packs, e.g.,
template<typename T, unsigned ...Dims> struct multi_array;
along with semantic analysis support for finding unexpanded non-type
template parameter packs in types, expressions, and so on.
Template instantiation involving non-type template parameter packs
probably doesn't work yet. That'll come soon.
llvm-svn: 122527
parameter packs (C++0x [dcl.fct]p13), including disambiguation between
unnamed function parameter packs and varargs (C++0x [dcl.fct]p14) for
cases like
void f(T...)
where T may or may not contain unexpanded parameter packs.
llvm-svn: 122520
specialization's template arguments against the primary template's
template arguments using the obvious, correct method of checking the
injected-class-name type (C++ [temp.class.spec]p9b3). The previous
incarnation of this comparison attempted to use its own formulation of
the injected-class-name, which is redudant and, with the introduction
of variadic templates, became wrong (again).
llvm-svn: 122508
to cope with parameter packs. This is a band-aid I will be
revisiting this section when I implement declaration matching
semantics for variadic templates.
llvm-svn: 122369
whose patterns are template arguments. We can now instantiate, e.g.,
typedef tuple<pair<OuterTypes, InnerTypes>...> type;
where OuterTypes and InnerTypes are template type parameter packs.
There is a horrible inefficiency in
TemplateArgumentLoc::getPackExpansionPattern(), where we need to
create copies of TypeLoc data because our interfaces traffic in
TypeSourceInfo pointers where they should traffic in TypeLocs
instead. I've isolated in efficiency in this one routine; once we
refactor our interfaces to traffic in TypeLocs, we can eliminate it.
llvm-svn: 122278
a parameter pack, check the parameter pack against each of the
template arguments it corresponds to, then pack the converted
arguments into a template argument pack. Allows us to use variadic
class templates so long as instantiation isn't required, e.g.,
template<typename... Types> struct Tuple;
Tuple<int, float> *t2;
llvm-svn: 122251
area of printing template arguments. The functionality changes here
are limited to cases of variadic templates that aren't yet enabled.
llvm-svn: 122250
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
non-type template parameters until we know that we have an actual
template declaration of some sort. This cannot be tested yet, but will
become important when we have template template parameter packs.
llvm-svn: 121967
BuildExpressionFromIntegralTemplateArgument can produce malformed
IntegerLiterals with an EnumType if the template parameter type
is an EnumType. This breaks the AST printer which expects all
IntegerLiterals to have a plain integer type. Instead, give the
IntegerLiteral the enum's promotion type and wrap in an implicit cast
to the EnumType.
llvm-svn: 121862
whether the expression contains an unexpanded parameter pack, in the
same vein as the changes to the Type hierarchy. Compute this bit
within all of the Expr subclasses.
This change required a bunch of reshuffling of dependency
calculations, mainly to consolidate them inside the constructors and
to fuse multiple loops that iterate over arguments to determine type
dependence, value dependence, and (now) containment of unexpanded
parameter packs.
Again, testing is painfully sparse, because all of the diagnostics
will change and it is more important to test the to-be-written visitor
that collects unexpanded parameter packs.
llvm-svn: 121831
and TemplateArgument with an operation that determines whether there
are any unexpanded parameter packs within that construct. Use this
information to diagnose the appearance of the names of parameter packs
that have not been expanded (C++ [temp.variadic]p5). Since this
property is checked often (every declaration, ever expression
statement, etc.), we extend Type and Expr with a bit storing the
result of this computation, rather than walking the AST each time to
determine whether any unexpanded parameter packs occur.
This commit is deficient in several ways, which will be remedied with
future commits:
- Expr has a bit to store the presence of an unexpanded parameter
pack, but it is never set.
- The error messages don't point out where the unexpanded parameter
packs were named in the type/expression, but they should.
- We don't check for unexpanded parameter packs in all of the places
where we should.
- Testing is sparse, pending the resolution of the above three
issues.
llvm-svn: 121724
We should not substitute template types if the template has a dependent
context because the template argument stack is not yet fully formed.
Instead, defer substitution until the template has a non-dependent
context (i.e. instantiation of an outer template).
llvm-svn: 121491
space better. Remove this reference. To make that work, change some APIs
(most importantly, getDesugaredType()) to take an ASTContext& if they
need to return a QualType. Simultaneously, diminish the need to return a
QualType by introducing some useful APIs on SplitQualType, which is
just a std::pair<const Type *, Qualifiers>.
llvm-svn: 121478
declaration that is a value in ill-formed code. Instead of crashing,
treat this as a dependent typename specifier and suggest that the
using add "typename" into the using declaration. Fixes <rdar://problem/8740998>.
llvm-svn: 121322
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121121
- Default argument expressions pick up the value kind of the incoming
expression, not the value kind of the parameter it initializes.
- When building a template argument for substitution, A::x is an rvalue
if x is an instance method.
- Anonymous struct/union paths pick up value kind the same way that
normal member accesses do; extract out a common code path for this.
Enable the value-kind assertion, now that it passes self-host.
llvm-svn: 120055
store it on the expression node. Also store an "object kind",
which distinguishes ordinary "addressed" l-values (like
variable references and pointer dereferences) and bitfield,
@property, and vector-component l-values.
Currently we're not using these for much, but I aim to switch
pretty much everything calculating l-valueness over to them.
For now they shouldn't necessarily be trusted.
llvm-svn: 119685
abstractions (e.g., TemplateArgumentListBuilder) that were designed to
support variadic templates. Only a few remnants of variadic templates
remain, in the parser (parsing template type parameter packs), AST
(template type parameter pack bits and TemplateArgument::Pack), and
Sema; these are expected to be used in a future implementation of
variadic templates.
But don't get too excited about that happening now.
llvm-svn: 118385
themselves have no template parameters. This is actually a restriction
due to the grammar of template template parameters, but we choose to
diagnose it in Sema to provide better recovery.
llvm-svn: 117032
by marking the decl invalid isn't. Make some steps towards supporting these
and then hastily shut them down at the last second by marking them as
unsupported.
llvm-svn: 116661
unnamed or local types within that type. This bit is cached along with
the linkage of a type, so that it can be recomputed (e.g., when we see
that a typedef has given a name to an anonymous declaration).
Use this bit when checking C++03 [temp.arg.type]p2, so that we don't
walk template argument types repeatedly.
llvm-svn: 116413
that are suppressed during template argument deduction. This change
queues diagnostics computed during template argument deduction. Then,
if the resulting function template specialization or partial
specialization is chosen by overload resolution or partial ordering
(respectively), we will emit the queued diagnostics at that point.
This addresses most of PR6784. However, the check for unnamed/local
template arguments (which existed before this change) is still only
skin-deep, and needs to be extended to look deeper into types. It must
be improved to finish PR6784.
llvm-svn: 116373
of templated-scope friends by marking them invalid and white-listing all
accesses until such time as we implement them. Fixes a crash, this time
without a broken test case.
llvm-svn: 116364
error to a warning if we're in a case that would be allowed in
C++0x. This "fixes" PR8084 by making Clang accept more code than GCC
and (non-strict) EDG do.
Also, add the missing test case for the C++0x semantics, which should
have been in r113717.
llvm-svn: 113718
libclang. This includes:
- Cursor kind for function templates, with visitation logic
- Cursor kinds for template parameters, with visitation logic
- Visitation logic for template specialization types, qualified type
locations
- USR generation for function templates, template specialization
types, template parameter types.
Also happens to fix PR7804, which I tripped across while testing.
llvm-svn: 112604
For large floats/integers, APFloat/APInt will allocate memory from the heap to represent these numbers.
Unfortunately, when we use a BumpPtrAllocator to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
the APFloat/APInt values will never get freed.
I introduce the class 'APNumericStorage' which uses ASTContext's allocator for memory allocation and is used internally by FloatingLiteral/IntegerLiteral.
Fixes rdar://7637185
llvm-svn: 112361
One who seeks the Tao unlearns something new every day.
Less and less remains until you arrive at non-action.
When you arrive at non-action,
nothing will be left undone.
llvm-svn: 112244