal.
The reason is that, passing poison to `nonnull` does not immediately raise UB anymore, so such program is still well defined, if the callee does not use the argument.
Having `noundef` attribute there re-allows this.
```
define void @f(i8* %p) { ; functionattr cannot mark %p nonnull here anymore
call void @g(i8* nonnull %p) ; .. because @g never raises UB if it never uses %p.
ret void
}
```
Another attribute that needs to be updated is `align`. This patch updates the semantics of align to accept poison as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90529
Just like llvm.assume, there are a lot of cases where we can just ignore llvm.experimental.noalias.scope.decl.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93042
Split impliesPoison into two recursive walks, one over V, the
other over ValAssumedPoison. This allows us to reason about poison
implications in a number of additional cases that are important
in practice. This is a generalized form of D94859, which handles
the cmp to cmp implication in particular.
Differential Revision: https://reviews.llvm.org/D94866
83daa49758 made loop-rotate more conservative in the presence of
function calls in the prepare-for-lto stage. The code did not properly
account for calls that are no actual function calls, like calls to
intrinsics. This patch updates the code to ensure only calls that are
lowered to actual calls are considered inline candidates.
D84108 exposed a bad interaction between inlining and loop-rotation
during regular LTO, which is causing notable regressions in at least
CINT2006/473.astar.
The problem boils down to: we now rotate a loop just before the vectorizer
which requires duplicating a function call in the preheader when compiling
the individual files ('prepare for LTO'). But this then prevents further
inlining of the function during LTO.
This patch tries to resolve this issue by making LoopRotate more
conservative with respect to rotating loops that have inline-able calls
during the 'prepare for LTO' stage.
I think this change intuitively improves the current situation in
general. Loop-rotate tries hard to avoid creating headers that are 'too
big'. At the moment, it assumes all inlining already happened and the
cost of duplicating a call is equal to just doing the call. But with LTO,
inlining also happens during full LTO and it is possible that a previously
duplicated call is actually a huge function which gets inlined
during LTO.
From the perspective of LV, not much should change overall. Most loops
calling user-provided functions won't get vectorized to start with
(unless we can infer that the function does not touch memory, has no
other side effects). If we do not inline the 'inline-able' call during
the LTO stage, we merely delayed loop-rotation & vectorization. If we
inline during LTO, chances should be very high that the inlined code is
itself vectorizable or the user call was not vectorizable to start with.
There could of course be scenarios where we inline a sufficiently large
function with code not profitable to vectorize, which would have be
vectorized earlier (by scalarzing the call). But even in that case,
there probably is no big performance impact, because it should be mostly
down to the cost-model to reject vectorization in that case. And then
the version with scalarized calls should also not be beneficial. In a way,
LV should have strictly more information after inlining and make more
accurate decisions (barring cost-model issues).
There is of course plenty of room for things to go wrong unexpectedly,
so we need to keep a close look at actual performance and address any
follow-up issues.
I took a look at the impact on statistics for
MultiSource/SPEC2000/SPEC2006. There are a few benchmarks with fewer
loops rotated, but no change to the number of loops vectorized.
Reviewed By: sanwou01
Differential Revision: https://reviews.llvm.org/D94232
We can fold x*C1/C2 <= x to true if C1 <= C2. This is valid even
if the multiplication is not nuw: https://alive2.llvm.org/ce/z/vULors
The multiplication or division can be replaced by shifts. We don't
handle the case where both are shifts, as that should get folded
away by InstCombine.
There are no changes relative to the original commit. However, an issue
this exposed in BasicAA assumption tracking has been fixed in the
previous commit.
-----
An alias query currently works out roughly like this:
* Look up location pair in cache.
* Perform BasicAA logic (including cache lookup and insertion...)
* Perform a recursive query using BestAAResults.
* Look up location pair in cache (and thus do not recurse into BasicAA)
* Query all the other AA providers.
* Query all the other AA providers.
This is a lot of unnecessary work, all ultimately caused by the
BestAAResults query at the end of aliasCheck(). The reason we perform
it, is that aliasCheck() is getting called recursively, and we of
course want those recursive queries to also make use of other AA
providers, not just BasicAA. We can solve this by making the recursive
queries directly use BestAAResults (which will check both BasicAA
and other providers), rather than recursing into aliasCheck().
There are some tradeoffs:
* We can no longer pass through the precomputed underlying object
to aliasCheck(). This is not a major concern, because nowadays
getUnderlyingObject() is quite cheap.
* Results from other AA providers are no longer cached inside
BasicAA. The way this worked was already a bit iffy, in that a
result could be cached, but if it was MayAlias, we'd still end
up re-querying other providers anyway. If we want to cache
non-BasicAA results, we should do that in a more principled manner.
In any case, despite those tradeoffs, this works out to be a decent
compile-time improvment. I think it also simplifies the mental model
of how BasicAA works. It took me quite a while to fully understand
how these things interact.
Differential Revision: https://reviews.llvm.org/D90094
D91936 placed the tracking for the assumptions into BasicAA.
However, when recursing over phis, we may use fresh AAQI instances.
In this case AssumptionBasedResults from an inner AAQI can reesult
in a removal of an element from the outer AAQI.
To avoid this, move the tracking into AAQI. This generally makes
more sense, as the NoAlias assumptions themselves are also stored
in AAQI.
The test case only produces an assertion failure with D90094
reapplied. I think the issue exists independently of that change
as well, but I wasn't able to come up with a reproducer.
Expanding from D94808 - we ensure the same InlineAdvisor is used by both
InlinerPass instances. The notion of mandatory inlining is moved into
the core InlineAdvisor: advisors anyway have to handle that case, so
this change also factors out that a bit better.
Differential Revision: https://reviews.llvm.org/D94825
This reverts commit a3904cc77f.
It causes the compiler to crash while building Harfbuzz for ARM in
Chromium, reduced reproducer forthcoming:
https://crbug.com/1167305
An alias query currently works out roughly like this:
* Look up location pair in cache.
* Perform BasicAA logic (including cache lookup and insertion...)
* Perform a recursive query using BestAAResults.
* Look up location pair in cache (and thus do not recurse into BasicAA)
* Query all the other AA providers.
* Query all the other AA providers.
This is a lot of unnecessary work, all ultimately caused by the
BestAAResults query at the end of aliasCheck(). The reason we perform
it, is that aliasCheck() is getting called recursively, and we of
course want those recursive queries to also make use of other AA
providers, not just BasicAA. We can solve this by making the recursive
queries directly use BestAAResults (which will check both BasicAA
and other providers), rather than recursing into aliasCheck().
There are some tradeoffs:
* We can no longer pass through the precomputed underlying object
to aliasCheck(). This is not a major concern, because nowadays
getUnderlyingObject() is quite cheap.
* Results from other AA providers are no longer cached inside
BasicAA. The way this worked was already a bit iffy, in that a
result could be cached, but if it was MayAlias, we'd still end
up re-querying other providers anyway. If we want to cache
non-BasicAA results, we should do that in a more principled manner.
In any case, despite those tradeoffs, this works out to be a decent
compile-time improvment. I think it also simplifies the mental model
of how BasicAA works. It took me quite a while to fully understand
how these things interact.
Differential Revision: https://reviews.llvm.org/D90094
This change modifies the source location formatting from:
LineNumber.Discriminator
to:
LineNumber:ColumnNumber.Discriminator
The motivation here is to enhance location information for inline replay that currently exists for the SampleProfile inliner. This will be leveraged further in inline replay for the CGSCC inliner in the related diff.
The ReplayInlineAdvisor is also modified to read the new format and now takes into account the callee for greater accuracy.
Testing:
ninja check-llvm
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D94333
This is a partial fix for https://bugs.llvm.org/show_bug.cgi?id=44403.
Folding gep p, q-p to q is only legal if p and q have the same
provenance. This fold should probably be guarded by something like
getUnderlyingObject(p) == getUnderlyingObject(q).
This patch is a partial fix that removes the special handling for
gep p, 0-p, which will fold to a null pointer, which would certainly
not pass an underlying object check (unless p is also null, in which
case this would fold trivially anyway). Folding to a null pointer
is particularly problematic due to the special handling it receives
in many places, making end-to-end miscompiles more likely.
Differential Revision: https://reviews.llvm.org/D93820
This patch fixes a bug that could result in miscompiles (at least
in an OOT target). The problem could be seen by adding checks that
the DominatorTree used in BasicAliasAnalysis and ValueTracking was
valid (e.g. by adding DT->verify() call before every DT dereference
and then running all tests in test/CodeGen).
Problem was that the LegacyPassManager calculated "last user"
incorrectly for passes such as the DominatorTree when not telling
the pass manager that there was a transitive dependency between
the different analyses. And then it could happen that an incorrect
dominator tree was used when doing alias analysis (which was a pretty
serious bug as the alias analysis result could be invalid).
Fixes: https://bugs.llvm.org/show_bug.cgi?id=48709
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94138
Currently make_early_inc_range cannot be used with iterators with
operator* implementations that do not return a reference.
Most notably in the LLVM codebase, this means the User iterator ranges
cannot be used with make_early_inc_range, which slightly simplifies
iterating over ranges while elements are removed.
Instead of directly using BaseT::reference as return type of operator*,
this patch uses decltype to get the actual return type of the operator*
implementation in WrappedIteratorT.
This patch also updates a few places to use make use of
make_early_inc_range.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93992
Similar to the Arm VCTP intrinsics, if the operands of an
active.lane.mask are both known, the constant lane mask can be
calculated. This can come up after unrolling the loops.
Differential Revision: https://reviews.llvm.org/D94103
When creating pi-blocks we try to avoid creating duplicate edges
between outside nodes and the pi-block when an edge is of the
same kind and direction as another one that has already been
created. We do this by keeping track of the edges in an
enumerated array called EdgeAlreadyCreated. The problem is that
this array is declared local to the loop that iterates over the
nodes in the pi-block, so the information gets lost every time a
new inside-node is iterated over. The fix is to move the
declaration to the outer loop.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D94094
Add support for mixed pre/post CFG views.
Update usages of the MemorySSAUpdater to use the new DT API by
requesting the DT updates to be done by the MSSAUpdater.
Differential Revision: https://reviews.llvm.org/D93371
Change the way NoAlias assumptions in BasicAA are handled. Instead of
handling this inside the phi-phi code, always initially insert a
NoAlias result into the map and keep track whether it is used.
If it is used, then we require that we also get back NoAlias from
the recursive queries. Otherwise, the entry is changed to MayAlias.
Additionally, keep track of all location pairs we inserted that may
still be based on assumptions higher up. If it turns out one of those
assumptions is incorrect, we flush them from the cache.
The compile-time impact for the new implementation is significantly
higher than the previous iteration of this patch:
https://llvm-compile-time-tracker.com/compare.php?from=c0bb9859de6991cc233e2dedb978dd118da8c382&to=c07112373279143e37568b5bcd293daf81a35973&stat=instructions
However, it should avoid the exponential runtime cases we run into
if we don't cache assumption-based results entirely.
This also produces better results in some cases, because NoAlias
assumptions can now start at any root, rather than just phi-phi pairs.
This is not just relevant for analysis quality, but also for BatchAA
consistency: Otherwise, results would once again depend on query order,
though at least they wouldn't be wrong.
This ended up both more complicated and more expensive than I hoped,
but I wasn't able to come up with another solution that satisfies all
the constraints.
Differential Revision: https://reviews.llvm.org/D91936
I don't believe this has an observable effect, because the only
thing we care about here is replacing the operand with a constant
so following folds can apply. This change is just to make the
representation follow canonical unary shuffle form.
Calling null or undef results in immediate undefined behavior.
Return poison instead of undef in this case, similar to what
we do for immediate UB due to division by zero.
Make InstSimplify return poison rather than undef for out-of-bounds
shifts, as specified by LandRef:
> If op2 is (statically or dynamically) equal to or larger than the
> number of bits in op1, this instruction returns a poison value.
Differential Revision: https://reviews.llvm.org/D93998
Previously when trying to support CoroSplit's function splitting, we
added in a hack that simply added the new function's node into the
original function's SCC (https://reviews.llvm.org/D87798). This is
incorrect since it might be in its own SCC.
Now, more similar to the previous design, we have callers explicitly
notify the LazyCallGraph that a function has been split out from another
one.
In order to properly support CoroSplit, there are two ways functions can
be split out.
One is the normal expected "outlining" of one function into a new one.
The new function may only contain references to other functions that the
original did. The original function must reference the new function. The
new function may reference the original function, which can result in
the new function being in the same SCC as the original function. The
weird case is when the original function indirectly references the new
function, but the new function directly calls the original function,
resulting in the new SCC being a parent of the original function's SCC.
This form of function splitting works with CoroSplit's Switch ABI.
The second way of splitting is more specific to CoroSplit. CoroSplit's
Retcon and Async ABIs split the original function into multiple
functions that all reference each other and are referenced by the
original function. In order to keep the LazyCallGraph in a valid state,
all new functions must be processed together, else some nodes won't be
populated. To keep things simple, this only supports the case where all
new edges are ref edges, and every new function references every other
new function. There can be a reference back from any new function to the
original function, putting all functions in the same RefSCC.
This also adds asserts that all nodes in a (Ref)SCC can reach all other
nodes to prevent future incorrect hacks.
The original hacks in https://reviews.llvm.org/D87798 are no longer
necessary since all new functions should have been registered before
calling updateCGAndAnalysisManagerForPass.
This fixes all coroutine tests when opt's -enable-new-pm is true by
default. This also fixes PR48190, which was likely due to the previous
hack breaking SCC invariants.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D93828
This patch
- Adds containsPoisonElement that checks existence of poison in constant vector elements,
- Renames containsUndefElement to containsUndefOrPoisonElement to clarify its behavior & updates its uses properly
With this patch, isGuaranteedNotToBeUndefOrPoison's tests w.r.t constant vectors are added because its analysis is improved.
Thanks!
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D94053
This patch teaches the inliner to compute the full cost for a call
site where the newly introduced cost benefit analysis is enabled.
Note that the cost benefit analysis requires the full cost to be
computed. However, without this patch or the -inline-cost-full
option, the early termination logic would kick in when the cost
exceeds the threshold, so we don't get to perform the cost benefit
analysis. For this reason, we would need to specify four clang
options:
-mllvm -inline-cost-full
-mllvm -inline-enable-cost-benefit-analysis
This patch eliminates the need to specify -inline-cost-full.
Differential Revision: https://reviews.llvm.org/D93658
Allow loop nests with empty basic blocks without loops in different
levels as perfect.
Reviewers: Meinersbur
Differential Revision: https://reviews.llvm.org/D93665
This function no longer does anything useful. It probably did something originally but latter changes removed them and didn't clean up this function.
The checks are already done in the callers as well.
Differential Revision: https://reviews.llvm.org/D94055
While here, rename the inaccurate getRecurrenceBinOp()
because that was also used to get CmpInst opcodes.
The recurrence/reduction kind should always refer to the
expected opcode for a reduction. SLP appears to be the
only direct caller of createSimpleTargetReduction(), and
that calling code ideally should not be carrying around
both an opcode and a reduction kind.
This should allow us to generalize reduction matching to
use intrinsics instead of only binops.
Allow loop nests with empty basic blocks without loops in different
levels as perfect.
Reviewers: Meinersbur
Differential Revision: https://reviews.llvm.org/D93665
A new TTI interface has been added 'Optional <unsigned>getMaxVScale' that
returns the maximum vscale for a given target.
When known getMaxVScale is used to compute the cost of masked gather scatter
for scalable vector.
Depends on D92094
Differential Revision: https://reviews.llvm.org/D93030
As the comment already indicates, performing an operation with
nnan/ninf flags on a nan/inf or undef results in poison. Now that
we have a proper poison value, we no longer need to relax it to
undef.
Div/rem by zero is immediate undefined behavior and anything goes.
Currently we fold it to undef, this patch changes it to fold to
poison instead, which is slightly stronger.
Differential Revision: https://reviews.llvm.org/D93995
This is the same change as D93990, but for extractelement rather
than insertelement.
> If idx exceeds the length of val for a fixed-length vector, the
> result is a poison value. For a scalable vector, if the value of
> idx exceeds the runtime length of the vector, the result is a
> poison value.
This is a simple patch that updates InstSimplify to return poison if the index is/can be out-of-bounds
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93990
Let getTruncateExpr() short-circuit to zero when the value being truncated is
known to have at least as many trailing zeros as the target type.
Differential Revision: https://reviews.llvm.org/D93973
This is almost all mechanical search-and-replace and
no-functional-change-intended (NFC). Having a single
enum makes it easier to match/reason about the
reduction cases.
The goal is to remove `Opcode` from reduction matching
code in the vectorizers because that makes it harder to
adapt the code to handle intrinsics.
The code in RecurrenceDescriptor::AddReductionVar() is
the only place that required closer inspection. It uses
a RecurrenceDescriptor and a second InstDesc to sometimes
overwrite part of the struct. It seem like we should be
able to simplify that logic, but it's not clear exactly
which cmp+sel patterns that we are trying to handle/avoid.
LVI previously handled "if (L && R)" conditions, but not
"if (L || R)" conditions. The latter case can still produce
useful information if L and R both constrain the same variable.
This adds support for handling the "if (L || R)" case as well.
The only difference is that we take the union instead of the
intersection of the lattice values.
Here we let non-intrinsic calls be considered legal and valid for
similarity only if the call is not indirect, and has a name.
For two calls to be considered similar, they must have the same name,
the same function types, and the same set of parameters, including tail
calls and calling conventions.
Tests are found in unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87312
This might also make it easier to adapt if we want
to match min/max intrinsics rather than cmp+sel idioms.
The 'const' part is to potentially avoid confusion
in calling code. There's some surprising and possibly
wrong behavior related to matching min/max reductions
differently than other reductions.
GetElementPtr instructions require the extra check that all operands
after the first must only be constants and be exactly the same to be
considered similar.
Tests are found in unittests/Analysis/IRSimilarityIdentifierTest.cpp.
This patch makes SCEV recognize 'select A, B, false' and 'select A, true, B'.
This is a performance improvement that will be helpful after unsound select -> and/or transformation is removed, as discussed in D93065.
SCEV's answers for the select form should be a bit more conservative than the equivalent `and A, B` / `or A, B`.
Take this example: https://alive2.llvm.org/ce/z/NsP9ue .
To check whether it is valid for SCEV's computeExitLimit to return min(n, m) as ExactNotTaken value, I put llvm.assume at tgt.
It fails because the exit limit becomes poison if n is zero and m is poison. This is problematic if e.g. the exit value of i is replaced with min(n, m).
If either n or m is constant, we can revive the analysis again. I added relevant tests and put alive2 links there.
If and is used instead, this is okay: https://alive2.llvm.org/ce/z/K9rbJk . Hence the existing analysis is sound.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93882
The last use of the function, located in RemovePredecessorAndSimplify,
was removed on Dec 25, 2020 in commit
46bea9b297.
The last use of RemovePredecessorAndSimplify was removed on Sep 29,
2010 in commit 99c985c37d.
As mentioned in D93793, there are quite a few places where unary `IRBuilder::CreateShuffleVector(X, Mask)` can be used
instead of `IRBuilder::CreateShuffleVector(X, Undef, Mask)`.
Let's update them.
Actually, it would have been more natural if the patches were made in this order:
(1) let them use unary CreateShuffleVector first
(2) update IRBuilder::CreateShuffleVector to use poison as a placeholder value (D93793)
The order is swapped, but in terms of correctness it is still fine.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D93923
The x86_amx is used for AMX intrisics. <256 x i32> is bitcast to x86_amx when
it is used by AMX intrinsics, and x86_amx is bitcast to <256 x i32> when it
is used by load/store instruction. So amx intrinsics only operate on type x86_amx.
It can help to separate amx intrinsics from llvm IR instructions (+-*/).
Thank Craig for the idea. This patch depend on https://reviews.llvm.org/D87981.
Differential Revision: https://reviews.llvm.org/D91927
This PR adds impliesPoison(ValAssumedPoison, V) that returns true if V is
poison under the assumption that ValAssumedPoison is poison.
For example, impliesPoison('icmp X, 10', 'icmp X, Y') return true because
'icmp X, Y' is poison if 'icmp X, 10' is poison.
impliesPoison can be used for sound optimization of select, as discussed in
D77868.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D78152
Confusingly, BinaryOperator is not an Operator,
OverflowingBinaryOperator is... We were implicitly assuming that
the multiply is an Instruction here.
This fixes the assertion failure reported in
https://reviews.llvm.org/D92726#2472827.
This patch updates isImpliedCondition/isKnownNonZero to look into select form of
and/or as well.
See llvm.org/pr48353 and D93065 for more context
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D93845
Following the discussion in D93065, this adds m_LogicalAnd() and
m_LogicalOr() matchers, that match A && B and A || B logical
operations, either as bitwise operations or select expressions.
As an example usage, LVI is adapted to use these matchers for its
condition reasoning.
The plan here is to switch other parts of LLVM that reason about
and/or of conditions to also support the select forms, and then
merge D93065 (or a variant thereof) to disable the poison-unsafe
select to and/or transform.
Differential Revision: https://reviews.llvm.org/D93827
In 35676a4f9a I've added handling for
non-trivial dominating conditions that imply non-zero on the true
branch. This adds the same support for the false branch.
The changes in pr45360.ll change block ordering and naming, but
don't change the control flow. The urem is still guaraded by a
non-zero check correctly.
The dominating condition handling in isKnownNonZero() currently
only takes into account conditions of the form "x != 0" or "x == 0".
However, there are plenty of other conditions that imply non-zero,
a common one being "x s> 0".
Peculiarly, the handling for assumes was already dealing with more
general non-zero-ness conditions, so this just reuses the same
logic for the dominating condition case.
D71264 started using a context instruction in a computeKnownBits()
call. However, if aliasing between two GEPs is checked, then the
choice of context instruction will be different for alias(GEP1, GEP2)
and alias(GEP2, GEP1), which is not supposed to happen.
Resolve this by remembering which GEP a certain VarIndex belongs to,
and use that as the context instruction. This makes the choice of
context instruction predictable and symmetric.
It should be noted that this choice of context instruction is
non-optimal (just like the previous choice): The AA query result is
only valid at points that are reachable from *both* instructions.
Using either one of them is conservatively correct, but a larger
context may also be valid to use.
Differential Revision: https://reviews.llvm.org/D93183
Some predicates, can be considered the same as long as the operands are
flipped. For example, a > b gives the same result as b > a. This maps
instructions in a greater than form, to their appropriate less than
form, swapping the operands in the IRInstructionData only, allowing for
more flexible matching.
Tests:
llvm/test/Transforms/IROutliner/outlining-isomorphic-predicates.ll
llvm/unittests/Analysis/IRSimilarityIdentifierTest.cpp
Reviewers: jroelofs, paquette
Recommit of commit 0503926602
Differential Revision: https://reviews.llvm.org/D87310
Some predicates, can be considered the same as long as the operands are
flipped. For example, a > b gives the same result as b > a. This maps
instructions in a greater than form, to their appropriate less than
form, swapping the operands in the IRInstructionData only, allowing for
more flexible matching.
Tests:
llvm/test/Transforms/IROutliner/outlining-isomorphic-predicates.ll
llvm/unittests/Analysis/IRSimilarityIdentifierTest.cpp
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87310
Certain instructions, such as adds and multiplies can have the operands
flipped and still be considered the same. When we are analyzing
structure, this gives slightly more flexibility to create a mapping from
one region to another. We can add both operands in a corresponding
instruction to an operand rather than just the exact match. We then try
to eliminate items from the set, until there is only one valid mapping
between the regions of code.
We do this for adds, multiplies, and equality checking. However, this is
not done for floating point instructions, since the order can still
matter in some cases.
Tests:
llvm/test/Transforms/IROutliner/outlining-commutative-fp.ll
llvm/test/Transforms/IROutliner/outlining-commutative.ll
llvm/unittests/Analysis/IRSimilarityIdentifierTest.cpp
Reviewers: jroelofs, paquette
Differential Revision: https://reviews.llvm.org/D87311
Current approach doesn't work well in cases when multiple paths are predicted to be "cold". By "cold" paths I mean those containing "unreachable" instruction, call marked with 'cold' attribute and 'unwind' handler of 'invoke' instruction. The issue is that heuristics are applied one by one until the first match and essentially ignores relative hotness/coldness
of other paths.
New approach unifies processing of "cold" paths by assigning predefined absolute weight to each block estimated to be "cold". Then we propagate these weights up/down IR similarly to existing approach. And finally set up edge probabilities based on estimated block weights.
One important difference is how we propagate weight up. Existing approach propagates the same weight to all blocks that are post-dominated by a block with some "known" weight. This is useless at least because it always gives 50\50 distribution which is assumed by default anyway. Worse, it causes the algorithm to skip further heuristics and can miss setting more accurate probability. New algorithm propagates the weight up only to the blocks that dominates and post-dominated by a block with some "known" weight. In other words, those blocks that are either always executed or not executed together.
In addition new approach processes loops in an uniform way as well. Essentially loop exit edges are estimated as "cold" paths relative to back edges and should be considered uniformly with other coldness/hotness markers.
Reviewed By: yrouban
Differential Revision: https://reviews.llvm.org/D79485
When __builtin_dynamic_object_size returns a non-constant expression, it cannot
be -1 since that is an invalid return value for object size. However since
passes running after the substitution don't know this, they are unable to
optimize away the comparison and hence the comparison and branch stays in there.
This change generates an appropriate call to llvm.assume to help the optimizer
folding the test.
glibc is considering adopting __builtin_dynamic_object_size for additional
protection[1] and this change will help reduce branching overhead in fortified
implementations of all of the functions that don't have the __builtin___*_chk
type builtins, e.g. __ppoll_chk.
Also remove the test limit-max-iterations.ll because it was deemed unnecessary
during review.
[1] https://sourceware.org/pipermail/libc-alpha/2020-November/120191.html
Differential Revision: https://reviews.llvm.org/D93015
byval arguments should mostly get the same treatment as noalias
arguments in alias analysis. This was not the case for the
isIdentifiedFunctionLocal() function.
Marking byval arguments as identified function local means that
they cannot alias with other arguments, which I believe is correct.
Differential Revision: https://reviews.llvm.org/D93602
The transform wasn't checking that the LHS of the comparison
*is* the `X` in question...
This is the miscompile that was holding up D87188.
Thanks to Dave Green for producing an actionable reproducer!
Temporarily revert commit 8b1c4e310c.
After 8b1c4e310c the compile-time for `MultiSource/Benchmarks/MiBench/consumer-lame`
dramatically increases with -O3 & LTO, causing issues for builders with
that configuration.
I filed PR48553 with a smallish reproducer that shows a 10-100x compile
time increase.
This is split off from D91718 and adds a new target hook
supportsScalableVectors that can be queried to check if scalable vectors
are supported by the backend. For AArch64 this returns true if SVE is
enabled.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D93060
This patch adds an alternative cost metric for the inliner to take
into account both the cost (i.e. size) and cycle count savings into
account.
Without this patch, we decide to inline a given call site if the size
of inlining the call site is below the threshold that is computed
according to the hotness of the call site.
This patch adds a new cost metric, turned off by default, to take over
the handling of hot call sites. Specifically, with the new cost
metric, we decide to inline a given call site if the ratio of cycle
savings to size exceeds a threshold. The cycle savings are computed
from call site costs, parameter propagation, folded conditional
branches, etc, all weighted by their respective profile counts. The
size is primarily the callee size, but we subtract call site costs and
the size of basic blocks that are never executed.
The new cost metric implicitly takes advantage of the machine function
splitter recently introduced by Snehasish Kumar, which dramatically
reduces the cost of duplicating (e.g. inlining) cold basic blocks by
placing cold basic blocks of hot functions in the .text.split
section.
We evaluated the new cost metric on clang bootstrap and SPECInt 2017.
For clang bootstrap, we observe 0.69% runtime improvement.
For SPECInt we report the change in IntRate the C/C++ benchmarks. All
benchmarks apart from perlbench and omnetpp improve, on average by
0.21% with the max for mcf at 1.96%.
Benchmark % Change
500.perlbench_r -0.45
502.gcc_r 0.13
505.mcf_r 1.96
520.omnetpp_r -0.28
523.xalancbmk_r 0.49
525.x264_r 0.00
531.deepsjeng_r 0.00
541.leela_r 0.35
557.xz_r 0.21
Differential Revision: https://reviews.llvm.org/D92780
The last use of the function was removed on Sep 18, 2016 in commit
5f8cc0c346.
The function was later moved to llvm/lib/Analysis/IVDescriptors.cpp on
Sep 12, 2018 in commit 7e98d69847.
This is being recommitted to try and address the MSVC complaint.
This patch implements a DDG printer pass that generates a graph in
the DOT description language, providing a more visually appealing
representation of the DDG. Similar to the CFG DOT printer, this
functionality is provided under an option called -dot-ddg and can
be generated in a less verbose mode under -dot-ddg-only option.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D90159
Per http://llvm.org/OpenProjects.html#llvm_loopnest, the goal of this
patch (and other following patches) is to create facilities that allow
implementing loop nest passes that run on top-level loop nests for the
New Pass Manager.
This patch extends the functionality of LoopPassManager to handle
loop-nest passes by specializing the definition of LoopPassManager that
accepts both kinds of passes in addPass.
Only loop passes are executed if L is not a top-level one, and both
kinds of passes are executed if L is top-level. Currently, loop nest
passes should have the following run method:
PreservedAnalyses run(LoopNest &, LoopAnalysisManager &,
LoopStandardAnalysisResults &, LPMUpdater &);
Reviewed By: Whitney, ychen
Differential Revision: https://reviews.llvm.org/D87045
This patch implements a DDG printer pass that generates a graph in
the DOT description language, providing a more visually appealing
representation of the DDG. Similar to the CFG DOT printer, this
functionality is provided under an option called -dot-ddg and can
be generated in a less verbose mode under -dot-ddg-only option.
Differential Revision: https://reviews.llvm.org/D90159
his is a preparation patch for supporting multiple exits in the loop vectorizer, by itself it should be mostly NFC. This patch moves the loop structure checks from LAA to their respective consumers (where duplicates don't already exist). Moving the checks does end up changing some of the optimization warnings and debug output slightly, but nothing that appears to be a regression.
Why do this? Well, after auditing the code, I can't actually find anything in LAA itself which relies on having all instructions within a loop execute an equal number of times. This patch simply makes this explicit so that if one consumer - say LV in the near future (hopefully) - wants to handle a broader class of loops, it can do so.
Differential Revision: https://reviews.llvm.org/D92066
D82227 has added a proper check to limit PHI vectorization to the
maximum vector register size. That unfortunately resulted in at
least a couple of regressions on SystemZ and x86.
This change reverts PHI handling from D82227 and replaces it with
a more general check in SLPVectorizerPass::tryToVectorizeList().
Moved to tryToVectorizeList() it allows to restart vectorization
if initial chunk fails.
However, this function is more general and handles not only PHI
but everything which SLP handles. If vectorization factor would
be limited to maximum vector register size it would limit much
more vectorization than before leading to further regressions.
Therefore a new TTI callback getMaximumVF() is added with the
default 0 to preserve current behavior and limit nothing. Then
targets can decide what is better for them.
The callback gets ElementSize just like a similar getMinimumVF()
function and the main opcode of the chain. The latter is to avoid
regressions at least on the AMDGPU. We can have loads and stores
up to 128 bit wide, and <2 x 16> bit vector math on some
subtargets, where the rest shall not be vectorized. I.e. we need
to differentiate based on the element size and operation itself.
Differential Revision: https://reviews.llvm.org/D92059
InstCombine canonicalizes X>C && X<C' style comparisons into
(X+C1)<C2. This type of expression is recognized by some analyses
like LVI, but currently not when used inside assumptions, because
AssumptionCache does not track affected values for it.
BasicAA currently handles cases like Scale*V0 + (-Scale)*V1 where
V0 != V1, but does not handle the simpler case of Scale*V with
V != 0. Add it based on an isKnownNonZero() call.
I'm not passing a context instruction for now, because the existing
approach of always using GEP1 for context could result in symmetry
issues.
Differential Revision: https://reviews.llvm.org/D93162
The last use of isLoop was removed on Apr 29, 2002 in commit
09bbb5c015 as part of an effort to
remove "old induction varaible cannonicalization pass built on top of
interval analysis".
If we have two unknown sizes and one GEP operand and one non-GEP
operand, then we currently simply return MayAlias. The comment says
we can't do anything useful ... but we can! We can still check that
the underlying objects are different (and do so for the GEP-GEP case).
To reduce the compile-time impact, this a) checks this early, before
doing the relatively expensive GEP decomposition that will not be
used and b) doesn't do the check if the other operand is a phi or
select. In that case, the phi/select will already recurse, so this
would just do two slightly different recursive walks that arrive at
the same roots.
Compile-time is still a bit of a mixed bag: https://llvm-compile-time-tracker.com/compare.php?from=624af932a808b363a888139beca49f57313d9a3b&to=845356e14adbe651a553ed11318ddb5e79a24bcd&stat=instructions
On average this is a small improvement, but sqlite with ThinLTO has
a 0.5% regression (lencod has a 1% improvement).
The BasicAA test case checks this by using two memsets with unknown
size. However, the more interesting case where this is useful is
the LoopVectorize test case, as analysis of accesses in loops tends
to always us unknown sizes.
Differential Revision: https://reviews.llvm.org/D92401
This is the first in a series of patches that attempts to migrate
existing cost instructions to return a new InstructionCost class
in place of a simple integer. This new class is intended to be
as light-weight and simple as possible, with a full range of
arithmetic and comparison operators that largely mirror the same
sets of operations on basic types, such as integers. The main
advantage to using an InstructionCost is that it can encode a
particular cost state in addition to a value. The initial
implementation only has two states - Normal and Invalid - but these
could be expanded over time if necessary. An invalid state can
be used to represent an unknown cost or an instruction that is
prohibitively expensive.
This patch adds the new class and changes the getInstructionCost
interface to return the new class. Other cost functions, such as
getUserCost, etc., will be migrated in future patches as I believe
this to be less disruptive. One benefit of this new class is that
it provides a way to unify many of the magic costs in the codebase
where the cost is set to a deliberately high number to prevent
optimisations taking place, e.g. vectorization. It also provides
a route to represent the extremely high, and unknown, cost of
scalarization of scalable vectors, which is not currently supported.
Differential Revision: https://reviews.llvm.org/D91174
This was separated in the past because the cl::opt was in the .cpp file
but DevirtSCCRepeatedPass::run() was in the .h file. Now that
DevirtSCCRepeatedPass::run() is in the .cpp file, get rid of the tiny
maxDevirtIterationsReached(), it's bad for readability.
This is a rework of D85812, which didn't land.
When callee coroutine function is inlined into caller coroutine function before coro-split pass, llvm will emits "coroutine should have exactly one defining @llvm.coro.begin". It seems that coro-early pass can not handle this quiet well.
So we believe that unsplited coroutine function should not be inlined.
This patch fix such issue by not inlining function if it has attribute "coroutine.presplit" (it means the function has not been splited) to fix this issue
test plan: check-llvm, check-clang
In D85812, there was suggestions on moving the macros to Attributes.td to avoid circular header dependency issue.
I believe it's not worth doing just to be able to use one constant string in one place.
Today, there are already 3 possible attribute values for "coroutine.presplit": c6543cc6b8/llvm/lib/Transforms/Coroutines/CoroInternal.h (L40-L42)
If we move them into Attributes.td, we would be adding 3 new attributes to EnumAttr, just to support this, which I think is an overkill.
Instead, I think the best way to do this is to add an API in Function class that checks whether this function is a coroutine, by checking the attribute by name directly.
Differential Revision: https://reviews.llvm.org/D92706
Build on the work started in 8f07629, and add the multiply case. In the process, more clearly describe the requirement for the operation we're looking through.
Differential Revision: https://reviews.llvm.org/D92726
For some inputs, the constraint system can grow quite large during
solving, because it replaces complex constraints with one or more
simpler constraints. This adds a cut-off to avoid compile-time explosion
on problematic inputs.
BasicAA has some special bit of logic for "same base pointer" GEPs
that performs a structural comparison: It only looks at two GEPs
with the same base (as opposed to two GEP chains with a MustAlias
base) and compares their indexes in a limited way. I generalized
part of this code in D91027, and this patch merges the remainder
into the normal decomposed GEP logic.
What this code ultimately wants to do is to determine that
gep %base, %idx1 and gep %base, %idx2 don't alias if %idx1 != %idx2,
and the access size fits within the stride.
We can express this in terms of a decomposed GEP expression with
two indexes scale*%idx1 + -scale*%idx2 where %idx1 != %idx2, and
some appropriate checks for sizes and offsets.
This makes the reasoning slightly more powerful, and more
importantly brings all the GEP logic under a common umbrella.
Differential Revision: https://reviews.llvm.org/D92723
The basic idea is that by looking through operand instructions which don't change the equality result that we can push the existing known bits comparison down past instructions which would obscure them.
We have analogous handling in InstSimplify for most - though weirdly not all - of these cases starting from an icmp root. It's a bit unfortunate to duplicate logic, but since my actual goal is to extend BasicAA, the icmp logic doesn't help. (And just makes it hard to test here.) The BasicAA change will be posted separately for review.
Differential Revision: https://reviews.llvm.org/D92698
Due to the recursion through phis basicaa does, the code needs to be extremely careful not to reason about equality between values which might represent distinct iterations. I'm generally skeptical of the correctness of the whole scheme, but this particular patch fixes one particular instance which is demonstrateable incorrect.
Interestingly, this appears to be the second attempted fix for the same issue. The former fix is incomplete and doesn't address the actual issue.
Differential Revision: https://reviews.llvm.org/D92694
Currently PassBuilder.cpp is by far the file that takes longest to
compile. This is due to tons of templates being instantiated per pass.
Follow PassManager by using wrappers around passes to avoid making
the adaptors templated on the pass type. This allows us to move various
adaptors' run methods into .cpp files.
This reduces the compile time of PassBuilder.cpp on my machine from 66
to 39 seconds. It also reduces the size of opt from 685M to 676M.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D92616
This changes --print-before/after to be a list of strings rather than
legacy passes. (this also has the effect of not showing the entire list
of passes in --help-hidden after --print-before/after, which IMO is
great for making it less verbose).
Currently PrintIRInstrumentation passes the class name rather than pass
name to llvm::shouldPrintBeforePass(), meaning
llvm::shouldPrintBeforePass() never functions as intended in the NPM.
There is no easy way of converting class names to pass names outside of
within an instance of PassBuilder.
This adds a map of pass class names to their short names in
PassRegistry.def within PassInstrumentationCallbacks. It is populated
inside the constructor of PassBuilder, which takes a
PassInstrumentationCallbacks.
Add a pointer to PassInstrumentationCallbacks inside
PrintIRInstrumentation and use the newly created map.
This is a bit hacky, but I can't think of a better way since the short
id to class name only exists within PassRegistry.def. This also doesn't
handle passes not in PassRegistry.def but rather added via
PassBuilder::registerPipelineParsingCallback().
llvm/test/CodeGen/Generic/print-after.ll doesn't seem very useful now
with this change.
Reviewed By: ychen, jamieschmeiser
Differential Revision: https://reviews.llvm.org/D87216
This change should be fairly straight forward. If we've reached a call, check to see if we can tell the result is dereferenceable from information about the minimum object size returned by the call.
To control compile time impact, I'm only adding the call for base facts in the routine. getObjectSize can also do recursive reasoning, and we don't want that general capability here.
As a follow up patch (without separate review), I will plumb through the missing TLI parameter. That will have the effect of extending this to known libcalls - malloc, new, and the like - whereas currently this only covers calls with the explicit allocsize attribute.
Differential Revision: https://reviews.llvm.org/D90341
When MemCpyOpt performs call slot optimization it will concatenate the `alias.scope` metadata between the function call and the memcpy. However, scoped AA relies on the domains in metadata to be maintained in a caller-callee relationship. Naive concatenation breaks this assumption leading to bad AA results.
The fix is to take the intersection of domains then union the scopes within those domains.
The original bug came from a case of rust bad codegen which uses this bad aliasing to perform additional memcpy optimizations. As show in the added test case `%src` got forwarded past its lifetime leading to a dereference of garbage data.
Testing
ninja check-llvm
Reviewed By: jeroen.dobbelaere
Differential Revision: https://reviews.llvm.org/D91576
1. Removed #include "...AliasAnalysis.h" in other headers and modules.
2. Cleaned up includes in AliasAnalysis.h.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92489
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an attribute((no_stack_protector)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
SSP attributes can be ordered by strength. Weakest to strongest, they
are: ssp, sspstrong, sspreq. Callees with differing SSP attributes may be
inlined into each other, and the strongest attribute will be applied to the
caller. (No change)
After this change:
* A callee with no SSP attributes will no longer be inlined into a
caller with SSP attributes.
* The reverse is also true: a callee with an SSP attribute will not be
inlined into a caller with no SSP attributes.
* The alwaysinline attribute overrides these rules.
Functions that get synthesized by the compiler may not get inlined as a
result if they are not created with the same stack protector function
attribute as their callers.
Alternative approach to https://reviews.llvm.org/D87956.
Fixes pr/47479.
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed By: rnk, MaskRay
Differential Revision: https://reviews.llvm.org/D91816
Summary:
AIX uses the existing EH infrastructure in clang and llvm.
The major differences would be
1. AIX do not have CFI instructions.
2. AIX uses a new personality routine, named __xlcxx_personality_v1.
It doesn't use the GCC personality rountine, because the
interoperability is not there yet on AIX.
3. AIX do not use eh_frame sections. Instead, it would use a eh_info
section (compat unwind section) to store the information about
personality routine and LSDA data address.
Reviewed By: daltenty, hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D91455
https://llvm.org/PR48362
It's possible that we could stub this out sooner somewhere
within JumpThreading, but I'm not sure how to do that, and
then we would still have potential danger in other callers.
I can't find a way to trigger this using 'instsimplify',
however, because that already has a bailout on unreachable
blocks.
This patch replaces the attribute `unsigned VF` in the class
IntrinsicCostAttributes by `ElementCount VF`.
This is a non-functional change to help upcoming patches to compute the cost
model for scalable vector inside this class.
Differential Revision: https://reviews.llvm.org/D91532
This is the #2 of 2 changes that make remarks hotness threshold option
available in more tools. The changes also allow the threshold to sync with
hotness threshold from profile summary with special value 'auto'.
This change expands remarks hotness threshold option
-fdiagnostics-hotness-threshold in clang and *-remarks-hotness-threshold in
other tools to utilize hotness threshold from profile summary.
Remarks hotness filtering relies on several driver options. Table below lists
how different options are correlated and affect final remarks outputs:
| profile | hotness | threshold | remarks printed |
|---------|---------|-----------|-----------------|
| No | No | No | All |
| No | No | Yes | None |
| No | Yes | No | All |
| No | Yes | Yes | None |
| Yes | No | No | All |
| Yes | No | Yes | None |
| Yes | Yes | No | All |
| Yes | Yes | Yes | >=threshold |
In the presence of profile summary, it is often more desirable to directly use
the hotness threshold from profile summary. The new argument value 'auto'
indicates threshold will be synced with hotness threshold from profile summary
during compilation. The "auto" threshold relies on the availability of profile
summary. In case of missing such information, no remarks will be generated.
Differential Revision: https://reviews.llvm.org/D85808
Enable performing mandatory inlinings upfront, by reusing the same logic
as the full inliner, instead of the AlwaysInliner. This has the
following benefits:
- reduce code duplication - one inliner codebase
- open the opportunity to help the full inliner by performing additional
function passes after the mandatory inlinings, but before th full
inliner. Performing the mandatory inlinings first simplifies the problem
the full inliner needs to solve: less call sites, more contextualization, and,
depending on the additional function optimization passes run between the
2 inliners, higher accuracy of cost models / decision policies.
Note that this patch does not yet enable much in terms of post-always
inline function optimization.
Differential Revision: https://reviews.llvm.org/D91567
For recursive phis, we skip the recursive operands and check that
the remaining operands are NoAlias with an unknown size. Currently,
this is limited to inbounds GEPs with positive offsets, to
guarantee that the recursion only ever increases the pointer.
Make this more general by only requiring that the underlying object
of the phi operand is the phi itself, i.e. it it based on itself in
some way. To compensate, we need to use a beforeOrAfterPointer()
location size, as we no longer have the guarantee that the pointer
is strictly increasing.
This allows us to handle some additional cases like negative geps,
geps with dynamic offsets or geps that aren't inbounds.
Differential Revision: https://reviews.llvm.org/D91914
The size requirement on V2 was present because it was not clear
whether an unknown size would allow an access before the start of
V2, which could then overlap. This is clarified since D91649: In
this part of BasicAA, all accesses can occur only after the base
pointer, even if they have unknown size.
This makes the positive and negative offset cases symmetric.
Differential Revision: https://reviews.llvm.org/D91482
Folding a select of vector constants that include undef elements only
applies to fixed vectors, but there's no earlier check the type is not
scalable so it crashes for scalable vectors. This adds a check so this
optimization is only attempted for fixed vectors.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D92046
Add a flag that disables caching when computing aliasing results
potentially based on a phi-phi NoAlias assumption. We'll still
insert cache entries temporarily to catch infinite recursion,
but will drop them afterwards, so they won't persist in BatchAA.
Differential Revision: https://reviews.llvm.org/D91936
Currently, we have some confusion in the codebase regarding the
meaning of LocationSize::unknown(): Some parts (including most of
BasicAA) assume that LocationSize::unknown() only allows accesses
after the base pointer. Some parts (various callers of AA) assume
that LocationSize::unknown() allows accesses both before and after
the base pointer (but within the underlying object).
This patch splits up LocationSize::unknown() into
LocationSize::afterPointer() and LocationSize::beforeOrAfterPointer()
to make this completely unambiguous. I tried my best to determine
which one is appropriate for all the existing uses.
The test changes in cs-cs.ll in particular illustrate a previously
clearly incorrect AA result: We were effectively assuming that
argmemonly functions were only allowed to access their arguments
after the passed pointer, but not before it. I'm pretty sure that
this was not intentional, and it's certainly not specified by
LangRef that way.
Differential Revision: https://reviews.llvm.org/D91649
Reverted because the compile time impact is still too high.
isKnownViaNonRecursiveReasoning is used twice, we can do it just once.
Differential Revision: https://reviews.llvm.org/D92152
Previously we tried to using isKnownPredicateAt, but it makes an
extra query to isKnownPredicate, which has negative impact on compile
time. Let's try to use more lightweight isBasicBlockEntryGuardedByCond.
Differential Revision: https://reviews.llvm.org/D92152
A piece of code in `isLoopBackedgeGuardedByCond` basically duplicates
the dominators traversal from `isBlockEntryGuardedByCond` called from
`isKnownPredicateAt`, but it's less powerful because it does not give context
to `isImpliedCond`. This patch reuses the `isKnownPredicateAt `function there,
reducing the amount of code duplication and making it more powerful.
Differential Revision: https://reviews.llvm.org/D92152
Reviewed By: skatkov
Use more context to prove contextual facts about the last iteration. It is
only executed when the backedge is taken, so we can use `isLoopBackedgeGuardedByCond`
to make this check.
Differential Revision: https://reviews.llvm.org/D91535
Reviewed By: skatkov
The TypeSize warning would occur because RuntimePointerChecking::insert
was not scalable vector aware. The fix is to use
ScalarEvolution::getSizeOfExpr to grab the size of types.
Differential Revision: https://reviews.llvm.org/D90171
MaxSafeRegisterWidth is a misnomer since it actually returns the maximum
safe vector width. Register suggests it relates directly to a physical
register where it could be a vector spanning one or more physical
registers.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91727
This reverts commit 7dcc889917.
This patch introduced a logical error that breaks whole logic of this analysis.
All checks we are making are supposed to be loop-independent, so that we could
safely remove the range check. The 'nw' fact is loop-dependent, so we can remove
the check basing on facts from this very check.
Motivating examples will follow-up.
Some older code - and code copied from older code - still directly tested against the singelton result of SE::getCouldNotCompute. Using the isa<SCEVCouldNotCompute> form is both shorter, and more readable.
Putting the +1 before the zero-extend will allow scalar evolution to fold the expression in some cases such as the one shown in PowerPC's `shrink-wrap.ll` test.
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D91724
This reverts commit 2734a9ebf4.
This patch appeared to not be a NFC. It introduced an execution path where
monotonicity check on limited space started relying in existing nsw/nuw
flags, which is illegal. The motivating test will follow-up.
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.
This fixes some tests testing this exact behavior in the legacy PM.
Instead of checking WeakTrackingVHs for CallBases at the very beginning
and end of the pass it wraps, check every time
updateCGAndAnalysisManagerForPass() is called.
check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).
http://llvm-compile-time-tracker.com/?config=O3&stat=instructions&remote=aeubanks
shows that 7zip has ~1% compile time regression. I looked at it and saw
that there indeed was devirtualization happening that was not previously
caught, so now it reruns the CGSCC pipeline on some SCCs, which is WAI.
The initial land assumed CallBase WeakTrackingVHs would always be
CallBases, but they can be RAUW'd with undef.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89587
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.
This fixes some tests testing this exact behavior in the legacy PM.
Instead of checking WeakTrackingVHs for CallBases at the very beginning
and end of the pass it wraps, check every time
updateCGAndAnalysisManagerForPass() is called.
check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).
http://llvm-compile-time-tracker.com/?config=O3&stat=instructions&remote=aeubanks
shows that 7zip has ~1% compile time regression. I looked at it and saw
that there indeed was devirtualization happening that was not previously
caught, so now it reruns the CGSCC pipeline on some SCCs, which is WAI.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89587
ConstantOffsetPtrs contains mappings from a Value to a base pointer and
an offset. The offset is typed and has a size, and at least when dealing
with ptrtoint, it could happen that we had a mapping from a ptrtoint
with type i32 to an offset with type i16. This could later cause
problems, showing up in PR 47969 and PR 38500.
In PR 47969 we ended up in an assert complaining that trunc i16 to i16
is invalid and in Pr 38500 that a cmp on an i32 and i16 value isn't
valid.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D90610
SCEV makes a logical mistake when handling EitherMayExit in
case when both conditions must be met to exit the loop. The
mistake looks like follows: "if condition `A` fails within at most `X` first
iterations, and `B` fails within at most `Y` first iterations, then `A & B`
fails at most within `min (X, Y)` first iterations". This is wrong, because
both of them must fail at the same time.
Simple example illustrating this is following: we have an IV with step 1,
condition `A` = "IV is even", condition `B` = "IV is odd". Both `A` and `B`
will fail within first two iterations. But it doesn't mean that both of them
will fail within first two first iterations at the same time, which would mean
that IV is neither even nor odd at the same time within first 2 iterations.
We can only do so for known exact BE counts, but not for max.
Differential Revision: https://reviews.llvm.org/D91942
Reviewed By: nikic
Handling of `and` and `or` vastly uses copy-paste. Factored out into
a helper function as preparation step for further fix (see PR48225).
Differential Revision: https://reviews.llvm.org/D91864
Reviewed By: nikic
We are doing a sextOrTrunc directly afterwards, so this seems
useless. There is a multiplication in between, but truncating
before or after the multiplication should not make a difference.
Instead of requiring the caller to initialize the DecomposedGEP
structure and then passing it in by reference, make
DecomposeGEPExpression() responsible for initializing and returning
the structure.
Use DecompGEP1.Offset instead of GEP1BaseOffset, etc. I found the
asymmetry of modifying DecompGEP1.VarIndices, but not modifying
DecompGEP1.Offset odd here.
This change introduces a new IR intrinsic named `llvm.pseudoprobe` for pseudo-probe block instrumentation. Please refer to https://reviews.llvm.org/D86193 for the whole story.
A pseudo probe is used to collect the execution count of the block where the probe is instrumented. This requires a pseudo probe to be persisting. The LLVM PGO instrumentation also instruments in similar places by placing a counter in the form of atomic read/write operations or runtime helper calls. While these operations are very persisting or optimization-resilient, in theory we can borrow the atomic read/write implementation from PGO counters and cut it off at the end of compilation with all the atomics converted into binary data. This was our initial design and we’ve seen promising sample correlation quality with it. However, the atomics approach has a couple issues:
1. IR Optimizations are blocked unexpectedly. Those atomic instructions are not going to be physically present in the binary code, but since they are on the IR till very end of compilation, they can still prevent certain IR optimizations and result in lower code quality.
2. The counter atomics may not be fully cleaned up from the code stream eventually.
3. Extra work is needed for re-targeting.
We choose to implement pseudo probes based on a special LLVM intrinsic, which is expected to have most of the semantics that comes with an atomic operation but does not block desired optimizations as much as possible. More specifically the semantics associated with the new intrinsic enforces a pseudo probe to be virtually executed exactly the same number of times before and after an IR optimization. The intrinsic also comes with certain flags that are carefully chosen so that the places they are probing are not going to be messed up by the optimizer while most of the IR optimizations still work. The core flags given to the special intrinsic is `IntrInaccessibleMemOnly`, which means the intrinsic accesses memory and does have a side effect so that it is not removable, but is does not access memory locations that are accessible by any original instructions. This way the intrinsic does not alias with any original instruction and thus it does not block optimizations as much as an atomic operation does. We also assign a function GUID and a block index to an intrinsic so that they are uniquely identified and not merged in order to achieve good correlation quality.
Let's now look at an example. Given the following LLVM IR:
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
br i1 %cmp, label %bb1, label %bb2
bb1:
br label %bb3
bb2:
br label %bb3
bb3:
ret void
}
```
The instrumented IR will look like below. Note that each `llvm.pseudoprobe` intrinsic call represents a pseudo probe at a block, of which the first parameter is the GUID of the probe’s owner function and the second parameter is the probe’s ID.
```
define internal void @foo2(i32 %x, void (i32)* %f) !dbg !4 {
bb0:
%cmp = icmp eq i32 %x, 0
call void @llvm.pseudoprobe(i64 837061429793323041, i64 1)
br i1 %cmp, label %bb1, label %bb2
bb1:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 2)
br label %bb3
bb2:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 3)
br label %bb3
bb3:
call void @llvm.pseudoprobe(i64 837061429793323041, i64 4)
ret void
}
```
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D86490
When constructing a MemoryLocation by hand, require that a
LocationSize is explicitly specified. D91649 will split up
LocationSize::unknown() into two different states, and callers
should make an explicit choice regarding the kind of MemoryLocation
they want to have.
Similarly to assumes and guards deoptimize intrinsics are
marked as writing to ensure proper control dependencies
but they never modify any particular memory location.
Differential Revision: https://reviews.llvm.org/D91658
Instead of separately passing pointer and size, make use of
MemoryLocation. This allows us to also reuse all the existing
logic for determining the MemoryLocation correponding to an
instruction or call argument.
Not quite NFC because used locations may be more precise in some
cases.
The `dso_local_equivalent` constant is a wrapper for functions that represents a
value which is functionally equivalent to the global passed to this. That is, if
this accepts a function, calling this constant should have the same effects as
calling the function directly. This could be a direct reference to the function,
the `@plt` modifier on X86/AArch64, a thunk, or anything that's equivalent to the
resolved function as a call target.
When lowered, the returned address must have a constant offset at link time from
some other symbol defined within the same binary. The address of this value is
also insignificant. The name is leveraged from `dso_local` where use of a function
or variable is resolved to a symbol in the same linkage unit.
In this patch:
- Addition of `dso_local_equivalent` and handling it
- Update Constant::needsRelocation() to strip constant inbound GEPs and take
advantage of `dso_local_equivalent` for relative references
This is useful for the [Relative VTables C++ ABI](https://reviews.llvm.org/D72959)
which makes vtables readonly. This works by replacing the dynamic relocations for
function pointers in them with static relocations that represent the offset between
the vtable and virtual functions. If a function is externally defined,
`dso_local_equivalent` can be used as a generic wrapper for the function to still
allow for this static offset calculation to be done.
See [RFC](http://lists.llvm.org/pipermail/llvm-dev/2020-August/144469.html) for more details.
Differential Revision: https://reviews.llvm.org/D77248
These are all lightweight to compute and helps avoid issues with Known being used to hold both the shift amount and then the shifted result.
Minor cleanup for D90479.
The lookup logic is also reusable.
Also refactored the API to return the loaded vector - this makes it more
clear what state it is in in the case of error (as it won't be
returned).
Differential Revision: https://reviews.llvm.org/D91759
The GEP aliasing implementation currently has two pieces of code
that solve two different subsets of the same basic problem: If you
have GEPs with offsets 4*x + 0 and 4*y + 1 (assuming access size 1),
then they do not alias regardless of whether x and y are the same.
One implementation is in aliasSameBasePointerGEPs(), which looks at
this in a limited structural way. It requires both GEP base pointers
to be exactly the same, then (optionally) a number of equal indexes,
then an unknown index, then a non-equal index into a struct. This
set of limitations works, but it's overly restrictive and hides the
core property we're trying to exploit.
The second implementation is part of aliasGEP() itself and tries to
find a common modulus in the scales, so it can then check that the
constant offset doesn't overlap under modular arithmetic. The second
implementation has the right idea of what the general problem is,
but effectively only considers power of two factors in the scales
(while aliasSameBasePointerGEPs also works with non-pow2 struct sizes.)
What this patch does is to adjust the aliasGEP() implementation to
instead find the largest common factor in all the scales (i.e. the GCD)
and use that as the modulus.
Differential Revision: https://reviews.llvm.org/D91027
Constant hoisting may hide the constant value behind bitcast for And's
operand. Track down the constant to make the BFI result consistent
regardless of hoisting.
Differential Revision: https://reviews.llvm.org/D91450
aliasGEP() currently implements some special handling for the case
where all variable offsets are positive, in which case the constant
offset can be taken as the minimal offset. However, it does not
perform the same handling for the all-negative case. This means that
the alias-analysis result between two GEPs is asymmetric:
If GEP1 - GEP2 is all-positive, then GEP2 - GEP1 is all-negative,
and the first will result in NoAlias, while the second will result
in MayAlias.
Apart from producing sub-optimal results for one order, this also
violates our caching assumption. In particular, if BatchAA is used,
the cached result depends on the order of the GEPs in the first query.
This results in an inconsistency in BatchAA and AA results, which
is how I noticed this issue in the first place.
Differential Revision: https://reviews.llvm.org/D91383
- In certain cases, a generic pointer could be assumed as a pointer to
the global memory space or other spaces. With a dedicated target hook
to query that address space from a given value, infer-address-space
pass could infer and propagate that to all its users.
Differential Revision: https://reviews.llvm.org/D91121
This is a cut down version of 1ec6e1 which was reverted due to a compile time issue. The key changes made from that patch: 1) only infer the flags needed along each path, 2) be careful to preserve order of checks, and 3) avoid computing NW flags at all since we need to prove the stronger property (does not cross 0) in the caller anyways.
Assuming this doesn't trip regressions, I'm going to try weakening (1). My end objective is to move flag inference into addrec construction. If I can't weaken (1) without compile time impact, I'll have a problem.
This patch teaches the jump threading pass to call BPI->eraseBlock
when it folds a conditional branch.
Without this patch, BranchProbabilityInfo could end up with stale edge
probabilities for the basic block containing the conditional branch --
one edge probability with less than 1.0 and the other for a removed
edge.
This patch is one of the steps before we can safely re-apply D91017.
Differential Revision: https://reviews.llvm.org/D91511
In an effort to make code around flag determination more readable, and (possibly) prepare for a follow up change, factor out some of the flag detection logic. In the process, reduce the number of locations we mutate wrap flags by a couple.
Note that this isn't NFC. The old code tried for NSW xor (NUW || NW). This is, two different paths computed different sets of wrap flags. The new code will try for all three. The result is that some expressions end up with a few extra flags set.
ValueTracking was using a more powerful abs() implementation. Roll
it into KnownBits::abs(). Also add an exhaustive test for abs(),
in both the poisoning and non-poisoning variants.
The SCEV code for constructing GEP expressions currently assumes
that the addition of the base and all the offsets is nsw if the GEP
is inbounds. While the addition of the offsets is indeed nsw, the
addition to the base address is not, as the base address is
interpreted as an unsigned value.
Fix the GEP expression code to not assume nsw for the base+offset
calculation. However, do assume nuw if we know that the offset is
non-negative. With this, we use the same behavior as the
construction of GEP addrecs does. (Modulo the fact that we
disregard SCEV unification, as the pre-existing FIXME points out).
Differential Revision: https://reviews.llvm.org/D90648
When computing the known bits for a GEP, don't set the nsw flag
when adding an offset to an address. The nsw flag only applies to
pure offset additions (see also D90708).
The nsw flag is only used in a very minor way by the code, to the
point that I was not able to come up with a test case where it
makes a difference.
Differential Revision: https://reviews.llvm.org/D90637
For querying divergence the chained analysis passes are required
to be alive, for instance LoopInfoWrapperPass.
Ensure that by using addRequiredTransitive.
Differential Revision: https://reviews.llvm.org/D91335
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
The GEP aliasing code currently checks for the GEP decomposition
limit being reached (i.e., we did not reach the "final" underlying
object). As far as I can see, these checks are not necessary. It is
perfectly fine to work with a GEP whose base can still be further
decomposed.
Looking back through the commit history, these checks were originally
introduced in 1a444489e9. However, I
believe that the problem this was intended to address was later
properly fixed with 1726fc698c, and
the checks are no longer necessary since then (and were not the
right fix in the first place).
Differential Revision: https://reviews.llvm.org/D91010
Summary:
Expand the print-memoryssa and print<memoryssa> passes with a new hidden
option -cfg-dot-mssa that names a file. When set, a dot-cfg style file
will be generated into the named file with the memoryssa comments retained
and those blocks containing them shown in light pink. The option does
nothing in isolation.
Author: Jamie Schmeiser <schmeise@ca.ibm.com>
Reviewed By: asbirlea (Alina Sbirlea), dblaikie (David Blaikie)
Differential Revision: https://reviews.llvm.org/D90638
Summary:
Expand the print-memoryssa and print<memoryssa> passes with a new hidden
option -cfg-dot-mssa that names a file. When set, a dot-cfg style file
will be generated into the named file with the memoryssa comments retained
and those blocks containing them shown in light pink. The option does
nothing in isolation.
Author: Jamie Schmeiser <schmeise@ca.ibm.com>
Reviewed By: asbirlea (Alina Sbirlea), dblaikie (David Blaikie)
Differential Revision: https://reviews.llvm.org/D90638
A piece of logic of `isLoopInvariantExitCondDuringFirstIterations` is actually
a generalized predicate monotonicity check. This patch moves it into the
corresponding method and generalizes it a bit.
Differential Revision: https://reviews.llvm.org/D90395
Reviewed By: apilipenko
Previously the inliner did a bit of a hack by adding ref edges for all
new edges introduced by performing an inline before calling
updateCGAndAnalysisManagerForPass(). This was because
updateCGAndAnalysisManagerForPass() didn't handle new non-trivial call
edges.
This adds handling of non-trivial call edges to
updateCGAndAnalysisManagerForPass(). The inliner called
updateCGAndAnalysisManagerForFunctionPass() since it was handling adding
newly introduced edges (so updateCGAndAnalysisManagerForPass() would
only have to handle promotion), but now it needs to call
updateCGAndAnalysisManagerForCGSCCPass() since
updateCGAndAnalysisManagerForPass() is now handling the new call edges
and function passes cannot add new edges.
We follow the previous path of adding trivial ref edges then letting promotion
handle changing the ref edges to call edges and the CGSCC updates. So
this still does not allow adding call edges that result in an addition
of a non-trivial ref edge.
This is in preparation for better detecting devirtualization. Previously
since the inliner itself would add ref edges,
updateCGAndAnalysisManagerForPass() would think that promotion and thus
devirtualization had happened after any sort of inlining.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D91046
This reverts commits:
* [LoopVectorizer] NFCI: Calculate register usage based on TLI.getTypeLegalizationCost.
b873aba394.
* [LoopVectorizer] Silence warning in GetRegUsage.
9ff701100a.
Another cleanup for D90479 - handle the Known Ones/Zeros in a single callback, which will make it much easier to jump over to the KnownBits shift handling.
We have a frequent pattern where we're merging two KnownBits to get the common/shared bits, and I just fell for the gotcha where I tried to use the & operator to merge them........
This is more accurate than dividing the bitwidth based on the element count by the
maximum register size, as it can just reuse whatever has been calculated for
legalization of these types.
This change is also necessary when calculating register usage for scalable vectors, where
the legalization of these types cannot be done based on the widest register size, because
that does not take the 'vscale' component into account.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D91059
Lift limitation on step being `+/- 1`. In fact, the only thing it is needed for
is proving no-self-wrap. We can instead check this flag directly.
Theoretically it can increase the scope of the transform, but I could not
construct such test easily.
Differential Revision: https://reviews.llvm.org/D91126
Reviewed By: apilipenko
This changes the definition of t2DoLoopStart from
t2DoLoopStart rGPR
to
GPRlr = t2DoLoopStart rGPR
This will hopefully mean that low overhead loops are more tied together,
and we can more reliably generate loops without reverting or being at
the whims of the register allocator.
This is a fairly simple change in itself, but leads to a number of other
required alterations.
- The hardware loop pass, if UsePhi is set, now generates loops of the
form:
%start = llvm.start.loop.iterations(%N)
loop:
%p = phi [%start], [%dec]
%dec = llvm.loop.decrement.reg(%p, 1)
%c = icmp ne %dec, 0
br %c, loop, exit
- For this a new llvm.start.loop.iterations intrinsic was added, identical
to llvm.set.loop.iterations but produces a value as seen above, gluing
the loop together more through def-use chains.
- This new instrinsic conceptually produces the same output as input,
which is taught to SCEV so that the checks in MVETailPredication are not
affected.
- Some minor changes are needed to the ARMLowOverheadLoop pass, but it has
been left mostly as before. We should now more reliably be able to tell
that the t2DoLoopStart is correct without having to prove it, but
t2WhileLoopStart and tail-predicated loops will remain the same.
- And all the tests have been updated. There are a lot of them!
This patch on it's own might cause more trouble that it helps, with more
tail-predicated loops being reverted, but some additional patches can
hopefully improve upon that to get to something that is better overall.
Differential Revision: https://reviews.llvm.org/D89881
Our range computation methods benefit from no-wrap flags. But if the ranges
were first computed before the flags were set, the cached range will be too
pessimistic.
We need to drop cached ranges whenever we sharpen AddRec's no wrap flags.
Differential Revision: https://reviews.llvm.org/D89847
Reviewed By: fhahn
This patch simplifies BranchProbabilityInfo by changing the type of
Probs.
Without this patch:
DenseMap<Edge, BranchProbability> Probs
maps an ordered pair of a BasicBlock* and a successor index to an edge
probability.
With this patch:
DenseMap<const BasicBlock *, SmallVector<BranchProbability, 2>> Probs
maps a BasicBlock* to a vector of edge probabilities.
BranchProbabilityInfo has a property that for a given basic block, we
either have edge probabilities for all successors or do not have any
edge probability at all. This property combined with the current map
type leads to a somewhat complicated algorithm in eraseBlock to erase
map entries one by one while increasing the successor index.
The new map type allows us to remove the all edge probabilities for a
given basic block in a more intuitive manner, namely:
Probs.erase(BB);
Differential Revision: https://reviews.llvm.org/D91017
The distinction between StructOffset and OtherOffset has been
originally introduced by 82069c44ca,
which applied different reasoning to both offset kinds. However,
this distinction was not actually correct, and has been fixed by
c84e77aeae. Since then, we only ever
consider the sum StructOffset + OtherOffset, so we may as well
store it in that form directly.
Instead of performing the multiplication in double the bit width
and using active bits to determine overflow, use the existing
smul_ov() APInt method to detect overflow.
The smul_ov() implementation is not particularly efficient, but
it's still better than doing this a wide, usually 128-bit, type.
If there are too many uses, we should directly return -- there's
no point in inspecting the remaining uses in the worklist, as we
have to conservatively assume a capture anyway. This also means
that tooManyUses() gets called exactly once, rather than
potentially many times.
This restores the behavior prior to e9832dfdf3,
where this was accidentally changed while moving the AddUses logic
into a closure, thus making the return a return from the closure
rather than the whole function.
If the same value is used multiple times in the same instruction,
CaptureTracking may end up reporting the wrong use as being captured,
and/or report the same use as being captured multiple times.
Make sure that all checks take the use operand number into account,
rather than performing unreliable comparisons against the used value.
I'm not sure whether this can cause any problems in practice, but
at least some capture trackers (ArgUsesTracker, AACaptureUseTracker)
do care about which call argument is captured.
The patch simplifies BranchProbabilityInfo::getEdgeProbability by
handling two cases separately, depending on whether we have edge
probabilities.
- If we have edge probabilities, then add up probabilities for
successors being equal to Dst.
- Otherwise, return the number of ocurrences divided by the total
number of successors.
Differential Revision: https://reviews.llvm.org/D90980
Avoid an expensive isKnownNonZero() call - this is a small cleanup before moving the extra NSW functionality from computeKnownBitsMul into KnownBits::computeForMul.
A new method is introduced to allow bulk copy of outgoing edge
probabilities from one block to another. This can be useful when
a block is cloned from another one and we do not know if there
are edge probabilities set for the original block or not.
Copying outside of the BranchProbabilityInfo class makes the user
unconditionally set the cloned block's edge probabilities even if
they are unset for the original block.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D90839
BranchProbabilityInfo::eraseBlock() is a public method and
can be called without deleting the block itself.
This method is made remove the correspondent tracking handle
from BranchProbabilityInfo::Handles along with
the probabilities of the block. Handles.erase() call is moved
to eraseBlock().
In setEdgeProbability() we need to add the block handle only once.
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D90838
This refactoring allows to eliminate the MaxSuccIdx map
proposed in the commit a7b662d0.
The idea is to remove probabilities for a block BB for
all its successors one by one from first, second, ...
till N-th until they are defined in Probs. This works
because probabilities for the block are set at once for
all its successors from number 0 to N-1 and the rest
are removed if there were stale probs.
The protected method setEdgeProbability(), which set
probabilities for individual successor, is removed.
This makes it clear that the probabilities are set in
bulk by the public method with the same name.
Reviewed By: kazu, MaskRay
Differential Revision: https://reviews.llvm.org/D90837
CapturesBefore tracker has an overly restrictive dominates check when
the `BeforeHere` and the capture point are in different basic blocks.
All we need to check is that there is no path from the capture point
to `BeforeHere` (which is less stricter than the dominates check).
See added testcase in one of the users of CapturesBefore.
Reviewed-By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90688
This patch adds the llvm.loop.mustprogress loop metadata. This is to be
added to loops where the frontend language requires that the loop makes
observable interactions with the environment. This is the loop-level
equivalent to the function attribute `mustprogress` defined in D86233.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D88464
If getClobberingMemoryAccess() is called with an explicit
MemoryLocation, but the starting access happens to be a call, the
provided location is currently ignored, and alias analysis queries
will be performed against the call instruction instead. Something
similar happens if the starting access is a load with a MemoryDef.
Change the implementation to not set Q.Inst in the first place if
we want to perform a MemoryLocation-based query, to make sure it
can't be turned into an Instruction-based query along the way...
Additionally, remove the special handling that lifetime.start
intrinsics currently get. They simply report NoAlias for clobbers
between lifetime.start and other calls, but that's obviously not
right if the other call is something like a memset or memcpy. The
default behavior we get from getModRefInfo() will already do the
right thing here.
Differential Revision: https://reviews.llvm.org/D88782
```
// The legacy PM CGPassManager discovers SCCs this way:
for function in the source order
tarjanSCC(function)
// While the new PM CGSCCPassManager does:
for function in the reversed source order [1]
discover a reference graph SCC
build call graph SCCs inside the reference graph SCC
```
In the common cases, reference graph ~= call graph, the new PM order is
undesired because for `a | b | c` (3 independent functions), the new PM will
process them in the reversed order: c, b, a. If `a <-> b <-> c`, we can see
that `-print-after-all` will report the sole SCC as `scc: (c, b, a)`.
This patch corrects the iteration order. The discovered SCC order will match
the legacy PM in the common cases.
For some tests (`Transforms/Inline/cgscc-*.ll` and
`unittests/Analysis/CGSCCPassManagerTest.cpp`), the behaviors are dependent on
the SCC discovery order and there are too many check lines for the particular
order. This patch simply reverses the function order to avoid changing too many
check lines.
Differential Revision: https://reviews.llvm.org/D90566
This reverts the revert commit 408c4408fa.
This version of the patch includes a fix for a crash caused by
treating ICmp/FCmp constant expressions as instructions.
Original message:
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
Strengthening nowrap flags is relatively expensive. Make sure we
only do it if we're actually going to use the flags -- we don't
use them for many recursive invocations. Additionally, if we're
reusing an existing SCEV node, there's no point in trying to
strengthen the flags if we don't have any new baseline facts.
This change falls slightly short of being NFC, because the way
flags during add+addrec / mul+addrec folding are handled may be
more precise (as less operands are included in the calculation).
Instead of performing a sequence of pairwise additions, directly
construct a multi-operand add expression.
This should be NFC modulo any SCEV canonicalization deficiencies.
This reverts the revert commit a1b53db324.
This patch includes a fix for a reported issue, caused by
matchSelectPattern returning UMIN for selects of pointers in
some cases by looking to some connected casts.
For now, ensure integer instrinsics are only returned for selects of
ints or int vectors.
This reverts commit 1922570489.
This appears to cause a crash in the following example
a, b, c;
l() {
int e = a, f = l, g, h, i, j;
float *d = c, *k = b;
for (;;)
for (; g < f; g++) {
k[h] = d[i];
k[h - 1] = d[j];
h += e << 1;
i += e;
}
}
clang -cc1 -triple i386-unknown-linux-gnu -emit-obj -target-cpu pentium-m -O1 -vectorize-loops -vectorize-slp reduced.c
llvm::Type *llvm::Type::getWithNewBitWidth(unsigned int) const: Assertion `isIntOrIntVectorTy() && "Original type expected to be a vector of integers or a scalar integer."' failed.
This option was hardcoded to 32. Changing this as a CL option since we
have seen some cases downstream where increasing this limit allows us to
disprove reachability.
Reviewed-By: jdoerfert
Differential Revision: https://reviews.llvm.org/D90487
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This is functionally-identical to the previous implementation,
just using a generic interface to do that instead of hand-rolled one,
with caching as a bonus. Thought the sinking is still recursive..
Note that SCEVRewriteVisitor<>'s default implementations
don't preserve NoWrap flags on Add/Mul (but does on AddRec!),
but here we know we can preserve them,
so `visitAddExpr()`/`visitMulExpr()` are specialized.
On some targets, like AArch64, vector selects can be efficiently lowered
if the vector condition is a compare with a supported predicate.
This patch adds a new argument to getCmpSelInstrCost, to indicate the
predicate of the feeding select condition. Note that it is not
sufficient to use the context instruction when querying the cost of a
vector select starting from a scalar one, because the condition of the
vector select could be composed of compares with different predicates.
This change greatly improves modeling the costs of certain
compare/select patterns on AArch64.
I am also planning on putting up patches to make use of the new argument in
SLPVectorizer & LV.
Reviewed By: dmgreen, RKSimon
Differential Revision: https://reviews.llvm.org/D90070
If we've got an SCEVPtrToIntExpr(op), where op is not an SCEVUnknown,
we want to sink the SCEVPtrToIntExpr into an operand,
so that the operation is performed on integers,
and eventually we end up with just an `SCEVPtrToIntExpr(SCEVUnknown)`.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D89692
And use it to model LLVM IR's `ptrtoint` cast.
This is essentially an alternative to D88806, but with no chance for
all the problems it caused due to having the cast as implicit there.
(see rG7ee6c402474a2f5fd21c403e7529f97f6362fdb3)
As we've established by now, there are at least two reasons why we want this:
* It will allow SCEV to actually model the `ptrtoint` casts
and their operands, instead of treating them as `SCEVUnknown`
* It should help with initial problem of PR46786 - this should eventually allow us
to not loose pointer-ness of an expression in more cases
As discussed in [[ https://bugs.llvm.org/show_bug.cgi?id=46786 | PR46786 ]], in principle,
we could just extend `SCEVUnknown` with a `is ptrtoint` cast, because `ScalarEvolution::getPtrToIntExpr()`
should sink the cast as far down into the expression as possible,
so in the end we should always end up with `SCEVPtrToIntExpr` of `SCEVUnknown`.
But i think that it isn't the best solution, because it doesn't really matter
from memory consumption side - there probably won't be *that* many `SCEVPtrToIntExpr`s
for it to matter, and it allows for much better discoverability.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D89456
Some architectures do not have general vector select instructions (e.g.
AArch64). But some cmp/select patterns can be vectorized using other
instructions/intrinsics.
One example is using min/max instructions for certain patterns.
This patch updates the cost calculations for selects in the SLP
vectorizer to consider using min/max intrinsics.
This patch does not change SLP vectorizer's codegen itself to actually
generate those intrinsics, but relies on the backends to lower the
vector cmps & selects. This keeps things simple on the SLP side and
works well in practice for AArch64.
This exposes additional SLP vectorization opportunities in some
benchmarks on AArch64 (-O3 -flto).
Metric: SLP.NumVectorInstructions
Program base slp diff
test-suite...ications/JM/ldecod/ldecod.test 502.00 697.00 38.8%
test-suite...ications/JM/lencod/lencod.test 1023.00 1414.00 38.2%
test-suite...-typeset/consumer-typeset.test 56.00 65.00 16.1%
test-suite...6/464.h264ref/464.h264ref.test 804.00 822.00 2.2%
test-suite...006/453.povray/453.povray.test 3335.00 3357.00 0.7%
test-suite...CFP2000/177.mesa/177.mesa.test 2110.00 2121.00 0.5%
test-suite...:: External/Povray/povray.test 2378.00 2382.00 0.2%
Reviewed By: RKSimon, samparker
Differential Revision: https://reviews.llvm.org/D89969
URem operations with constant power-of-2 second operands are modeled as
such. This patch on its own has very little impact (e.g. no changes in
CodeGen for MultiSource/SPEC2000/SPEC2006 on X86 -O3 -flto), but I'll
soon post follow-up patches that make use of it to more accurately
determine the trip multiple.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D89821
When trying to prove that a memory access touches only dereferenceable memory across all iterations of a loop, use the maximum exit count rather than an exact one. In many cases we can't prove exact exit counts whereas we can prove an upper bound.
The test included is for a single exit loop with a min(C,V) exit count, but the true motivation is support for multiple exits loops. It's just really hard to write a test case for multiple exits because the vectorizer (the primary user of this API), bails far before this. For multiple exits, this allows a mix of analyzeable and unanalyzable exits when only analyzeable exits are needed to prove deref.
Use LocationSize::upperBound instead of precise since we only know an upper bound on the number of bytes read/written.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D89885
This reverts commit e038b60d91.
This reverts commit a0d84d8031.
This revert was a mistake. The reason of the failures was
"Use uint64_t for branch weights instead of uint32_t"
Differential Revision: https://reviews.llvm.org/D87832
When we need to prove implication of expressions of different type width,
the default strategy is to widen everything to wider type and prove in this
type. This does not interact well with AddRecs with negative steps and
unsigned predicates: such AddRec will likely not have a `nuw` flag, and its
`zext` to wider type will not be an AddRec. In contraty, `trunc` of an AddRec
in some cases can easily be proved to be an `AddRec` too.
This patch introduces an alternative way to handling implications of different
type widths. If we can prove that wider type values actually fit in the narrow type,
we truncate them and prove the implication in narrow type.
The return was due to revert of underlying patch that this one depends on.
Unit test temporarily disabled because the required logic in SCEV is switched
off due to compile time reasons.
Differential Revision: https://reviews.llvm.org/D89548
The types of SEH aren't x86(-32) vs x64 but rather stack-based exception chaining
vs table-based exception handling. x86-32 is the only arch for which Windows
uses the former. 32-bit ARM would use what is called Win64SEH today, which
is a bit confusing so instead let's just rename it to be a bit more clear.
Reviewed By: compnerd, rnk
Differential Revision: https://reviews.llvm.org/D90117
We can sharpen the range of a AddRec if we know that it does not
self-wrap and know the symbolic iteration count in the loop. If we can
evaluate the value of AddRec on the last iteration and prove that at least
one its intermediate value lies between start and end, then no-wrap flag
allows us to conclude that all of them also lie between start and end. So
the estimate of range can be improved to union of ranges of start and end.
Switched off by default, can be turned on by flag.
Differential Revision: https://reviews.llvm.org/D89381
Reviewed By: lebedev.ri, nikic
This patch ensures that BranchProbabilityInfo::eraseBlock(BB) deletes
all entries in Probs associated with with BB.
Without this patch, stale entries for BB may remain in Probs after
eraseBlock(BB), leading to a situation where a newly created basic
block has an edge probability associated with it even before the pass
responsible for creating the basic block adds any edge probability to
it.
Consider the current implementation of eraseBlock(BB):
for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
auto MapI = Probs.find(std::make_pair(BB, I.getSuccessorIndex()));
if (MapI != Probs.end())
Probs.erase(MapI);
}
Notice that it uses succ_begin(BB) and succ_end(BB), which are based
on BB->getTerminator(). This means that if the terminator changes
between calls to setEdgeProbability and eraseBlock, then we may not
examine all pairs associated with BB.
This is exactly what happens in MaybeMergeBasicBlockIntoOnlyPred,
which merges basic blocks A into B if A is the sole predecessor of B,
and B is the sole successor of A. It replaces the terminator of A
with UnreachableInst before (indirectly) calling eraseBlock(A).
The patch fixes the problem by keeping track of all edge probablities
entered with setEdgeProbability in a map from BasicBlock* to a
successor index.
Differential Revision: https://reviews.llvm.org/D90272
This reverts commit c6ca26c0bf.
This breaks stage2 builds due to hitting this assert:
```
Assertion failed: (WeightSum <= UINT32_MAX && "Expected weights to scale down to 32 bits"), function calcMetadataWeights
```
when compiling AArch64RegisterBankInfo.cpp in LLVM.
This patch is to add the support of the value tracking of the alignment assume bundle.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D88669
Even if the exact exit count is unknown, we can still prove that this
exit will not be taken. If we can prove that the predicate is monotonic,
fulfilled on first & last iteration, and no overflow happened in between,
then the check can be removed.
Differential Revision: https://reviews.llvm.org/D87832
Reviewed By: apilipenko
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
This is a long-delayed follow-up to
5e5b85098d.
`TempMDNode` includes a bunch of machinery for RAUW, and should only be
used when necessary. RAUW wasn't being used in any of these cases... it
was just a placeholder for a self-reference.
Where the real node was using `MDNode::getDistinct`, just replace the
temporary argument with `nullptr`.
Where the real node was using `MDNode::get`, the `replaceOperandWith`
call was "promoting" the node to a distinct one implicitly due to
self-reference detection in `MDNode::handleChangedOperand`. The
`TempMDNode` was serving a purpose by delaying uniquing, but it's way
simpler to just call `MDNode::getDistinct` in the first place.
Note that using a self-reference at all in these places is a hold-over
from before `distinct` metadata existed. It was an old trick to create
distinct nodes. It would be intrusive to change, including bitcode
upgrades, etc., and it's harmless so I'm not sure there's much value in
removing it from existing schemas. After this commit it still has a tiny
memory cost (in the extra metadata operand) but no more overhead in
construction.
Differential Revision: https://reviews.llvm.org/D90079
We do not need to use the implicit cast here. We can instead can rely on
a comparison between two TypeSize objects instead. This algorithm will
work fine with scalable vectors.
Reviewed By: DavidTruby
Differential Revision: https://reviews.llvm.org/D90146
The warning would fire when calling isDereferenceableAndAlignedInLoop
with a scalable load. Calling isDereferenceableAndAlignedInLoop with a
scalable load would result in the use of the now deprecated implicit
cast of TypeSize to uint64_t through the overloaded operator.
This patch fixes this issue by:
- no longer considering vector loads as candidates in
canVectorizeWithIfConvert. This doesn't make sense in the context of
identifying scalar loads to vectorize.
- making use of getFixedSize inside isDereferenceableAndAlignedInLoop --
this removes the dependency on the deprecated interface, and will
trigger an assertion error if the function is ever called with a
scalable type.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D89798
Same change as 0dda633317, but for
mul expressions. We want to first fold any constant operans and
then strengthen the nowrap flags, as we can compute more precise
flags at that point.
Establish parity with the handling of add expressions, by always
constant folding mul expression operands before checking the depth
limit (this is a non-recursive simplification). The code was already
unconditionally constant folding the case where all operands were
constants, but was not folding multiple constant operands together
if there were also non-constant operands.
This requires picking out a different demonstration for depth-based
folding differences in the limit-depth.ll test.
Separate out the code handling constant folding into a separate
block, that is independent of other folds that need a constant
first operand. Also make some minor adjustments to make the
constant folding look nearly identical to the same code in
getAddExpr().
The only reason this change is not strictly NFC is that the
C1*(C2+V) fold is moved below the constant folding, which means
that it now also applies to C1*C2*(C3+V), as it should.
We should first try to constant fold the add expression and only
strengthen nowrap flags afterwards. This allows us to determine
stronger flags if e.g. only two operands are left after constant
folding (and thus "guaranteed no wrap region" code applies) or the
resulting operands are non-negative and thus nsw->nuw strengthening
applies.
This extends D78430 to solve cases like:
https://llvm.org/PR47858
There are still missed opportunities shown in the tests,
and as noted in the earlier patches, we have related
functionality in InstCombine, so we may want to extend
other folds in a similar way.
A semi-random sampling of test diff proofs in this patch:
https://rise4fun.com/Alive/sS4C
Rather than performing the cache lookup with both possible orders
for the locations, use the same canonicalization as the other
AliasCache lookups in BasicAA.
Any time we insert a block into VisitedPhiBBs, previously cached
values may no longer be valid for the recursive alias queries. As
such, perform them using an empty AAQueryInfo.
Note that if we recurse to the same phi, the block will already
be inserted, so we reuse the old AAQueryInfo, and thus still
protect against infinite recursion.
This problem can appear with with an without BatchAA, but is more
likely to occur with BatchAA, as more values are cached.
Differential Revision: https://reviews.llvm.org/D90066
I'm not sure whether this can cause actual non-determinism in the
compiler output, but at least it causes non-determinism in the
statistics collected by BasicAA.
Use SetVector to have a predictable iteration order.
As discussed in D89952,
instcombine can sometimes find a way to reduce similar patterns,
but it is incomplete.
InstSimplify uses the computeConstantRange() ValueTracking analysis
via simplifyICmpWithConstant(), so we just need to fill in the max
value of cttz to process any "icmp pred cttz(X), C" pattern (the
min value is initialized to zero automatically).
https://alive2.llvm.org/ce/z/Z_SLWZ
Follow-up to D89976.
As discussed in D89952,
instcombine can sometimes find a way to reduce similar patterns,
but it is incomplete.
InstSimplify uses the computeConstantRange() ValueTracking analysis
via simplifyICmpWithConstant(), so we just need to fill in the max
value of ctlz to process any "icmp pred ctlz(X), C" pattern (the
min value is initialized to zero automatically).
Follow-up to D89976.
As discussed in D89952,
instcombine can sometimes find a way to reduce similar patterns,
but it is incomplete.
InstSimplify uses the computeConstantRange() ValueTracking analysis
via simplifyICmpWithConstant(), so we just need to fill in the max
value of ctpop to process any "icmp pred ctpop(X), C" pattern (the
min value is initialized to zero automatically).
Differential Revision: https://reviews.llvm.org/D89976
We want to have a caching version of symbolic BE exit count
rather than recompute it every time we need it.
Differential Revision: https://reviews.llvm.org/D89954
Reviewed By: nikic, efriedma
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.
This fixes some tests testing this exact behavior in the legacy PM.
This piggybacks off of updateCGAndAnalysisManagerForPass()'s detection
of promoted ref to call edges.
This supercedes one of the previous mechanisms to detect
devirtualization by keeping track of potentially promoted call
instructions via WeakTrackingVHs.
There is one more existing way of detecting devirtualization, by
checking if the number of indirect calls has decreased and the number of
direct calls has increased in a function. It handles cases where calls
to functions without definitions are promoted, and some tests rely on
that. LazyCallGraph doesn't track edges to functions without
definitions so this part can't be removed in this change.
check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D89587
Visited phi blocks only need to be added for the duration of the
recursive alias queries, they should not leak into following code.
Once again, while this also improves analysis precision, this is
mainly intended to clarify the applicability scope of VisitedPhiBBs.
We only need the VisitedPhiBBs to disambiguate comparisons of
values from two different loop iterations. If we're comparing
two phis from the same basic block in lock-step, the compared
values will always be on the same iteration.
While this also increases precision, this is mainly intended
to clarify the scope of VisitedPhiBBs.
This improves simplifications for pattern `icmp (X+Y), (X+Z)` -> `icmp Y,Z`
if only one of the operands has NSW set, e.g.:
icmp slt (x + 0), (x +nsw 1)
We can still safely rewrite this to:
icmp slt 0, 1
because we know that the LHS can't overflow if the RHS has NSW set and
C1 < C2 && C1 >= 0, or C2 < C1 && C1 <= 0
This simplification is useful because ScalarEvolutionExpander which is used to
generate code for SCEVs in different loop optimisers is not always able to put
back NSW flags across control-flow, thus inhibiting CFG simplifications.
Differential Revision: https://reviews.llvm.org/D89317
Prior to this patch, computeKnownBits would only try to deduce trailing zeros
bits for getelementptrs. This patch adds the logic to treat geps as a series
of add * scaling factor.
Thanks to this patch, using a gep or performing an address computation
directly "by hand" (ptrtoint followed by adds and mul followed by inttoptr)
offers the same computeKnownBits information.
Previously, the "by hand" approach would have given more information.
This is related to https://llvm.org/PR47241.
Differential Revision: https://reviews.llvm.org/D86364
When we need to prove implication of expressions of different type width,
the default strategy is to widen everything to wider type and prove in this
type. This does not interact well with AddRecs with negative steps and
unsigned predicates: such AddRec will likely not have a `nuw` flag, and its
`zext` to wider type will not be an AddRec. In contraty, `trunc` of an AddRec
in some cases can easily be proved to be an `AddRec` too.
This patch introduces an alternative way to handling implications of different
type widths. If we can prove that wider type values actually fit in the narrow type,
we truncate them and prove the implication in narrow type.
Differential Revision: https://reviews.llvm.org/D89548
Reviewed By: fhahn
This reverts commit a10a64e7e3.
It broke polly/test/ScopInfo/NonAffine/non-affine-loop-condition-dependent-access_3.ll
The difference suggests that this may be a serious issue.
Fixed wrapping range case & proof methods reduced to constant range
checks to save compile time.
Differential Revision: https://reviews.llvm.org/D89381
The main tricky thing here is forward-declaring the enum:
we have to specify it's underlying data type.
In particular, this avoids the danger of switching over the SCEVTypes,
but actually switching over an integer, and not being notified
when some case is not handled.
I have updated most of such switches to be exaustive and not have
a default case, where it's pretty obvious to be the intent,
however not all of them.
Allow logging final rewards. A final reward is logged only once, and is
serialized as all-zero values, except for the last one.
Differential Revision: https://reviews.llvm.org/D89626
All existing SCEV cast types operate on integers.
D89456 will add SCEVPtrToIntExpr cast expression type.
I believe this is best for consistency.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D89455
This pattern was repeated a few times, and for some reason always
using insert or try_emplace, even though we know in advance that
we're looking for an existing entry and not trying to create a
new one.
It's not pretty, but probably better than modelling it
as an opaque SCEVUnknown, i guess.
It is relevant e.g. for the loop that was brought up in
https://bugs.llvm.org/show_bug.cgi?id=46786#c26
as an example of what we'd be able to better analyze
once SCEV handles `ptrtoint` (D89456).
But as it is evident, even if we deal with `ptrtoint` there,
we also fail to model such an `ashr`.
Also, modeling of mul-of-exact-shr/div could use improvement.
As per alive2:
https://alive2.llvm.org/ce/z/tnfZKd
```
define i8 @src(i8 %0) {
%2 = ashr exact i8 %0, 4
ret i8 %2
}
declare i8 @llvm.abs(i8, i1)
declare i8 @llvm.smin(i8, i8)
declare i8 @llvm.smax(i8, i8)
define i8 @tgt(i8 %x) {
%abs_x = call i8 @llvm.abs(i8 %x, i1 false)
%div = udiv exact i8 %abs_x, 16
%t0 = call i8 @llvm.smax(i8 %x, i8 -1)
%t1 = call i8 @llvm.smin(i8 %t0, i8 1)
%r = mul nsw i8 %div, %t1
ret i8 %r
}
```
Transformation seems to be correct!
This patch adds metadata !noundef and makes load instructions can optionally have it.
A load with !noundef always return a well-defined value (has no undef bit or isn't poison).
If the loaded value isn't well defined, the behavior is undefined.
This metadata can be used to encode the assumption from C/C++ that certain reads of variables should have well-defined values.
It is helpful for optimizing freeze instructions away, because freeze can be removed when its operand has well-defined value, and showing that a load from arbitrary location is well-defined is usually hard otherwise.
The same information can be encoded with llvm.assume with operand bundle; using metadata is chosen because I wasn't sure whether code motion can be freely done when llvm.assume is inserted from clang instead.
The existing codebase already is stripping unknown metadata when doing code motion, so using metadata is UB-safe as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89050
Aborts if we hit the max devirtualization iteration.
Will be useful for testing that changes to devirtualization don't cause
devirtualization to repeat passes more times than necessary.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D89519
It was reverted because of negative compile time impact. In this version,
less powerful proof methods are used (non-recursive reasoning only), and
scope limited to constant End values to avoid explision of complex proofs.
Differential Revision: https://reviews.llvm.org/D89381
TypeSize comparisons using overloaded operators should be replaced by
the new isKnownXY comparators when the operands can be fixed-length or
scalable vectors.
In ValueTracking there are several uses of the overloaded operators in
`isKnownNonZero` and `ComputeMultiple`. In the former we already bail
out on scalable vectors since we currently have no way to represent
DemandedElts, and the latter is operating on scalar integers, so we can
assume fixed-size in both instances.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D89387
We can sharpen the range of a AddRec if we know that it does not
self-wrap and know the symbolic iteration count in the loop. If we can
evaluate the value of AddRec on the last iteration and prove that at least
one its intermediate value lies between start and end, then no-wrap flag
allows us to conclude that all of them also lie between start and end. So
the estimate of range can be improved to union of ranges of start and end.
Differential Revision: https://reviews.llvm.org/D89381
Reviewed By: efriedma
Function isNonEscapingLocalObject is a static one within BasicAliasAnalysis.cpp.
It wraps around PointerMayBeCaptured of CaptureTracking, checking whether a pointer
is to a function-local object, which never escapes from the function.
Although at the moment, isNonEscapingLocalObject is used only by BasicAliasAnalysis,
its functionality can be used by other pass(es), one of which I will put up for review
very soon. Instead of copying the contents of this static function, I move it to llvm
scope, and place it amongst other functions with similar functionality in CaptureTracking.
The rationale for the location are:
- Pointer escape and pointer being captured are actually two sides of the same coin
- isNonEscapingLocalObject is wrapping around another function in CaptureTracking
Reviewed By: jdoerfert (Johannes Doerfert)
Differential Revision: https://reviews.llvm.org/D89465
While we haven't encountered an earth-shattering problem with this yet,
by now it is pretty evident that trying to model the ptr->int cast
implicitly leads to having to update every single place that assumed
no such cast could be needed. That is of course the wrong approach.
Let's back this out, and re-attempt with some another approach,
possibly one originally suggested by Eli Friedman in
https://bugs.llvm.org/show_bug.cgi?id=46786#c20
which should hopefully spare us this pain and more.
This reverts commits 1fb6104293,
7324616660,
aaafe350bb,
e92a8e0c74.
I've kept&improved the tests though.
Recently we started looking into sret parameters, though the issue could crop
up elsewhere. If the pointee type is opaque, we should not try to compute its
size because that leads to an assertion failure.
As being pointed out by @efriedma in
https://reviews.llvm.org/rGaaafe350bb65#inline-4883
of course we can't just call ptrtoint in sign-extending case
and be done with it, because it will zero-extend.
I'm not sure what i was thinking there.
This is very much not an NFC, however looking at the user of
BuildConstantFromSCEV() i'm not sure how to actually show that
it results in a different constant expression.
Much similar to the ZExt/Trunc handling.
Thanks goes to Alexander Richardson for nudging towards noticing this one proactively.
The appropriate (currently crashing) test coverage added.
This relands commit 1c021c64ca which was
reverted in commit 17cec6a11a because
an assertion was being triggered, since `BuildConstantFromSCEV()`
wasn't updated to handle the case where the constant we want to truncate
is actually a pointer. I was unsuccessful in coming up with a test case
where we'd end there with constant zext/sext of a pointer,
so i didn't handle those cases there until there is a test case.
Original commit message:
While we indeed can't treat them as no-ops, i believe we can/should
do better than just modelling them as `unknown`. `inttoptr` story
is complicated, but for `ptrtoint`, it seems straight-forward
to model it just as a zext-or-trunc of unknown.
This may be important now that we track towards
making inttoptr/ptrtoint casts not no-op,
and towards preventing folding them into loads/etc
(see D88979/D88789/D88788)
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88806
> While we indeed can't treat them as no-ops, i believe we can/should
> do better than just modelling them as `unknown`. `inttoptr` story
> is complicated, but for `ptrtoint`, it seems straight-forward
> to model it just as a zext-or-trunc of unknown.
>
> This may be important now that we track towards
> making inttoptr/ptrtoint casts not no-op,
> and towards preventing folding them into loads/etc
> (see D88979/D88789/D88788)
>
> Reviewed By: mkazantsev
>
> Differential Revision: https://reviews.llvm.org/D88806
It caused the following assert during Chromium builds:
llvm/lib/IR/Constants.cpp:1868:
static llvm::Constant *llvm::ConstantExpr::getTrunc(llvm::Constant *, llvm::Type *, bool):
Assertion `C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"' failed.
See code review for a link to a reproducer.
This reverts commit 1c021c64ca.
While we indeed can't treat them as no-ops, i believe we can/should
do better than just modelling them as `unknown`. `inttoptr` story
is complicated, but for `ptrtoint`, it seems straight-forward
to model it just as a zext-or-trunc of unknown.
This may be important now that we track towards
making inttoptr/ptrtoint casts not no-op,
and towards preventing folding them into loads/etc
(see D88979/D88789/D88788)
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88806
This expands upon the inloop reductions added in e9761688e41cb9e976,
allowing them to be inserted into tail folded loops. Reductions are
generates with the form:
x = select(mask, vecop, zero)
v = vecreduce.add(x)
c = add chain, v
Where zero here is chosen as the identity value for add reductions. The
backend is then expected to fold the select and the vecreduce into a
single predicated instruction.
Most of the code is fairly straight forward, except for the creation of
blockmasks which need to ensure they are created in dominance order. The
order they are added is altered to be after any phis, keeping the
requirements for the underlying IR.
Differential Revision: https://reviews.llvm.org/D84451
We cannot guarantee that the replacement expression is loop-invariant in
all AddRecs in the source expression. Use a rewriter that skips
AddRecExpr for now.
Fixes PR47776.
This patch refactors the logic in ValueTracking.cpp so that
computeKnownBitsForMul now uses a helper function from KnownBits.
NFC
Differential Revision: https://reviews.llvm.org/D88935
The initial version of the patch was reverted because it missed the check that
the predicate being proved is actually guarded by this check on 1st iteration.
If it was not executed on 1st iteration (but possibly executes after that), then
it is incorrect to use reasoning about IV start to prove it.
Added the test where the miscompile was seen. Unfortunately, my attempts
to reduce it with bugpoint did not succeed; it can further be reduced when
we understand how to do it without losing the initial bug's notion.
Returning assuming the miscompiles are now gone.
Differential Revision: https://reviews.llvm.org/D88208
Currently LAA uses getScalarSizeInBits to compute the size of an element
when computing the end bound of an access.
This does not work as expected for pointers to pointers, because
getScalarSizeInBits will return 0 for pointer types.
By using DataLayout to get the size of the element we can also correctly
handle pointer element types.
Note the changes to the existing test, which seems to also use the wrong
offset for the end.
Fixes PR47751.
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D88953
We can't use Use.Calls after its std::move()'d to TmpCalls as it will be in an undefined state. Instead, swap with the known empty map in TmpCalls so we can then safely emplace_back into the now empty Use.Calls.
Fixes clang static analyzer warning.
The logic there only considers `SLT/SGT` predicates. We can use the same logic
for proving `ULT/UGT` predicates if all involved values are non-negative.
Adding full-scale support for unsigned might be challenging because of code amount,
so we can consider this in the future.
Differential Revision: https://reviews.llvm.org/D88087
Reviewed By: reames
If we know that some predicate is true for AddRec and an invariant
(w.r.t. this AddRec's loop), this fact is, in particular, true on the first
iteration. We can try to prove the facts we need using the start value.
The motivating example is proving things like
```
isImpliedCondOperands(>=, X, 0, {X,+,-1}, 0}
```
Differential Revision: https://reviews.llvm.org/D88208
Reviewed By: reames
This patch achieves two things:
1. It breaks up the `join_blocks` interface between the SDA to the DA to
return two separate sets for divergent loops exits and divergent,
disjoint path joins.
2. It updates the SDA algorithm to run in O(n) time and improves the
precision on divergent loop exits.
This fixes `https://bugs.llvm.org/show_bug.cgi?id=46372` (by virtue of
the improved `join_blocks` interface) and revealed an imprecise expected
result in the `Analysis/DivergenceAnalysis/AMDGPU/hidden_loopdiverge.ll`
test.
Reviewed By: sameerds
Differential Revision: https://reviews.llvm.org/D84413
This check helps to guard against cases where expressions referring to
invalidated/deleted loops are not properly invalidated.
The additional check is motivated by the reproducer shared for 8fdac7cb7a
and I think in general make sense as a sanity check.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D88166
Currently, we have `isLoopEntryGuardedByCond` method in SCEV, which
checks that some fact is true if we enter the loop. In fact, this is just a
particular case of more general concept `isBasicBlockEntryGuardedByCond`
applied to given loop's header. In fact, the logic if this code is largely
independent on the given loop and only cares code above it.
This patch makes this generalization. Now we can query it for any block,
and `isBasicBlockEntryGuardedByCond` is just a particular case.
Differential Revision: https://reviews.llvm.org/D87828
Reviewed By: fhahn
Handle the case when all inputs of phi are proven to be non zero.
Constants are checked in beginning of this method before check for depth of recursion,
so it is a partial case of non-constant phi.
Recursion depth is already handled by the function.
Reviewers: aqjune, nikic, efriedma
Reviewed By: nikic
Subscribers: dantrushin, hiraditya, jdoerfert, llvm-commits
Differential Revision: https://reviews.llvm.org/D88276
This appears to be an error of code duplication - instead of
one constructor variant calling another, we have N similar
but not identical versions.
I think this is 'NFC' based on the current callers, but it's
hard to tell or guess the intent in all cases.
It was mentioned that D88276 that when a phi node is visited, terminators at their incoming edges should be used for CtxI.
This is a patch that makes two functions (ComputeNumSignBitsImpl, isGuaranteedNotToBeUndefOrPoison) to do so.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D88360
Similar to collecting information from branches guarding a loop, we can
also collect information from assumes dominating the loop header.
Fixes PR47247.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D87854
Add a flag to getPredicateAt() that allows making use of the block
value. This allows us to take into account range information from
the current block, rather than only information that is threaded
over edges, making the icmp simplification in CVP a lot more
powerful.
I'm not changing getPredicateAt() to use the block value
unconditionally to avoid any impact on the JumpThreading pass,
which is somewhat picky about LVI query order.
Most test changes here are just icmps that now get dropped (while
previously only a result used in a return was replaced). The three
tests in icmp.ll show some representative improvements. Some of
the folds this enables have been covered by IPSCCP in the meantime,
but LVI can reason about some cases which are hard to support in
IPSCCP, such as in test_br_cmp_with_offset.
The compile-time time cost of doing this is fairly minimal, with
a ~0.05% CTMark regression for ReleaseThinLTO:
https://llvm-compile-time-tracker.com/compare.php?from=709d03f8af4da4204849a70f01798e7cebba2e32&to=6236fd503761f43c99f4537121e057a01056f185&stat=instructions
This is because the block values will typically already be queried
and cached by other CVP optimizations anyway.
Differential Revision: https://reviews.llvm.org/D69686
The lattice value returned by getValueInBlock() holds at the start
of the block, not at the end. Also make it clearer what the
difference between getValueInBlock() and getValueAt() is.
Require CxtI in getConstant() and getConstantRange() APIs.
Accordingly drop the BB parameter, as it is implied by
CxtI->getParent().
This makes sure we don't forget to pass the context instruction,
and makes the API contract clearer (also clean up the comments to
that effect -- the value holds at the context instruction, not
the end of the block).
As discussed in D87877, instcombine already has this fold,
but it was missing from the more general ValueTracking logic.
https://alive2.llvm.org/ce/z/PumYZP
This is a patch that allows isGuaranteedNotToBeUndefOrPoison to return more precise result
when an argument is given, by looking through its uses at the entry block (and following blocks as well, if it is checking poison only).
This is useful when there is a function call with noundef arguments at the entry block.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D88207
This introduces an analysis pass that wraps IRSimilarityIdentifier,
and adds a printer pass to examine in what function similarities are
being found.
Test for what the printer pass can find are in
test/Analysis/IRSimilarityIdentifier.
Reviewed by: paquette, jroelofs
Differential Revision: https://reviews.llvm.org/D86973
For some expressions, we can use information from loop guards when
we are looking for a maximum. This patch applies information from
loop guards to the expression used to compute the maximum backedge
taken count in howFarToZero. It currently replaces an unknown
expression X with UMin(X, Y), if the loop is guarded by
X ult Y.
This patch is minimal in what conditions it applies, and there
are a few TODOs to generalize.
This partly addresses PR40961. We will also need an update to
LV to address it completely.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D67178
This takes the mapped instructions from the IRInstructionMapper, and
passes it to the Suffix Tree to find the repeated substrings. Within
each set of repeated substrings, the IRSimilarityCandidates are compared
against one another for structure, and ensuring that the operands in the
instructions are used in the same way. Each of these structurally
similarity IRSimilarityCandidates are contained in a SimilarityGroup.
Tests checking for identifying identity of structure, different
isomorphic structure, and different
nonisomoprhic structure are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Differential Revision: https://reviews.llvm.org/D86972
Just because sequences of instructions are similar to one another,
doesn't mean they are doing the same thing.
This introduces a structural check for the IRSimilarityCandidate that
compares two IRSimilarityCandidates against one another, and in each
instruction creates a mapping between the operands and results, or
checks that the existing mapping is valid. If this check passes, it
means we have structurally similar IRSimilarityCandidates.
Tests for whether the candidates are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Recommit of: b27db2bb68 for Differential
URL.
Differential Revision: https://reviews.llvm.org/D86971
Just because sequences of instructions are similar to one another,
doesn't mean they are doing the same thing.
This introduces a structural check for the IRSimilarityCandidate that
compares two IRSimilarityCandidates against one another, and in each
instruction creates a mapping between the operands and results, or
checks that the existing mapping is valid. If this check passes, it
means we have structurally similar IRSimilarityCandidates.
Tests for whether the candidates are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Translating between JSON objects and C++ strutctures is common.
From experience in clangd, fromJSON/ObjectMapper work well and save a lot of
code, but aren't adopted elsewhere at least partly due to total lack of error
reporting beyond "ok"/"bad".
The recently-added error model should be rich enough for most applications.
It requires tracking the path within the root object and reporting local
errors at appropriate places.
To do this, we exploit the fact that the call graph of recursive
parse functions mirror the structure of the JSON itself.
The current path is represented as a linked list of segments, each of which is
on the stack as a parameter. Concretely, fromJSON now looks like:
bool fromJSON(const Value&, T&, Path);
Beyond the signature change, this is reasonably unobtrusive: building
the path segments is mostly handled by ObjectMapper and the vector<T> fromJSON.
However the root caller of fromJSON must now create a Root object to
store the errors, which is a little clunky.
I've added high-level parse<T>(StringRef) -> Expected<T>, but it's not
general enough to be the primary interface I think (at least, not usable in
clangd).
All existing users (mostly just clangd) are updated in this patch,
making this change backwards-compatible is a bit hairy.
Differential Revision: https://reviews.llvm.org/D88103
This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined functions.
Now addNewFunctionInto{Ref,}SCC() are no longer necessary.
However, this doesn't work on newly outlined functions that aren't
referenced by the original function. e.g. if a() was outlined into b()
and c(), but c() is only referenced by b() and not by a(), this will
trigger an assert.
This also fixes an issue I was seeing with newly created functions not
having passes run on them.
Ran check-llvm with expensive checks.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87798
The IRSimilarityCandidate is a container to hold a region of
IRInstructions and offer interfaces for the starting instruction, ending
instruction, parent function, length. It also assigns a global value
number for each unique instance of a value in the region.
It also contains an interface to compare two IRSimilarity as to whether
they have the same sequence of similar instructions.
Tests for whether the instructions are similar are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Recommit of: 4944bb190f
Differential Revision: https://reviews.llvm.org/D86970
The IRSimilarityCandidate is a container to hold a region of
IRInstructions and offer interfaces for the starting instruction, ending
instruction, parent function, length. It also assigns a global value
number for each unique instance of a value in the region.
It also contains an interface to compare two IRSimilarity as to whether
they have the same sequence of similar instructions.
Tests for whether the instructions are similar are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Differential Revision: https://reviews.llvm.org/D86970
Currently these predicates are ignored, yet their handling is
pretty simple. I could not find a single test where it would
actually change something, but it's only because isImpliedCondOperands
is not smart enough to prove it further on. Yet the situation when
we come there with `less` predicate is pretty common.
Differential Revision: https://reviews.llvm.org/D87890
Reviewed By: fhahn
Changes TTI function getIntImmCostInst to take an additional Instruction parameter,
which enables us to be able to check it is part of a min(max())/max(min()) pattern that will match SSAT.
We can then mark the constant used as free to prevent it being hoisted so SSAT can still be generated.
Required minor changes in some non-ARM backends to allow for the optional parameter to be included.
Differential Revision: https://reviews.llvm.org/D87457
This commit was originally because it was suspected to cause a crash,
but a reproducer did not surface.
A crash that was exposed by this change was fixed in 1d8f2e5292.
This reverts the revert commit 0581c0b0ee.
InstCombine likes to canonicalize comparisons of the form
X == C || X == C+1 into (X & -2) == C'. Make sure LVI can still
recover the value range from this. Can of course also be useful
for proper mask comparisons.
For the sake of clarity, the implementation goes through KnownBits
to compute the range.
Rewrite this in a way where the core logic is in a separate
function, that is invoked with swapped operands. This makes it
easier to add handling for additional icmp patterns.
The output here may not be optimal (yet), but it should be
consistent for commuted operands (it was not before) and
correct. We can do better by checking FMF and NaN if needed.
Code in InstSimplify generally assumes that we have already
folded code like this, so it was not handling 2 constant
inputs by commuting consistently.
The IRInstructionData structs are a different representation of the
program. This list treats the program as if it was "flattened" and
the only parent is this list. This lets us easily create ranges of
instructions.
Differential Revision: https://reviews.llvm.org/D86969