Commit Graph

56 Commits

Author SHA1 Message Date
Lang Hames ffe2dda29f [ORC][JITLink] Retain Weak flags in JITDylib interfaces, propagate to LinkGraph.
Previously we stripped Weak flags from JITDylib symbol table entries once they
were resolved (there was no particularly good reason for this). Now we want to
retain them and query them when setting the Linkage on external symbols in
LinkGraphs during symbol resolution (this was the motivation for 75404e9ef8).
Making weak linkage of external definitions discoverable in the LinkGraph will
in turn allow future plugins to implement correct handling for them (by
recording locations that depend on exported weak definitions and pointing all
of these at one chosen definition at runtime).
2022-09-27 10:04:59 -07:00
Sunho Kim 72ea1a721e [ORC] Fix weak hidden symbols failure on PPC with runtimedyld
Fix "JIT session error: Symbols not found: [ DW.ref.__gxx_personality_v0 ] error" which happens when trying to use exceptions on ppc linux. To do this, it expands AutoClaimSymbols option in RTDyldObjectLinkingLayer to also claim weak symbols before they are tried to be resovled. In ppc linux, DW.ref symbols is emitted as weak hidden symbols in the later stage of MC pipeline. This means when using IRLayer (i.e. LLJIT), IRLayer will not claim responsibility for such symbols and RuntimeDyld will skip defining this symbol even though it couldn't resolve corresponding external symbol.

Reviewed By: sgraenitz

Differential Revision: https://reviews.llvm.org/D129175
2022-07-28 21:12:25 +09:00
Stefan Gränitz 406ef36b03 [Orc] Use extensible RTTI for the orc::ObjectLayer class hierarchy
So far we had no way to distinguish between JITLink and RuntimeDyld in lli. Instead, we used implicit knowledge that RuntimeDyld would be used for linking ELF. In order to get D97337 to work with lli though, we have to move on and allow JITLink for ELF. This patch uses extensible RTTI to allow external clients to add their own layers without touching the LLVM sources.

Reviewed By: lhames

Differential Revision: https://reviews.llvm.org/D97338
2021-02-26 13:13:05 +01:00
Kazu Hirata ce94e7d867 [MCA, ExecutionEngine, Object] Use llvm::is_contained (NFC) 2020-12-18 09:09:04 -08:00
Lang Hames 0aec49c853 [ORC] Add support for resource tracking/removal (removable code).
This patch introduces new APIs to support resource tracking and removal in Orc.
It is intended as a thread-safe generalization of the removeModule concept from
OrcV1.

Clients can now create ResourceTracker objects (using
JITDylib::createResourceTracker) to track resources for each MaterializationUnit
(code, data, aliases, absolute symbols, etc.) added to the JIT. Every
MaterializationUnit will be associated with a ResourceTracker, and
ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib
has a default ResourceTracker that will be used for MaterializationUnits added
to that JITDylib if no ResourceTracker is explicitly specified.

Two operations can be performed on ResourceTrackers: transferTo and remove. The
transferTo operation transfers tracking of the resources to a different
ResourceTracker object, allowing ResourceTrackers to be merged to reduce
administrative overhead (the source tracker is invalidated in the process). The
remove operation removes all resources associated with a ResourceTracker,
including any symbols defined by MaterializationUnits associated with the
tracker, and also invalidates the tracker. These operations are thread safe, and
should work regardless of the the state of the MaterializationUnits. In the case
of resource transfer any existing resources associated with the source tracker
will be transferred to the destination tracker, and all future resources for
those units will be automatically associated with the destination tracker. In
the case of resource removal all already-allocated resources will be
deallocated, any if any program representations associated with the tracker have
not been compiled yet they will be destroyed. If any program representations are
currently being compiled then they will be prevented from completing: their
MaterializationResponsibility will return errors on any attempt to update the
JIT state.

Clients (usually Layer writers) wishing to track resources can implement the
ResourceManager API to receive notifications when ResourceTrackers are
transferred or removed. The MaterializationResponsibility::withResourceKeyDo
method can be used to create associations between the key for a ResourceTracker
and an allocated resource in a thread-safe way.

RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the
ResourceManager API to enable tracking and removal of memory allocated by the
JIT linker.

The new JITDylib::clear method can be used to trigger removal of every
ResourceTracker associated with the JITDylib (note that this will only
remove resources for the JITDylib, it does not run static destructors).

This patch includes unit tests showing basic usage. A follow-up patch will
update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will
use this API to release code associated with anonymous expressions.
2020-10-18 21:02:54 -07:00
Lang Hames 6154c4115c [ORC] Remove OrcV1 APIs.
This removes all legacy layers, legacy utilities, the old Orc C bindings,
OrcMCJITReplacement, and OrcMCJITReplacement regression tests.

ExecutionEngine and MCJIT are not affected by this change.
2020-10-18 21:02:44 -07:00
Lang Hames 7dcd0042e8 Re-apply "[ORC] Make MaterializationResponsibility immovable..." with fixes.
Re-applies c74900ca67 with fixes for the ThinLtoJIT example.
2020-09-11 14:09:05 -07:00
Florian Hahn c0825fa5fc Revert "[ORC] Make MaterializationResponsibility immovable, pass by unique_ptr."
This reverts commit c74900ca67.

This appears to be breaking some builds on macOS and has been causing
build failures on Green Dragon (see below). I am reverting this for now,
to unblock testing on Green Dragon.

http://green.lab.llvm.org/green/job/clang-stage1-cmake-RA-incremental/18144/console

[65/187] /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++  -DBUILD_EXAMPLES -DGTEST_HAS_RTTI=0 -D_DEBUG -D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -Iexamples/ThinLtoJIT -I/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT -Iinclude -I/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/include -fPIC -fvisibility-inlines-hidden -Werror=date-time -Werror=unguarded-availability-new -Wall -Wextra -Wno-unused-parameter -Wwrite-strings -Wcast-qual -Wmissing-field-initializers -pedantic -Wno-long-long -Wimplicit-fallthrough -Wcovered-switch-default -Wno-noexcept-type -Wnon-virtual-dtor -Wdelete-non-virtual-dtor -Wstring-conversion -fdiagnostics-color -O3  -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk -mmacosx-version-min=10.9    -fno-exceptions -fno-rtti -UNDEBUG -std=c++14 -MD -MT examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o -MF examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o.d -o examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o -c /Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT/ThinLtoDiscoveryThread.cpp
FAILED: examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++  -DBUILD_EXAMPLES -DGTEST_HAS_RTTI=0 -D_DEBUG -D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -Iexamples/ThinLtoJIT -I/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT -Iinclude -I/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/include -fPIC -fvisibility-inlines-hidden -Werror=date-time -Werror=unguarded-availability-new -Wall -Wextra -Wno-unused-parameter -Wwrite-strings -Wcast-qual -Wmissing-field-initializers -pedantic -Wno-long-long -Wimplicit-fallthrough -Wcovered-switch-default -Wno-noexcept-type -Wnon-virtual-dtor -Wdelete-non-virtual-dtor -Wstring-conversion -fdiagnostics-color -O3  -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.15.sdk -mmacosx-version-min=10.9    -fno-exceptions -fno-rtti -UNDEBUG -std=c++14 -MD -MT examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o -MF examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o.d -o examples/ThinLtoJIT/CMakeFiles/ThinLtoJIT.dir/ThinLtoDiscoveryThread.cpp.o -c /Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT/ThinLtoDiscoveryThread.cpp
In file included from /Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT/ThinLtoDiscoveryThread.cpp:7:
/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/examples/ThinLtoJIT/ThinLtoInstrumentationLayer.h:37:68: error: non-virtual member function marked 'override' hides virtual member function
  void emit(MaterializationResponsibility R, ThreadSafeModule TSM) override;
                                                                   ^
/Users/buildslave/jenkins/workspace/clang-stage1-cmake-RA-incremental/llvm-project/llvm/include/llvm/ExecutionEngine/Orc/Layer.h:103:16: note: hidden overloaded virtual function 'llvm::orc::IRLayer::emit' declared here: type mismatch at 1st parameter ('std::unique_ptr<MaterializationResponsibility>' vs 'llvm::orc::MaterializationResponsibility')
  virtual void emit(std::unique_ptr<MaterializationResponsibility> R,
               ^
1 error generated.
2020-09-11 09:35:20 +01:00
Lang Hames c74900ca67 [ORC] Make MaterializationResponsibility immovable, pass by unique_ptr.
Making MaterializationResponsibility instances immovable allows their
associated VModuleKeys to be updated by the ExecutionSession while the
responsibility is still in-flight. This will be used in the upcoming
removable code feature to enable safe merging of resource keys even if
there are active compiles using the keys being merged.
2020-09-10 13:21:46 -07:00
Logan Smith 3ee7fe4cfd [llvm][NFC] Add missing 'override's 2020-07-17 17:35:59 -07:00
Lang Hames c66f89005f [ORC] Rename SearchOrder operations on JITDylib to LinkOrder.
Refering to the link order of a dylib better matches the terminology used in
static compilation. As upcoming patches will increase the number of places where
link order matters (for example when closing JITDylibs) it's better to get this
name change out of the way early.
2020-05-04 16:47:52 -07:00
vgxbj ac00376a13 [Object] Change uint32_t getSymbolFlags() to Expected<uint32_t> getSymbolFlags().
This change enables getSymbolFlags() to return errors which benefit error reporting in clients.

Differential Revision: https://reviews.llvm.org/D77860
2020-04-18 21:27:57 +08:00
Lang Hames cb84e4827e [ORC] Introduce JITSymbolFlags::HasMaterializeSideEffectsOnly flag.
This flag can be used to mark a symbol as existing only for the purpose of
enabling materialization. Such a symbol can be looked up to trigger
materialization with the lookup returning only once materialization is
complete. Symbols with this flag will never resolve however (to avoid
permanently polluting the symbol table), and should only be looked up using
the SymbolLookupFlags::WeaklyReferencedSymbol flag. The primary use case for
this flag is initialization symbols.
2020-03-27 11:02:54 -07:00
Lang Hames 39253a50f0 [ORC] Re-apply 98f2bb4461, enable JITEventListeners in OrcV2, with fixes.
Updates the object buffer ownership scheme in jitLinkForOrc and related
functions: Ownership of both the object::ObjectFile and underlying
MemoryBuffer is passed into jitLinkForOrc and passed back to the onEmit
callback once linking is complete. This avoids the use-after-free errors
that were seen in 98f2bb4461.
2020-03-19 16:30:08 -07:00
Lang Hames 9c5771710e Revert "[ORC] Enable JITEventListeners in the RTDyldObjectLinkingLayer."
This reverts commit 98f2bb4461.

Reverting while I investigate bot failures.
2020-03-15 15:35:08 -07:00
Lang Hames 98f2bb4461 [ORC] Enable JITEventListeners in the RTDyldObjectLinkingLayer.
Enable use of ExecutionEngine JITEventListeners in RTDyldObjectLinkingLayer.
This allows existing MCJIT clients to more easily migrate to LLJIT / ORCv2.

Example usage in llvm/examples/OrcV2Examples/LLJITWithGDBRegistrationListener.

Differential Revision: https://reviews.llvm.org/D75838
2020-03-15 15:14:46 -07:00
Lang Hames 31e0331763 [ORC] Skip ST_File symbols in MaterializationUnit interfaces / resolution.
ST_File symbols aren't relevant for linking purposes, but can end up shadowing
real symbols if they're not filtered.

No test case yet: The ideal testcase for this would be an ELF llvm-jitlink test,
but llvm-jitlink support for ELF is still under development. We should add a
testcase for this once support lands in tree.
2020-03-03 16:15:44 -08:00
Benjamin Kramer 8c893cac3f [ORC] Remove spammy debug print 2020-02-24 12:10:13 +01:00
Lang Hames 85fb997659 [ORC] Add generic initializer/deinitializer support.
Initializers and deinitializers are used to implement C++ static constructors
and destructors, runtime registration for some languages (e.g. with the
Objective-C runtime for Objective-C/C++ code) and other tasks that would
typically be performed when a shared-object/dylib is loaded or unloaded by a
statically compiled program.

MCJIT and ORC have historically provided limited support for discovering and
running initializers/deinitializers by scanning the llvm.global_ctors and
llvm.global_dtors variables and recording the functions to be run. This approach
suffers from several drawbacks: (1) It only works for IR inputs, not for object
files (including cached JIT'd objects). (2) It only works for initializers
described by llvm.global_ctors and llvm.global_dtors, however not all
initializers are described in this way (Objective-C, for example, describes
initializers via specially named metadata sections). (3) To make the
initializer/deinitializer functions described by llvm.global_ctors and
llvm.global_dtors searchable they must be promoted to extern linkage, polluting
the JIT symbol table (extra care must be taken to ensure this promotion does
not result in symbol name clashes).

This patch introduces several interdependent changes to ORCv2 to support the
construction of new initialization schemes, and includes an implementation of a
backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a
MachO specific scheme that handles Objective-C runtime registration (if the
Objective-C runtime is available) enabling execution of LLVM IR compiled from
Objective-C and Swift.

The major changes included in this patch are:

(1) The MaterializationUnit and MaterializationResponsibility classes are
extended to describe an optional "initializer" symbol for the module (see the
getInitializerSymbol method on each class). The presence or absence of this
symbol indicates whether the module contains any initializers or
deinitializers. The initializer symbol otherwise behaves like any other:
searching for it triggers materialization.

(2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h
which provides the following callback interface:

  - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols
    in JITDylibs upon creation. E.g. __dso_handle.

  - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally
    used to record initializer symbols.

  - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform
    that a module is being removed.

  Platform implementations can use these callbacks to track outstanding
initializers and implement a platform-specific approach for executing them. For
example, the MachOPlatform installs a plugin in the JIT linker to scan for both
__mod_inits sections (for C++ static constructors) and ObjC metadata sections.
If discovered, these are processed in the usual platform order: Objective-C
registration is carried out first, then static initializers are executed,
ensuring that calls to Objective-C from static initializers will be safe.

This patch updates LLJIT to use the new scheme for initialization. Two
LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO
platform. The GenericIR platform implements a modified version of the previous
llvm.global-ctor scraping scheme to provide support for Windows and
Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO
specific initialization as described above.

Reviewers: sgraenitz, dblaikie

Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74300
2020-02-19 13:59:32 -08:00
Lang Hames 84217ad661 [ORC] Add weak symbol support to defineMaterializing, fix for PR40074.
The MaterializationResponsibility::defineMaterializing method allows clients to
add new definitions that are in the process of being materialized to the JIT.
This patch adds support to defineMaterializing for symbols with weak linkage
where the new definitions may be rejected if another materializer concurrently
defines the same symbol. If a weak symbol is rejected it will not be added to
the MaterializationResponsibility's responsibility set. Clients can check for
membership in the responsibility set via the
MaterializationResponsibility::getSymbols() method before resolving any
such weak symbols.

This patch also adds code to RTDyldObjectLinkingLayer to tag COFF comdat symbols
introduced during codegen as weak, on the assumption that these are COFF comdat
constants. This fixes http://llvm.org/PR40074.
2020-01-19 10:46:07 -08:00
Lang Hames 9f4f237e29 [ORC] De-register eh-frames in the RTDyldObjectLinkingLayer destructor.
This matches the behavior of the legacy layer, which automatically deregistered
frames.
2019-12-20 21:10:49 -08:00
Lang Hames 674df13b5f [ORC][JITLink] Add support for weak references, and improve handling of static
libraries.

This patch substantially updates ORCv2's lookup API in order to support weak
references, and to better support static archives. Key changes:

-- Each symbol being looked for is now associated with a SymbolLookupFlags
   value. If the associated value is SymbolLookupFlags::RequiredSymbol then
   the symbol must be defined in one of the JITDylibs being searched (or be
   able to be generated in one of these JITDylibs via an attached definition
   generator) or the lookup will fail with an error. If the associated value is
   SymbolLookupFlags::WeaklyReferencedSymbol then the symbol is permitted to be
   undefined, in which case it will simply not appear in the resulting
   SymbolMap if the rest of the lookup succeeds.

   Since lookup now requires these flags for each symbol, the lookup method now
   takes an instance of a new SymbolLookupSet type rather than a SymbolNameSet.
   SymbolLookupSet is a vector-backed set of (name, flags) pairs. Clients are
   responsible for ensuring that the set property (i.e. unique elements) holds,
   though this is usually simple and SymbolLookupSet provides convenience
   methods to support this.

-- Lookups now have an associated LookupKind value, which is either
   LookupKind::Static or LookupKind::DLSym. Definition generators can inspect
   the lookup kind when determining whether or not to generate new definitions.
   The StaticLibraryDefinitionGenerator is updated to only pull in new objects
   from the archive if the lookup kind is Static. This allows lookup to be
   re-used to emulate dlsym for JIT'd symbols without pulling in new objects
   from archives (which would not happen in a normal dlsym call).

-- JITLink is updated to allow externals to be assigned weak linkage, and
   weak externals now use the SymbolLookupFlags::WeaklyReferencedSymbol value
   for lookups. Unresolved weak references will be assigned the default value of
   zero.

Since this patch was modifying the lookup API anyway, it alo replaces all of the
"MatchNonExported" boolean arguments with a "JITDylibLookupFlags" enum for
readability. If a JITDylib's associated value is
JITDylibLookupFlags::MatchExportedSymbolsOnly then the lookup will only
match against exported (non-hidden) symbols in that JITDylib. If a JITDylib's
associated value is JITDylibLookupFlags::MatchAllSymbols then the lookup will
match against any symbol defined in the JITDylib.
2019-11-28 13:30:49 -08:00
Benjamin Kramer ce74c3b19f [Orc] Address the remaining move-capture FIXMEs
This required spreading unique_function a bit more, which I think is a
good thing.

llvm-svn: 371843
2019-09-13 11:35:33 +00:00
Lang Hames e00585c77c [ORC] Fix a FIXME: Propagate errors to dependencies.
When symbols are failed (via MaterializationResponsibility::failMaterialization)
any symbols depending on them will now be moved to an error state. Attempting
to resolve or emit a symbol in the error state (via the notifyResolved or
notifyEmitted methods on MaterializationResponsibility) will result in an error.
If notifyResolved or notifyEmitted return an error due to failure of a
dependence then the caller should log or discard the error and call
failMaterialization to propagate the failure to any queries waiting on the
symbols being resolved/emitted (plus their dependencies).

llvm-svn: 369808
2019-08-23 20:37:31 +00:00
Lang Hames 1716454027 [ORC] Add deprecation warnings to ORCv1 layers and utilities.
Summary:
ORCv1 is deprecated. The current aim is to remove it before the LLVM 10.0
release. This patch adds deprecation attributes to the ORCv1 layers and
utilities to warn clients of the change.

Reviewers: dblaikie, sgraenitz, AlexDenisov

Subscribers: llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D64609

llvm-svn: 366344
2019-07-17 16:40:52 +00:00
Lang Hames 2f8c6f9362 [ORC] Rename MaterializationResponsibility resolve and emit methods to
notifyResolved/notifyEmitted.

The 'notify' prefix better describes what these methods do: they update the JIT
symbol states and notify any pending queries that the 'resolved' and 'emitted'
states have been reached (rather than actually performing the resolution or
emission themselves). Since new states are going to be introduced in the near
future (to track symbol registration/initialization) it's worth changing the
convention pre-emptively to avoid further confusion.

llvm-svn: 363322
2019-06-13 20:11:23 +00:00
Lang Hames d4a8089f03 [ORC] Update symbol lookup to use a single callback with a required symbol state
rather than two callbacks.

The asynchronous lookup API (which the synchronous lookup API wraps for
convenience) used to take two callbacks: OnResolved (called once all requested
symbols had an address assigned) and OnReady to be called once all requested
symbols were safe to access). This patch updates the asynchronous lookup API to
take a single 'OnComplete' callback and a required state (SymbolState) to
determine when the callback should be made. This simplifies the common use case
(where the client is interested in a specific state) and will generalize neatly
as new states are introduced to track runtime initialization of symbols.

Clients who were making use of both callbacks in a single query will now need to
issue two queries (one for SymbolState::Resolved and another for
SymbolState::Ready). Synchronous lookup API clients who were explicitly passing
the WaitOnReady argument will now need neeed to pass a SymbolState instead (for
'WaitOnReady == true' use SymbolState::Ready, for 'WaitOnReady == false' use
SymbolState::Resolved). Synchronous lookup API clients who were using default
arugment values should see no change.

llvm-svn: 362832
2019-06-07 19:33:51 +00:00
Lang Hames eb5ee3004f [ORC] Track JIT symbol states more explicitly.
Prior to this patch, JITDylibs inferred symbol states (whether a symbol was
newly added, materializing, resolved, or ready to run) via a combination of (1)
bits in the JITSymbolFlags member, and (2) the state of some internal JITDylib
data structures. This patch explicitly tracks symbol states by adding a new
SymbolState member to the symbol table entries, and removing the 'Lazy' and
'Materializing' bits from JITSymbolFlags. This is a first step towards adding
additional states representing initialization phases (e.g. eh-frame registration,
registration with the language runtime, and static initialization).

llvm-svn: 361899
2019-05-28 23:35:44 +00:00
Lang Hames 42a3b4ff0e [ORC] Pass object buffer ownership back in NotifyEmitted.
Clients who want to regain ownership of object buffers after they have been
linked may now use the NotifyEmitted callback for this purpose.

Note: Currently NotifyEmitted is only called if linking succeeds. If linking
fails the buffer is always discarded.

llvm-svn: 359735
2019-05-01 22:40:23 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Lang Hames 23cb2e7f77 [ORC] Re-apply r345077 with fixes to remove ambiguity in lookup calls.
llvm-svn: 345098
2018-10-23 23:01:39 +00:00
Reid Kleckner db367e952e Revert r345077 "[ORC] Change how non-exported symbols are matched during lookup."
Doesn't build on Windows. The call to 'lookup' is ambiguous. Clang and
MSVC agree, anyway.

http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/787
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): error C2668: 'llvm::orc::ExecutionSession::lookup': ambiguous call to overloaded function
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(823): note: could be 'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(llvm::ArrayRef<llvm::orc::JITDylib *>,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(817): note: or       'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(const llvm::orc::JITDylibSearchList &,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): note: while trying to match the argument list '(initializer list, llvm::orc::SymbolStringPtr)'

llvm-svn: 345078
2018-10-23 20:54:43 +00:00
Lang Hames 841796decd [ORC] Change how non-exported symbols are matched during lookup.
In the new scheme the client passes a list of (JITDylib&, bool) pairs, rather
than a list of JITDylibs. For each JITDylib the boolean indicates whether or not
to match against non-exported symbols (true means that they should be found,
false means that they should not). The MatchNonExportedInJD and MatchNonExported
parameters on lookup are removed.

The new scheme is more flexible, and easier to understand.

This patch also updates JITDylib search orders to be lists of (JITDylib&, bool)
pairs to match the new lookup scheme. Error handling is also plumbed through
the LLJIT class to allow regression tests to fail predictably when a lookup from
a lazy call-through fails.

llvm-svn: 345077
2018-10-23 20:20:22 +00:00
Lang Hames 95abadec0b [ORC] Guard access to the MemMgrs vector in RTDyldObjectLinkingLayer.
Otherwise we can end up with a data-race when linking concurrently.

This should fix an intermittent failure in the multiple-compile-threads-basic.ll
testcase.

llvm-svn: 344956
2018-10-22 21:17:56 +00:00
Lang Hames 8b94274f22 [ORC] Make the VModuleKey optional, propagate it via MaterializationUnit and
MaterializationResponsibility.

VModuleKeys are intended to enable selective removal of modules from a JIT
session, however for a wide variety of use cases selective removal is not
needed and introduces unnecessary overhead. As of this commit, the default
constructed VModuleKey value is reserved as a "do not track" value, and
becomes the default when adding a new module to the JIT.

This commit also changes the propagation of VModuleKeys. They were passed
alongside the MaterializationResponsibity instance in XXLayer::emit methods,
but are now propagated as part of the MaterializationResponsibility instance
itself (and as part of MaterializationUnit when stored in a JITDylib).
Associating VModuleKeys with MaterializationUnits in this way should allow
for a thread-safe module removal mechanism in the future, even when a module
is in the process of being compiled, by having the
MaterializationResponsibility object check in on its VModuleKey's state
before commiting its results to the JITDylib.

llvm-svn: 344643
2018-10-16 20:13:06 +00:00
Lang Hames 079df9ab2c [ORC] Rename ORC layers to make the "new" ORC layers the default.
This commit adds a 'Legacy' prefix to old ORC layers and utilities, and removes
the '2' suffix from the new ORC layers. If you wish to continue using the old
ORC layers you will need to add a 'Legacy' prefix to your classes. If you were
already using the new ORC layers you will need to drop the '2' suffix.

The legacy layers will remain in-tree until the new layers reach feature
parity with them. This will involve adding support for removing code from the
new layers, and ensuring that performance is comperable.

llvm-svn: 344572
2018-10-15 22:56:10 +00:00
Lang Hames 7899ccbcca [ORC] During lookup, do not match against hidden symbols in other JITDylibs.
This adds two arguments to the main ExecutionSession::lookup method:
MatchNonExportedInJD, and MatchNonExported. These control whether and where
hidden symbols should be matched when searching a list of JITDylibs.

A similar effect could have been achieved by filtering search results, but
this would have involved materializing symbol definitions (since materialization
is triggered on lookup) only to throw the results away, among other issues.

llvm-svn: 344467
2018-10-13 21:53:40 +00:00
Lang Hames 71d781c434 [ORC] Add an 'intern' method to ExecutionEngine for interning symbol names.
This cuts down on boilerplate by reducing 'ES.getSymbolStringPool().intern(...)'
to 'ES.intern(...)'.

llvm-svn: 343427
2018-09-30 23:18:24 +00:00
Lang Hames abeedf1812 [ORC] Add an asynchronous jit-link function, jitLinkForORC, to RuntimeDyld and
switch RTDyldObjectLinkingLayer2 to use it.

RuntimeDyld::loadObject is currently a blocking operation. This means that any
JIT'd code whose call-graph contains an embedded complete K graph will require
at least K threads to link, which precludes the use of a fixed sized thread
pool for concurrent JITing of arbitrary code (whatever K the thread-pool is set
at, any code with a K+1 complete subgraph will deadlock at JIT-link time).

To address this issue, this commmit introduces a function called jitLinkForORC
that uses continuation-passing style to pass the fix-up and finalization steps
to the asynchronous symbol resolver interface so that linking can be performed
without blocking.

llvm-svn: 343043
2018-09-25 22:57:44 +00:00
Lang Hames adde5ba4b2 [ORC] Reapply r342939 with a fix for MSVC's promise/future restrictions.
llvm-svn: 343012
2018-09-25 19:48:46 +00:00
Lang Hames 99bfa95ae3 Revert "[ORC] Switch to asynchronous resolution in JITSymbolResolver."
This reverts commit r342939.

MSVC's promise/future implementation does not like types that are not default
constructible. Reverting while I figure out a solution.

llvm-svn: 342941
2018-09-25 04:54:03 +00:00
Lang Hames 0e5b60326e [ORC] Switch to asynchronous resolution in JITSymbolResolver.
Asynchronous resolution (where the caller receives a callback once the requested
set of symbols are resolved) is a core part of the new concurrent ORC APIs. This
change extends the asynchronous resolution model down to RuntimeDyld, which is
necessary to prevent deadlocks when compiling/linking on a fixed number of
threads: If RuntimeDyld's linking process were a blocking operation, then any
complete K-graph in a program will require at least K threads to link in the
worst case, as each thread would block waiting for all the others to complete.
Using callbacks instead allows the work to be passed between dependent threads
until it is complete.

For backwards compatibility, all existing RuntimeDyld functions will continue
to operate in blocking mode as before. This change will enable the introduction
of a new async finalization process in a subsequent patch to enable asynchronous
JIT linking.

llvm-svn: 342939
2018-09-25 04:43:38 +00:00
Lang Hames a5f33c8694 [ORC] Remove the mapSectionAddress method from RuntimeDyldObjectLinkingLayer2.
Section address mappings can be applied using the RuntimeDyld instance passed to
the RuntimeDyld::MemoryManager::notifyObjectLoaded method. Proving an alternate
route via RuntimeDyldObjectLinkingLayer2 is redundant.

llvm-svn: 341578
2018-09-06 19:39:22 +00:00
Lang Hames 6d32002e2b [ORC] Add utilities to RTDyldObjectLinkingLayer2 to simplify symbol flag
management and materialization responsibility registration.

The setOverrideObjectFlagsWithResponsibilityFlags method instructs
RTDyldObjectlinkingLayer2 to override the symbol flags produced by RuntimeDyld with
the flags provided by the MaterializationResponsibility instance. This can be used
to enable symbol visibility (hidden/exported) for COFF object files, which do not
currently support the SF_Exported flag.

The setAutoClaimResponsibilityForObjectSymbols method instructs
RTDyldObjectLinkingLayer2 to claim responsibility for any symbols provided by a
given object file that were not already in the MaterializationResponsibility
instance. Setting this flag allows higher-level program representations (e.g.
LLVM IR) to be added based on only a subset of the symbols they provide, without
having to write intervening layers to scan and add the additional symbols. This
trades diagnostic quality for convenience however: If all symbols are enumerated
up-front then clashes can be detected and reported early. If this option is set,
clashes for the additional symbols may not be detected until late, and detection
may depend on the flow of control through JIT'd code.

llvm-svn: 341154
2018-08-31 00:53:17 +00:00
Lang Hames 6cadc7c06b [ORC] Replace lookupFlags in JITSymbolResolver with getResponsibilitySet.
The new method name/behavior more closely models the way it was being used.
It also fixes an assertion that can occur when using the new ORC Core APIs,
where flags alone don't necessarily provide enough context to decide whether
the caller is responsible for materializing a given symbol (which was always
the reason this API existed).

The default implementation of getResponsibilitySet uses lookupFlags to determine
responsibility as before, so existing JITSymbolResolvers should continue to
work.

llvm-svn: 340874
2018-08-28 21:18:05 +00:00
Lang Hames 76e21c9792 [ORC] Rename 'finalize' to 'emit' to avoid potential confusion.
An emitted symbol has had its contents written and its memory protections
applied, but it is not automatically ready to execute.

Prior to ORC supporting concurrent compilation, the term "finalized" could be
interpreted two different (but effectively equivalent) ways: (1) The finalized
symbol's contents have been written and its memory protections applied, and (2)
the symbol is ready to run. Now that ORC supports concurrent compilation, sense
(1) no longer implies sense (2). We have already introduced a new term, 'ready',
to capture sense (2), so rename sense (1) to 'emitted' to avoid any lingering
confusion.

llvm-svn: 340115
2018-08-18 02:06:18 +00:00
Lang Hames d5f56c5979 [ORC] Rename VSO to JITDylib.
VSO was a little close to VDSO (an acronym on Linux for Virtual Dynamic Shared
Object) for comfort. It also risks giving the impression that instances of this
class could be shared between ExecutionSessions, which they can not.

JITDylib seems moderately less confusing, while still hinting at how this
class is intended to be used, i.e. as a JIT-compiled stand-in for a dynamic
library (code that would have been a dynamic library if you had wanted to
compile it ahead of time).

llvm-svn: 340084
2018-08-17 21:18:18 +00:00
Lang Hames 960246dbee [ORC] Re-apply r336760 with fixes.
llvm-svn: 337637
2018-07-21 00:12:05 +00:00
Lang Hames a48d108353 Re-apply r337595 with fix for LLVM_ENABLE_THREADS=Off.
llvm-svn: 337626
2018-07-20 22:22:19 +00:00
Reid Kleckner 7ed83591c2 Revert r337595 "[ORC] Add new symbol lookup methods to ExecutionSessionBase in preparation for"
Breaks the build with LLVM_ENABLE_THREADS=OFF.

llvm-svn: 337608
2018-07-20 20:20:45 +00:00