Since none of these users really care about the actual type, hide the
type under a new size-getting attribute to go along with
hasPassPointeeByValueAttr. This will work better for the future byref
attribute, which may end up only tracking the byte size and not the IR
type.
We currently have 3 parameter attributes that should carry the type
(technically inalloca does not yet). The APIs are somewhat awkward
since preallocated/inalloca piggyback on byval in some places, but in
others are treated as distinct attributes. Since these are all
mutually exclusive, we should probably just merge all the attribute
infrastructure treating these as totally distinct attributes.
In an earlier patch I removed the need for
IITDescriptor::ScalableVecArgument, which involved changing
DecodeIITType to pull out the last IIT_Info from the list. However,
it turns out this is unsafe and causes ubsan failures. I've tried to
fix this a different way by simply passing the last IIT_Info as an
additional argument to DecodeIITType.
Differential Revision: https://reviews.llvm.org/D81057
I have refactored the code so that we no longer need the
ScalableVecArgument descriptor - the scalable property of vectors is
now encoded using the ElementCount class in IITDescriptor. This means
that when matching intrinsics we know precisely how to match the
arguments and return values.
Differential Revision: https://reviews.llvm.org/D80107
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
Summary:
The BFloat IR type is introduced to provide support for, initially, the BFloat16
datatype introduced with the Armv8.6 architecture (optional from Armv8.2
onwards). It has an 8-bit exponent and a 7-bit mantissa and behaves like an IEEE
754 floating point IR type.
This is part of a patch series upstreaming Armv8.6 features. Subsequent patches
will upstream intrinsics support and C-lang support for BFloat.
Reviewers: SjoerdMeijer, rjmccall, rsmith, liutianle, RKSimon, craig.topper, jfb, LukeGeeson, sdesmalen, deadalnix, ctetreau
Subscribers: hiraditya, llvm-commits, danielkiss, arphaman, kristof.beyls, dexonsmith
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78190
I have changed the ScalableVecArgument case in matchIntrinsicType
to create a new FixedVectorType. This means that the next case we
hit (Vector) will not assert when calling getNumElements(), since
we know that it's always a FixedVectorType. This is a temporary
measure for now, and it will be fixed properly in another patch
that refactors this code.
The changes are covered by this existing test:
CodeGen/AArch64/sve-intrinsics-fp-converts.ll
In addition, I have added a new test to ensure that we correctly
reject SVE intrinsics when called with fixed length vector types.
Differential Revision: https://reviews.llvm.org/D79416
Summary:
Piggy-back off of TypeSize's STRICT_FIXED_SIZE_VECTORS flag and:
- if it is defined, assert that the vector is not scalable
- if it is not defined, complain if the vector is scalable
Reviewers: efriedma, sdesmalen, c-rhodes
Reviewed By: sdesmalen
Subscribers: hiraditya, mgorny, tschuett, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78576
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: dexonsmith, sdesmalen, efriedma
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77276
When constrained floating point is enabled the AArch64-specific builtins don't use constrained intrinsics in some cases. Fix that.
Neon is part of this patch, so ARM is affected as well.
Differential Revision: https://reviews.llvm.org/D77074
Summary:
This is a resubmit of D71473.
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: aaron.ballman, courbet
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71547
Summary:
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71473
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
Summary:
When adjusting function entry counts after inlining, Funciton::setEntryCount is called without providing an import function list. The side effect of that is the previously set import function list will be dropped. The import function list is used by ThinLTO to help import hot cross module callee for LTO inlining, so dropping that during ThinLTO pre-link may adversely affect LTO inlining. The fix is to keep the list while updating entry counts for inlining.
Reviewers: wmi, davidxl, tejohnson
Subscribers: mehdi_amini, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69736
Summary:
This allows intrinsics such as the following to be defined:
- declare <n x 4 x i32> @llvm.something.nxv4f32(<n x 4 x i32>, <n x 4 x i1>, <n x 4 x float>)
...where <n x 4 x i32> is derived from <n x 4 x float>, but
the element needs bitcasting to int.
Reviewers: c-rhodes, sdesmalen, rovka
Reviewed By: c-rhodes
Subscribers: tschuett, hiraditya, jdoerfert, llvm-commits, cfe-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68021
llvm-svn: 373437
Summary:
Both match the type of another intrinsic parameter of a vector type, but where each element is subdivided to form a vector with more elements of a smaller type.
Subdivide2Argument allows intrinsics such as the following to be defined:
- declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 8 x i16>)
Subdivide4Argument allows intrinsics such as:
- declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 16 x i8>)
Tests are included in follow up patches which add intrinsics using these types.
Reviewers: sdesmalen, SjoerdMeijer, greened, rovka
Reviewed By: sdesmalen
Subscribers: rovka, tschuett, jdoerfert, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67549
llvm-svn: 372380
Summary:
This patch adds support for scalable vectors in intrinsics, enabling
intrinsics such as the following to be defined:
declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 4 x i32>)
Support for this is implemented by defining a new type descriptor for
scalable vectors and adding mangling support for scalable vector types
in the name mangling scheme used by 'any' types in intrinsic signatures.
Tests have been added for IRBuilder to test scalable vectors work as
expected when using intrinsics through this interface. This required
implementing an intrinsic that is explicitly defined with scalable
vectors, e.g. LLVMType<nxv4i32>, an SVE floating-point convert
intrinsic was used for this. The behaviour of the overloaded type
LLVMScalarOrSameVectorWidth with scalable vectors is tested using the
existing masked load intrinsic. Also added an .ll test to test the
Verifier catches a bad intrinsic argument when passing a fixed-width
predicate (mask) to the masked.load intrinsic where a scalable is
expected.
Patch by Paul Walker
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D65930
llvm-svn: 370053
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
This patch uses the mechanism from D62995 to strengthen the
definitions of the reduction intrinsics by letting the scalar
result/accumulator type be overloaded from the vector element type.
For example:
; The LLVM LangRef specifies that the scalar result must equal the
; vector element type, but this is not checked/enforced by LLVM.
declare i32 @llvm.experimental.vector.reduce.or.i32.v4i32(<4 x i32> %a)
This patch changes that into:
declare i32 @llvm.experimental.vector.reduce.or.v4i32(<4 x i32> %a)
Which has the type-constraint more explicit and causes LLVM to check
the result type with the vector element type.
Reviewers: RKSimon, arsenm, rnk, greened, aemerson
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62996
llvm-svn: 363240
Extend the mechanism to overload intrinsic arguments by using either
backward or forward references to the overloadable arguments.
In for example:
def int_something : Intrinsic<[LLVMPointerToElt<0>],
[llvm_anyvector_ty], []>;
LLVMPointerToElt<0> is a forward reference to the overloadable operand
of type 'llvm_anyvector_ty' and would allow intrinsics such as:
declare i32* @llvm.something.v4i32(<4 x i32>);
declare i64* @llvm.something.v2i64(<2 x i64>);
where the result pointer type is deduced from the element type of the
first argument.
If the returned pointer is not a pointer to the element type, LLVM will
give an error:
Intrinsic has incorrect return type!
i64* (<4 x i32>)* @llvm.something.v4i32
Reviewers: RKSimon, arsenm, rnk, greened
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D62995
llvm-svn: 363233
Most parts of LLVM don't care whether the byval type is derived from an
explicit Attribute or from the parameter's pointee type, so it makes
sense for the main access function to just return the right value.
The very few users who do care (only BitcodeReader so far) can find out
how it's specified by accessing the Attribute directly.
llvm-svn: 362642
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362128
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
llvm-svn: 362012
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
This patch replaces the existing LLVMVectorSameWidth matcher with LLVMScalarOrSameVectorWidth.
The matching args must be either scalars or vectors with the same number of elements, but in either case the scalar/element type can differ, specified by LLVMScalarOrSameVectorWidth.
I've updated the _overflow intrinsics to demonstrate this - allowing it to return a i1 or <N x i1> overflow result, matching the scalar/vectorwidth of the other (add/sub/mul) result type.
The masked load/store/gather/scatter intrinsics have also been updated to use this, although as we specify the reference type to be llvm_anyvector_ty we guarantee the mask will be <N x i1> so no change in behaviour
Differential Revision: https://reviews.llvm.org/D57090
llvm-svn: 351957
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
`CallSite`.
With this change, the remaining `CallSite` usages are just for
implementing the wrapper type itself.
This does update the C API but leaves the names of that API alone and
only updates their implementation.
Differential Revision: https://reviews.llvm.org/D56184
llvm-svn: 350509
Most users won't have to worry about this as all of the
'getOrInsertFunction' functions on Module will default to the program
address space.
An overload has been added to Function::Create to abstract away the
details for most callers.
This is based on https://reviews.llvm.org/D37054 but without the changes to
make passing a Module to Function::Create() mandatory. I have also added
some more tests and fixed the LLParser to accept call instructions for
types in the program address space.
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D47541
llvm-svn: 340519
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
Implements PR34259
Intrinsics.h is a very popular header. Most LLVM TUs care about things
like dbg_value, but they don't care how they are implemented. After I
split these out, IntrinsicImpl.inc is 1.7 MB, so this saves each LLVM TU
from scanning 1.7 MB of source that gets pre-processed away.
It also means we can modify intrinsic properties without triggering a
full rebuild, but that's probably less of a win.
I think the next best thing to do would be to split out the target
intrinsics into their own header. Very, very few TUs care about
target-specific intrinsics. It's very hard to split up the target
independent intrinsics like llvm.expect, assume, and dbg.value, though.
llvm-svn: 335407
This patch adds a remark which tells the user when a pass changes the number of
IR instructions in a module.
It can be enabled by using -Rpass-analysis=size-info.
The point of this is to make it easier to collect statistics on how passes
modify programs in terms of code size. This is similar in concept to timing
reports, but using a remark-based interface makes it easy to diff changes over
multiple compilations of the same program.
By adding functionality like this, we can see
* Which passes impact code size the most
* How passes impact code size at different optimization levels
* Which pass might have contributed the most to an overall code size
regression
The patch lives in the legacy pass manager, but since it's simply emitting
remarks, it shouldn't be too difficult to adapt the functionality to the new
pass manager as well. This can also be adapted to handle MachineInstr counts in
code gen passes.
https://reviews.llvm.org/D38768
llvm-svn: 332739
Inspired by r331508, I did a grep and found these.
Mostly just change from dyn_cast to cast. Some cases also showed a dyn_cast result being converted to bool, so those I changed to isa.
llvm-svn: 331577
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Virtually all other tablegen outputs are called .inc, not .gen, so rename these two too for consistency.
No behavior change.
https://reviews.llvm.org/D46058
llvm-svn: 330843
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
Function::lookupIntrinsicID is somewhat forgiving as it comes to
overloaded intrinsics' names: it returns an ID as soon as the name
provided has a prefix that matches a registered intrinsic's name w/o
actually checking that the rest of the name encodes all the concrete arg
types, let alone that those types are compatible with the intrinsic's
definition.
That's probably fine and comes in handy in MIR serialization: we don't
care about IR types at MIR level and every intrinsic should be
selectable based on its ID and low-level types (LLTs) of its operands,
including the overloaded ones, so there is no point in serializing
mangled IR types as part of the intrinsic's name.
However, lookupIntrinsicID is somewhat inconsistent in its forgiveness:
if the name provided is actually an exact match, it will refuse to
return the ID if the intrinsic is overloaded. There is probably no
real reason for that and it renders MIRParser incapable to deserialize
MIR MIRPrinter serialized.
This commit fixes it.
Reviewers: rnk, aditya_nandakumar, qcolombet, thegameg, dsanders,
marcello.maggioni
Reviewed By: bogner
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D43267
llvm-svn: 326387
Summary:
The class wraps a uint64_t and an enum to represent the type of profile
count (real and synthetic) with some helper methods.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41883
llvm-svn: 322771
Summary:
This pass synthesizes function entry counts by traversing the callgraph
and using the relative block frequencies of the callsites. The intended
use of these counts is in inlining to determine hot/cold callsites in
the absence of profile information.
The pass is split into two files with the code that propagates the
counts in a callgraph in a Utils file. I plan to add support for
propagation in the thinlto link phase and the propagation code will be
shared and hence this split. I did not add support to the old PM since
hot callsite determination in inlining is not possible in old PM
(although we could use hot callee heuristic with synthetic counts in the
old PM it is not worth the effort tuning it)
Reviewers: davidxl, silvas
Subscribers: mgorny, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D41604
llvm-svn: 322110
Summary:
In r277849, getEntryCount was changed to return None when the entry
count was 0, specifically for SamplePGO where it means no samples were
recorded. However, for instrumentation PGO a 0 entry count should be
returned directly, since it does mean that the function was completely
cold. Otherwise we end up treating these functions conservatively
in isFunctionEntryCold() and isColdBB().
Instead, for SamplePGO use -1 when there are no samples, and change
getEntryCount to return None when the value is -1.
Reviewers: danielcdh, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41307
llvm-svn: 321018
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary:
Fairly straightforward patch to fill in some of the holes in the
attributes API with respect to accessing parameter/argument attributes.
The patch aims to step further towards encapsulating the
idx+FirstArgIndex pattern to access these attributes to within the
AttributeList.
Patch by Daniel Neilson!
Reviewers: rnk, chandlerc, pete, javed.absar, reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33355
llvm-svn: 304329
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
The erase/remove from parent methods now use a switch table to remove
themselves from their appropriate parent ilist.
The copyAttributesFrom method is now completely non-virtual, since we
only ever copy attributes from a global of the appropriate type.
Pre-requisite to de-virtualizing Value to save a vptr
(https://reviews.llvm.org/D31261).
NFC
llvm-svn: 302823
Summary:
Do three things to help with that:
- Add AttributeList::FirstArgIndex, which is an enumerator currently set
to 1. It allows us to change the indexing scheme with fewer changes.
- Add addParamAttr/removeParamAttr. This just shortens addAttribute call
sites that would otherwise need to spell out FirstArgIndex.
- Remove some attribute-specific getters and setters from Function that
take attribute list indices. Most of these were only used from
BuildLibCalls, and doesNotAlias was only used to test or set if the
return value is malloc-like.
I'm happy to split the patch, but I think they are probably easier to
review when taken together.
This patch should be NFC, but it sets the stage to change the indexing
scheme to this, which is more convenient when indexing into an array:
0: func attrs
1: retattrs
2...: arg attrs
Reviewers: chandlerc, pete, javed.absar
Subscribers: david2050, llvm-commits
Differential Revision: https://reviews.llvm.org/D32811
llvm-svn: 302060
Fixes PR31789 - When loop-vectorize tries to use these intrinsics for a
non-default address space pointer we fail with a "Calling a function with a
bad singature!" assertion. This patch solves this by adding the 'vector of
pointers' argument as an overloaded type which will determine the address
space.
Differential revision: https://reviews.llvm.org/D31490
llvm-svn: 302018
This broke the Clang build. (Clang-side patch missing?)
Original commit message:
> [IR] Make add/remove Attributes use AttrBuilder instead of
> AttributeList
>
> This change cleans up call sites and avoids creating temporary
> AttributeList objects.
>
> NFC
llvm-svn: 301712
The method is called "get *Param* Alignment", and is only used for
return values exactly once, so it should take argument indices, not
attribute indices.
Avoids confusing code like:
IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
Alignment = CS->getParamAlignment(ArgIdx + 1);
Add getRetAlignment to handle the one case in Value.cpp that wants the
return value alignment.
This is a potentially breaking change for out-of-tree backends that do
their own call lowering.
llvm-svn: 301682
This should simplify the call sites, which typically want to tweak one
attribute at a time. It should also avoid creating ephemeral
AttributeLists that live forever.
llvm-svn: 300718
Add hasParamAttribute() and use it instead of hasAttribute(ArgNo+1,
Kind) everywhere.
The fact that the AttributeList index for an argument is ArgNo+1 should
be a hidden implementation detail.
NFC
llvm-svn: 300272
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
This saves two pointers from Argument and eliminates some extra
allocations.
Arguments cannot be inserted or removed from a Function because that
would require changing its Type, which LLVM does not allow. Instead,
passes that change prototypes, like DeadArgElim, create a new Function
and copy over argument names and attributes. The primary benefit of
iplist is O(1) random insertion and removal. We just don't need that for
arguments, so don't use it.
Reviewed By: chandlerc
Subscribers: dlj, inglorion, llvm-commits
Differential Revision: https://reviews.llvm.org/D31058
llvm-svn: 298105
When Function creates its argument list, it does the ilist push_back
itself. No other caller passes in a parent function, so this is dead,
and it uses the soon-to-be-deleted getArgumentList accessor.
llvm-svn: 298009
getArgNo is actually hot in LLVM, because its how we check for
attributes on arguments:
bool Argument::hasNonNullAttr() const {
if (!getType()->isPointerTy()) return false;
if (getParent()->getAttributes().
hasAttribute(getArgNo()+1, Attribute::NonNull))
return true;
It actually shows up as the 23rd hottest leaf function in a 13s sample
of LTO of llc.
This grows Argument by four bytes, but I have another pending patch to
shrink it by removing its ilist_node base.
Reviewed By: chandlerc
Subscribers: inglorion, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D31057
llvm-svn: 298003
I checked that all of these out-of-line methods previously compiled to
simple loads and bittests, so they are pretty good candidates for
inlining. In particular, arg_size() and arg_empty() are popular and are
just two loads, so they seem worth inlining.
llvm-svn: 297963
Summary: For SamplePGO, the profile may contain cross-module inline stacks. As we need to make sure the profile annotation happens when all the hot inline stacks are expanded, we need to pass this info to the module importer so that it can import proper functions if necessary. This patch implemented this feature by emitting cross-module targets as part of function entry metadata. In the module-summary phase, the metadata is used to build call edges that points to functions need to be imported.
Reviewers: mehdi_amini, tejohnson
Reviewed By: tejohnson
Subscribers: davidxl, llvm-commits
Differential Revision: https://reviews.llvm.org/D30053
llvm-svn: 296498
Fixes PR 31921
Summary:
Predicateinfo requires an ugly workaround to try to avoid literal
struct types due to the intrinsic mangling not being implemented.
This workaround actually does not work in all cases (you can hit the
assert by bootstrapping with -print-predicateinfo), and can't be made
to work without DFS'ing the type (IE copying getMangledStr and using a
version that detects if it would crash).
Rather than do that, i just implemented the mangling. It seems
simple, since they are unified structurally.
Looking at the overloaded-mangling testcase we have, it actually turns
out the gc intrinsics will *also* crash if you try to use a literal
struct. Thus, the testcase added fails before this patch, and works
after, without needing to resort to predicateinfo.
Reviewers: chandlerc, davide
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D29925
llvm-svn: 295253
Summary:
Previously isIntrinsic() called getName(). This involves a hashtable
lookup, so is nontrivially expensive. And isIntrinsic() is called
frequently, particularly by dyn_cast<IntrinsicInstr>.
This patch steals a bit of IntID and uses that to store whether or not
getName() starts with "llvm."
Reviewers: bogner, arsenm, joker-eph
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D22949
llvm-svn: 290691
2 new intrinsics covering AVX-512 compress/expand functionality.
This implementation includes syntax, DAG builder, operation lowering and tests.
Does not include: handling of illegal data types, codegen prepare pass and the cost model.
llvm-svn: 285876
Summary:
The original implementation is in r261607, which was reverted in r269726 to accomendate the ProfileSummaryInfo analysis pass. The new implementation:
1. add a new metadata for function section prefix
2. query against ProfileSummaryInfo in CGP to set the correct section prefix for each function
3. output the section prefix set by CGP
Reviewers: davidxl, eraman
Subscribers: vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D24989
llvm-svn: 284533
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
This is a recommit of r281806 after fixing the accessor to return
a pointer instead of a reference and updating all the call-sites.
llvm-svn: 281813
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
llvm-svn: 281806
Philip commented on r279113 to ask for better comments as to
when to use the different versions of getName. Its also possible
to assert in the simple case that we aren't an overloaded intrinsic
as those have to use the more capable version of getName.
Thanks for the comments Philip.
llvm-svn: 279466
When running 'opt -O2 verify-uselistorder-nodbg.lto.bc', there are 33m allocations. 8.2m
come from std::string allocations in Intrinsic::getName(). Turns out this method only
returns a std::string because it needs to handle overloads, but that is not the common case.
This adds an overload of getName which just returns a StringRef when there are no overloads
and so saves on the allocations.
llvm-svn: 279113
I needed a reader-writer lock for a downstream project and noticed that
llvm has one. Function.cpp is the only file in-tree that refers to it.
To anyone reading this: are you using RWMutex in out-of-tree code? Maybe
it's not worth keeping around any more...
Since we're not actually using RWMutex *here*, remove the #include (and
a few other stale headers while we're at it).
llvm-svn: 278178
Summary:
If a profile has no samples for a function, then the function "entry count" is set to the value 0. Several places in the code test that if the Function::getEntryCount is defined at all. Here we change to treat a 0 entry count the same as undefined.
In particular, this fixes a problem in getLayoutSuccessorProbThreshold in MachineBlockPlacement.cpp where we use a different and inferior heuristic for laying out basic blocks.
Reviewers: danielcdh, dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23082
llvm-svn: 277849