I'm not sure this is the best way to approach this,
but the situation is rather not very detectable unless we explicitly call it out when refusing to advise to unroll.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D107271
I have added a new FastMathFlags parameter to getArithmeticReductionCost
to indicate what type of reduction we are performing:
1. Tree-wise. This is the typical fast-math reduction that involves
continually splitting a vector up into halves and adding each
half together until we get a scalar result. This is the default
behaviour for integers, whereas for floating point we only do this
if reassociation is allowed.
2. Ordered. This now allows us to estimate the cost of performing
a strict vector reduction by treating it as a series of scalar
operations in lane order. This is the case when FP reassociation
is not permitted. For scalable vectors this is more difficult
because at compile time we do not know how many lanes there are,
and so we use the worst case maximum vscale value.
I have also fixed getTypeBasedIntrinsicInstrCost to pass in the
FastMathFlags, which meant fixing up some X86 tests where we always
assumed the vector.reduce.fadd/mul intrinsics were 'fast'.
New tests have been added here:
Analysis/CostModel/AArch64/reduce-fadd.ll
Analysis/CostModel/AArch64/sve-intrinsics.ll
Transforms/LoopVectorize/AArch64/strict-fadd-cost.ll
Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll
Differential Revision: https://reviews.llvm.org/D105432
This patch removes the IsPairwiseForm flag from the Reduction Cost TTI
hooks, along with some accompanying code for pattern matching reductions
from trees starting at extract elements. IsPairWise is now assumed to be
false, which was the predominant way that the value was used from both
the Loop and SLP vectorizers. Since the adjustments such as D93860, the
SLP vectorizer has not relied upon this distinction between paiwise and
non-pairwise reductions.
This also removes some code that was detecting reductions trees starting
from extract elements inside the costmodel. This case was
double-counting costs though, adding the individual costs on the
individual instruction _and_ the total cost of the reduction. Removing
it changes the costs in llvm/test/Analysis/CostModel/X86/reduction.ll to
not double count. The cost of reduction intrinsics is still tested
through the various tests in
llvm/test/Analysis/CostModel/X86/reduce-xyz.ll.
Differential Revision: https://reviews.llvm.org/D105484
Added cost estimation for switch instruction, updated costs of branches, fixed
phi cost.
Had to increase `-amdgpu-unroll-threshold-if` default value since conditional
branch cost (size) was corrected to higher value.
Test renamed to "control-flow.ll".
Removed redundant code in `X86TTIImpl::getCFInstrCost()` and
`PPCTTIImpl::getCFInstrCost()`.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D96805
This patch changes the interface to take a RegisterKind, to indicate
whether the register bitwidth of a scalar register, fixed-width vector
register, or scalable vector register must be returned.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98874
This adds an Mask ArrayRef to getShuffleCost, so that if an exact mask
can be provided a more accurate cost can be provided by the backend.
For example VREV costs could be returned by the ARM backend. This should
be an NFC until then, laying the groundwork for that to be added.
Differential Revision: https://reviews.llvm.org/D98206
AMDGPUTargetTransformInfo.h needs AMDGPUTargetMachine but relies on a
forward declaration of AMDGPUTargetMachine in AMDGPU.h. This patch
adds a forward declaration right in AMDGPUTargetTransformInfo.h.
While we are at it, this patch removes the one in
AMDGPU.h, where it is unnecessary.
Having a custom inliner doesn't really fit in with the new PM's
pipeline. It's also extra technical debt.
amdgpu-inline only does a couple of custom things compared to the normal
inliner:
1) It disables inlining if the number of BBs in a function would exceed
some limit
2) It increases the threshold if there are pointers to private arrays(?)
These can all be handled as TTI inliner hooks.
There already exists a hook for backends to multiply the inlining
threshold.
This way we can remove the custom amdgpu-inline pass.
This caused inline-hint.ll to fail, and after some investigation, it
looks like getInliningThresholdMultiplier() was previously getting
applied twice in amdgpu-inline (https://reviews.llvm.org/D62707 fixed it
not applying at all, so some later inliner change must have fixed
something), so I had to change the threshold in the test.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D94153
D82227 has added a proper check to limit PHI vectorization to the
maximum vector register size. That unfortunately resulted in at
least a couple of regressions on SystemZ and x86.
This change reverts PHI handling from D82227 and replaces it with
a more general check in SLPVectorizerPass::tryToVectorizeList().
Moved to tryToVectorizeList() it allows to restart vectorization
if initial chunk fails.
However, this function is more general and handles not only PHI
but everything which SLP handles. If vectorization factor would
be limited to maximum vector register size it would limit much
more vectorization than before leading to further regressions.
Therefore a new TTI callback getMaximumVF() is added with the
default 0 to preserve current behavior and limit nothing. Then
targets can decide what is better for them.
The callback gets ElementSize just like a similar getMinimumVF()
function and the main opcode of the chain. The latter is to avoid
regressions at least on the AMDGPU. We can have loads and stores
up to 128 bit wide, and <2 x 16> bit vector math on some
subtargets, where the rest shall not be vectorized. I.e. we need
to differentiate based on the element size and operation itself.
Differential Revision: https://reviews.llvm.org/D92059
Add a calling convention called amdgpu_gfx for real function calls
within graphics shaders. For the moment, this uses the same calling
convention as other calls in amdgpu, with registers excluded for return
address, stack pointer and stack buffer descriptor.
Differential Revision: https://reviews.llvm.org/D88540
1. Throughput and codesize costs estimations was separated and updated.
2. Updated fdiv cost estimation for different cases.
3. Added scalarization processing for types that are treated as !isSimple() to
improve codesize estimation in getArithmeticInstrCost() and
getArithmeticInstrCost(). The code was borrowed from TCK_RecipThroughput path
of base implementation.
Next step is unify scalarization part in base class that is currently works for
TCK_RecipThroughput path only.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D89973
This follows on from D89558 which added the new intrinsic and D88955
which added similar combines for llvm.amdgcn.fmul.legacy.
Differential Revision: https://reviews.llvm.org/D90028
Features UnalignedBufferAccess and UnalignedDSAccess are now used to determine
whether hardware supports such access.
UnalignedAccessMode should be used to enable them.
hasUnalignedBufferAccessEnabled() and hasUnalignedDSAccessEnabled() can be
now used to quickly check both.
Differential Revision: https://reviews.llvm.org/D84522
Adjust alignment requirements for ds_read/write_b96/b128.
GFX9 and onwards allow misaligned access for reads and writes but only if
SH_MEM_CONFIG.alignment_mode allows it.
UnalignedDSAccess is set on GCN subtargets from GFX9 onward to let us know if we
can relax alignment requirements.
UnalignedAccessMode acts similary to UnalignedBufferAccess for DS instructions
but only from GFX9 onward and is supposed to match alignment_mode. By default
alignment of 4 is required.
Differential Revision: https://reviews.llvm.org/D82788
Add cases of fused fmul+fadd/fsub with f16 and f64 operands to cost model.
Also added operations with contract attribute.
Fixed line endings in test.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D84995
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.
D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).
This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic
A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.
This allows to move about 3000 lines out from InstCombine to the targets.
Differential Revision: https://reviews.llvm.org/D81728
Summary:
This patch separates the peeling specific parameters from the UnrollingPreferences,
and creates a new struct called PeelingPreferences. Functions which used the
UnrollingPreferences struct for peeling have been updated to use the PeelingPreferences struct.
Author: sidbav (Sidharth Baveja)
Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel), anhtuyen (Anh Tuyen Tran), nikic (Nikita Popov)
Reviewed By: Meinersbur (Michael Kruse)
Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80580
This is practically NFC at the moment because nothing really
asks the real number or does anything useful with it.
Differential Revision: https://reviews.llvm.org/D82202
Enable TTIImpl::getUserCost to handle FNeg so that
getInstructionThroughput can call that instead. This means we can
remove the code in the AMDGPU backend too.
Differential Revision: https://reviews.llvm.org/D81635
This one is slightly odd since it counts as an address expression,
which previously could never fail. Allow the existing TTI hook to
return the value to use, and re-use it for handling how to handle
ptrmask.
Handles the no-op addrspacecasts for AMDGPU. We could probably do
something better based on analysis of the mask value based on the
address space, but leave that for now.
Combine the two API calls into one by introducing a structure to hold
the relevant data. This has the added benefit of moving the boiler
plate code for arguments and flags, into the constructors. This is
intended to be a non-functional change, but the complicated web of
logic involved here makes it very hard to guarantee.
Differential Revision: https://reviews.llvm.org/D79941
Make the kind of cost explicit throughout the cost model which,
apart from making the cost clear, will allow the generic parts to
calculate better costs. It will also allow some backends to
approximate and correlate the different costs if they wish. Another
benefit is that it will also help simplify the cost model around
immediate and intrinsic costs, where we currently have multiple APIs.
RFC thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-April/141263.html
Differential Revision: https://reviews.llvm.org/D79002
There are several different types of cost that TTI tries to provide
explicit information for: throughput, latency, code size along with
a vague 'intersection of code-size cost and execution cost'.
The vectorizer is a keen user of RecipThroughput and there's at least
'getInstructionThroughput' and 'getArithmeticInstrCost' designed to
help with this cost. The latency cost has a single use and a single
implementation. The intersection cost appears to cover most of the
rest of the API.
getUserCost is explicitly called from within TTI when the user has
been explicit in wanting the code size (also only one use) as well
as a few passes which are concerned with a mixture of size and/or
a relative cost. In many cases these costs are closely related, such
as when multiple instructions are required, but one evident diverging
cost in this function is for div/rem.
This patch adds an argument so that the cost required is explicit,
so that we can make the important distinction when necessary.
Differential Revision: https://reviews.llvm.org/D78635
The API for shuffles and reductions uses generic Type parameters,
instead of VectorType, and so assertions and casts are used a lot.
This patch makes those types explicit, which means that the clients
can't be lazy, but results in less ambiguity, and that can only be a
good thing.
Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=45562
Differential Revision: https://reviews.llvm.org/D78357
Refines the gather/scatter cost model, but also changes the TTI
function getIntrinsicInstrCost to accept an additional parameter
which is needed for the gather/scatter cost evaluation.
This did require trivial changes in some non-ARM backends to
adopt the new parameter.
Extending gathers and truncating scatters are now priced cheaper.
Differential Revision: https://reviews.llvm.org/D75525
Summary:
Enable the new diveregence analysis by default for AMDGPU.
Resubmit with test updates since GPUDA was causing failures on Windows.
Reviewers: rampitec, nhaehnle, arsenm, thakis
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73315