In D106041, a freeze was added before the branch condition to solve the miscompilation problem of SimpleLoopUnswitch.
However, I found that the added freeze disturbed other optimizations in the following situations.
```
arg.fr = freeze(arg)
use(arg.fr)
...
use(arg)
```
It is a problem that occurred when arg and arg.fr were recognized as different values.
Therefore, changing to use arg.fr instead of arg throughout the function eliminates the above problem.
Thus, I add a function that changes all uses of arg to freeze(arg) to visitFreeze of InstCombine.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D106233
This function is called when some predecessor of an empty return block
ends with a conditional branch, with both successors being empty ret blocks.
Now, because of the way SimplifyCFG works, it might happen to simplify
one of the blocks in a way that makes a conditional branch
into an unconditional one, since it's destinations are now identical,
but it might not have actually simplified said conditional branch
into an unconditional one yet.
So, we have to check that ourselves first,
especially now that SimplifyCFG aggressively tail-merges
all ret and resume blocks.
Even if it was an unconditional branch already,
`SimplifyCFGOpt::simplifyReturn()` doesn't call `FoldReturnIntoUncondBranch()`
by default.
This bug was introduced with D105730 / 25ee55c0ba .
If we are not converting all of the operations of a reduction
into a vector op, we need to preserve the existing select form
of the remaining ops. Otherwise, we are potentially leaking
poison where it did not in the original code.
Alive2 agrees that the version that freezes some inputs
and then falls back to scalar is correct:
https://alive2.llvm.org/ce/z/erF4K2
This has been a work-in-progress for a long time...we finally have all of
the pieces in place to handle vectorization of compare code as shown in:
https://llvm.org/PR41312
To do this (see PhaseOrdering tests), we converted SimplifyCFG and
InstCombine to the poison-safe (select) forms of the logic ops, so now we
need to have SLP recognize those patterns and insert a freeze op to make
a safe reduction:
https://alive2.llvm.org/ce/z/NH54Ah
We get the minimal patterns with this patch, but the PhaseOrdering tests
show that we still need adjustments to get the ideal IR in some or all of
the motivating cases.
Differential Revision: https://reviews.llvm.org/D105730
These are based on PR41312. There needs to be effort
from all of SimplifyCFG, InstCombine, SLP, and possibly
VectorCombine to get this into ideal form.