This reverts commit 9934a5b2ed.
This patch may cause miscompiles because it missed a constraint
as shown in the examples from:
https://llvm.org/PR51531
Also check the case where one operand isn't constant, which isn't
handled right now, because the SPF code requires both operands
to be ranges.
Move the tests to directly check ranges rather than go through an
and, to make it more obvious that this has no relation to bitmasks.
Instead of handling a number of special cases for selects, handle
this generally when inferring ranges from conditions. We already
infer ranges from `x + C pred C2` to `x`, so doing the same for
`x pred C2` to `x + C` is straightforward.
These tests didn't test the pattern they were supposed to, because
%a instead of %add was used in the select, which turned this into
a normal min/max).
Noticed this when commenting out the clamp handling code did not
result in any test failures...
LVI previously handled "if (L && R)" conditions, but not
"if (L || R)" conditions. The latter case can still produce
useful information if L and R both constrain the same variable.
This adds support for handling the "if (L || R)" case as well.
The only difference is that we take the union instead of the
intersection of the lattice values.
Following the discussion in D93065, this adds m_LogicalAnd() and
m_LogicalOr() matchers, that match A && B and A || B logical
operations, either as bitwise operations or select expressions.
As an example usage, LVI is adapted to use these matchers for its
condition reasoning.
The plan here is to switch other parts of LLVM that reason about
and/or of conditions to also support the select forms, and then
merge D93065 (or a variant thereof) to disable the poison-unsafe
select to and/or transform.
Differential Revision: https://reviews.llvm.org/D93827
CVP currently handles switches by checking an equality predicate
on all edges from predecessor blocks. Of course, this can only
work if the value being switched over is defined in a different block.
Replace this implementation with a call to getPredicateAt(), which
also does the predecessor edge predicate check (if not defined in
the same block), but can also do quite a bit more: It can reason
about phi-nodes by checking edge predicates for incoming values,
it can reason about assumes, and it can reason about block values.
As such, this makes the implementation both simpler and more
powerful. The compile-time impact on CTMark is in the noise.
These cover cases handled by getPredicateAt(), but not by the
current implementation:
* Assumes based on context instruction.
* Value from phi node in same block (using per-pred reasoning).
* Value from non-phi node in same block (using block-val reasoning).
Add a flag to getPredicateAt() that allows making use of the block
value. This allows us to take into account range information from
the current block, rather than only information that is threaded
over edges, making the icmp simplification in CVP a lot more
powerful.
I'm not changing getPredicateAt() to use the block value
unconditionally to avoid any impact on the JumpThreading pass,
which is somewhat picky about LVI query order.
Most test changes here are just icmps that now get dropped (while
previously only a result used in a return was replaced). The three
tests in icmp.ll show some representative improvements. Some of
the folds this enables have been covered by IPSCCP in the meantime,
but LVI can reason about some cases which are hard to support in
IPSCCP, such as in test_br_cmp_with_offset.
The compile-time time cost of doing this is fairly minimal, with
a ~0.05% CTMark regression for ReleaseThinLTO:
https://llvm-compile-time-tracker.com/compare.php?from=709d03f8af4da4204849a70f01798e7cebba2e32&to=6236fd503761f43c99f4537121e057a01056f185&stat=instructions
This is because the block values will typically already be queried
and cached by other CVP optimizations anyway.
Differential Revision: https://reviews.llvm.org/D69686
Inference of nowrap flags in CVP has been disabled, because it
triggered a bug in LFTR (https://bugs.llvm.org/show_bug.cgi?id=31181).
This issue has been fixed in D60935, so we should be able to reenable
nowrap flag inference now.
Differential Revision: https://reviews.llvm.org/D62776
llvm-svn: 364228
The underlying ConstantRange functionality has been added in D60952,
D61207 and D61238, this just exposes it for LVI.
I'm switching the code from using a whitelist to a blacklist, as
we're down to one unsupported operation here (xor) and writing it
this way seems more obvious :)
Differential Revision: https://reviews.llvm.org/D62822
llvm-svn: 362519
Adds support for the uadd.sat family of intrinsics in LVI, based on
ConstantRange methods from D60946.
Differential Revision: https://reviews.llvm.org/D62447
llvm-svn: 361703
Based on ConstantRange support added in D61084, we can now handle
abs and nabs select pattern flavors in LVI.
Differential Revision: https://reviews.llvm.org/D61794
llvm-svn: 360700
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This moves it to the iterator facade utilities giving it full random
access semantics, etc. It can also now be used with standard algorithms
like std::all_of and std::any_of and range adaptors like llvm::reverse.
Also make the semantics of iterating match what every other iterator
uses and forbid decrementing past the begin iterator. This was used as
a hacky way to work around iterator invalidation. However, every
instance trying to do this failed to actually avoid touching invalid
iterators despite the clear documentation that the removed and all
subsequent iterators become invalid including the end iterator. So I've
added a return of the next iterator to removeCase and rewritten the
loops that were doing this to correctly follow the iterator pattern of
either incremneting or removing and assigning fresh values to the
iterator and the end.
In one case we were trying to go backwards to make this cleaner but it
doesn't actually work. I've made that code match the code we use
everywhere else to remove cases as we iterate. This changes the order of
cases in one test output and I moved that test to CHECK-DAG so it
wouldn't care -- the order isn't semantically meaningful anyways.
llvm-svn: 298791
When encountering a non-local pointer, LVI would eagerly scan the block for dereferences of the given object to prove the pointer to be non null. That's all well and good, but *then* we'd go recurse through our input blocks. As a result, we could end up scanning each and every block we traverse, even if the final definition was obviously non null or we found a constant value somewhere up the chain. The previous code papered over this by using the isKnownNonNull routine from value tracking. This made the duplication less painful in the common case.
Instead, we know do the block scan only *after* we've gotten the recursive results back. This lets us stop scanning individual blocks as soon as we've determined it to be non-null in any predecessor block and use our usual merge rules to propagate that information cheaply through successor blocks. For a pointer which can be found non-null, this does strictly less work and sometimes substaintially so.
Note that the case where we *can't* prove something non-null is still the really expensive case. We end up scanning each and every block looking for a dereference and never end up finding one.
llvm-svn: 267642
As pointed out by John Regehr over in http://reviews.llvm.org/D19485, LVI was being incredibly stupid about applying its transfer rules. Rather than gathering local facts from the expression itself, it was simply giving up entirely if one of the inputs was overdefined. This greatly impacts the precision of the overall analysis and makes it far more fragile as well.
This patch builds on 267609 which did the same thing for unary casts.
llvm-svn: 267620
Essentially, I was using the wrong size function. For types which were sized, but not primitive, I wasn't getting a useful size for the operand and failed an assert. I fixed this, and also added a guard that the input is a sized type. Test case is for the original mistake. I'm not sure how to actually exercise the sized type check.
llvm-svn: 267618
As pointed out by John Regehr over in http://reviews.llvm.org/D19485, LVI was being incredibly stupid about applying its transfer rules. Rather than gathering local facts from the expression itself, it was simply giving up entirely if one of the inputs was overdefined. This greatly impacts the precision of the overall analysis and makes it far more fragile as well.
This patch implements only the unary operation case. Once this is in, I'll implement the same for the binary operations.
Differential Revision: http://reviews.llvm.org/D19492
llvm-svn: 267609
Most of this is fairly straight forward. Add handling for min/max via existing matcher utility and ConstantRange routines. Add handling for clamp by exploiting condition constraints on inputs.
Note that I'm only handling two constant ranges at this point. It would be reasonable to consider treating overdefined as a full range if the instruction is typed as an integer, but that should be a separate change.
Differential Revision: http://reviews.llvm.org/D17184
llvm-svn: 262085
The root issue appears to be a confusion around what makeNoWrapRegion actually does. It seems likely we need two versions of this function with slightly different semantics.
llvm-svn: 260981
As the title says. Modelled after similar code in SCEV.
This is useful when analysing induction variables in loops which have been canonicalized by other passes. I wrote the tests as non-loops specifically to avoid the generality introduced in http://reviews.llvm.org/D17174. While that can handle many induction variables without *needing* to exploit nsw, there's no reason not to use it if we've already proven it.
Differential Revision: http://reviews.llvm.org/D17177
llvm-svn: 260705
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
This is a common pattern with dyn_cast and similar constructs, when the
PHI no longer depends on the select it can often be turned into a simpler
construct or even get hoisted out of the loop.
PR15340.
llvm-svn: 175995