It was found some packed immediate operands (e.g. `<half 1.0, half 2.0>`) are
incorrectly processed so one of two packed values were lost.
Introduced new function to check immediate 32-bit operand can be folded.
Converted condition about current op_sel flags value to fall-through.
Fixes: SWDEV-247595
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D87158
Currently supported LLVM MTBUF syntax is shown below. It is not compatible with SP3.
op dst, addr, rsrc, FORMAT, soffset
This change adds support for SP3 syntax:
op dst, addr, rsrc, soffset SP3FORMAT
In addition to being compatible with SP3, this syntax allows using symbolic names for data, numeric and unified formats. Below is a list of added syntax variants.
format:<expression>
format:[<numeric-format-name>,<data-format-name>]
format:[<data-format-name>,<numeric-format-name>]
format:[<data-format-name>]
format:[<numeric-format-name>]
format:[<unified-format-name>]
The last syntax variant is supported for GFX10 only.
See llvm bug 37738
Reviewers: arsenm, rampitec, vpykhtin
Differential Revision: https://reviews.llvm.org/D84026
MTBUF implementation has many issues and this change addresses most of these:
- refactored duplicated code;
- hardcoded constants moved out of high-level code;
- fixed a decoding error when nfmt or dfmt are zero (bug 36932);
- corrected parsing of operand separators (bug 46403);
- corrected handling of missing operands (bug 46404);
- corrected handling of out-of-range modifiers (bug 46421);
- corrected default value (bug 46467).
Reviewers: arsenm, rampitec, vpykhtin, artem.tamazov, kzhuravl
Differential Revision: https://reviews.llvm.org/D83760
It seems to be a hardware defect that the half inline constants do not
work as expected for the 16-bit integer operations (the inverse does
work correctly). Experimentation seems to show these are really
reading the 32-bit inline constants, which can be observed by writing
inline asm using op_sel to see what's in the high half of the
constant. Theoretically we could fold the high halves of the 32-bit
constants using op_sel.
The *_asm_all.s MC tests are broken, and I don't know where the script
to autogenerate these are. I started manually fixing it, but there's
just too many cases to fix. This also does break the
assembler/disassembler support for these values, and I'm not sure what
to do about it. These are still valid encodings, so it seems like you
should be able to use them in some way. If you wrote assembly using
them, you could have really meant it (perhaps to read the high bits
with op_sel?). The disassembler will print the invalid literal
constant which will fail to re-assemble. The behavior is also
different depending on the use context. Consider this example, which
was previously accepted and encoded using the inline constant:
v_mad_i16 v5, v1, -4.0, v3
; encoding: [0x05,0x00,0xec,0xd1,0x01,0xef,0x0d,0x04]
In contexts where an inline immediate is required (such as on gfx8/9),
this will now be rejected. For gfx10, this will produce the literal
encoding and change the printed format:
v_mad_i16 v5, v1, 0xc400, v3
; encoding: [0x05,0x00,0x5e,0xd7,0x01,0xff,0x0d,0x04,0x00,0xc4,0x00,0x00]
This is just another variation of the issue that we don't perfectly
handle round trip assembly/disassembly due to not tracking how
immediates were encoded. This doesn't matter much in practice, since
compilers don't emit the suboptimal encoding. I doubt any users are
relying on this behavior (although I did make use of the old behavior
to figure out what was wrong).
Fixes bug 46302.
Summary: 'A' constraint requires an immediate int or fp constant that can be inlined in an instruction encoding.
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D78494
This was backwards from intended and missing a test. We perhaps should
just ignored the FP mode here, since it shouldn't be legal to mix code
with different default modes in the absence of strictfp.
Summary:
This fixes a few issues related to SMRD offsets. On gfx9 and gfx10 we have a
signed byte offset immediate, however we can overflow into a negative since we
treat it as unsigned.
Also, the SMRD SOFFSET sgpr is an unsigned offset on all subtargets. We
sometimes tried to use negative values here.
Third, S_BUFFER instructions should never use a signed offset immediate.
Differential Revision: https://reviews.llvm.org/D77082
This will likely introduce catastrophic performance regressions on
older subtargets, but should be correct. A follow up change will
remove the old fp32-denormals subtarget features, and switch to using
the new denormal-fp-math/denormal-fp-math-f32 attributes. Frontends
should be making sure to add the denormal-fp-math-f32 attribute when
appropriate to avoid performance regressions.
Summary: I think Max in the name was misleading. NFC.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76860
Summary:
These methods were identical. I chose to remove getMaxWavesPerCU because
I think Max in the name was misleading. NFC.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76859
Based on D72931
This adds a new feature called A16 which is enabled for gfx10.
gfx9 keeps the R128A16 feature so it can share all the instruction encodings
with gfx7/8.
Differential Revision: https://reviews.llvm.org/D73956
Prepare to accurately track the future denormal-fp-math attribute
changes. The way to actually set these separately is not wired in yet.
This is just a mechanical change, and mostly still assumes the input
and output mode match. This should be refined for some cases. For
example, fcanonicalize lowering should use the flushing variant if
either input or output flushing is enabled
I believe this also fixes bugs with CI 32-bit handling, which was
incorrectly skipping offsets that look like signed 32-bit values. Also
validate the offsets are dword aligned before folding.
Start moving towards treating this as a property of the calling
convention, and not the subtarget. The default denormal mode should
not be part of the subtarget, and be moved into a separate function
attribute.
This patch is still NFC. The denormal mode remains as a subtarget
feature for now, but make the necessary changes to switch to using an
attribute.
The default FP mode should really be a property of a specific
function, and not a subtarget. Introduce the necessary fields to the
SIMachineFunctionInfo to help move towards this goal.
Summary:
Extend cachepolicy operand in the new VMEM buffer intrinsics
to supply information whether the buffer data is swizzled.
Also, propagate this information to MIR.
Intrinsics updated:
int_amdgcn_raw_buffer_load
int_amdgcn_raw_buffer_load_format
int_amdgcn_raw_buffer_store
int_amdgcn_raw_buffer_store_format
int_amdgcn_raw_tbuffer_load
int_amdgcn_raw_tbuffer_store
int_amdgcn_struct_buffer_load
int_amdgcn_struct_buffer_load_format
int_amdgcn_struct_buffer_store
int_amdgcn_struct_buffer_store_format
int_amdgcn_struct_tbuffer_load
int_amdgcn_struct_tbuffer_store
Furthermore, disable merging of VMEM buffer instructions
in SI Load/Store optimizer, if the "swizzled" bit on the instruction
is on.
The default value of the bit is 0, meaning that data in buffer
is linear and buffer instructions can be merged.
There is no difference in the generated code with this commit.
However, in the future it will be expected that front-ends
use buffer intrinsics with correct "swizzled" bit set.
Reviewers: arsenm, nhaehnle, tpr
Reviewed By: nhaehnle
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, arphaman, jfb, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68200
llvm-svn: 373491
Currently the searchable tables report the number of dwords. These
round to the same number for 3 and 4 component d16
instructions. Change this to report the number of elements so this
isn't ambiguous.
llvm-svn: 369202
Summary of changes:
- simplified handling of FLAT offset: offset_s13 and offset_u12 have been replaced with flat_offset;
- provided information about error position for pre-gfx9 targets;
- improved errors handling.
Reviewers: artem.tamazov, arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D64244
llvm-svn: 365321
Summary:
This fixes a hardware bug that makes a branch offset of 0x3f unsafe.
This replaces the 32 bit branch with offset 0x3f to a 64 bit
instruction that includes the same 32 bit branch and the encoding
for a s_nop 0 to follow. The relaxer than modifies the offsets
accordingly.
Change-Id: I10b7aed99d651f8159401b01bb421f105fa6288e
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63494
llvm-svn: 364451
Since this can be set with s_setreg*, it should not be a subtarget
property. Set a default based on the calling convention, and Introduce
a new amdgpu-dx10-clamp attribute to override this if desired.
Also introduce a new amdgpu-ieee attribute to match.
The values need to match to allow inlining. I think it is OK for the
caller's dx10-clamp attribute to override the callee, but there
doesn't appear to be the infrastructure to do this currently without
definining the attribute in the generic Attributes.td.
Eventually the calling convention lowering will need to insert a mode
switch somewhere for these.
llvm-svn: 357302
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
This re-submit of the change also includes a slight modification in
SIISelLowering.cpp to work-around a compiler bug for the powerpc_le
platform that caused a buildbot failure on a previous submission.
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
Work around for ppcle compiler bug
Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b
llvm-svn: 351054
I've extended the load/store optimizer to be able to produce dwordx3
loads and stores, This change allows many more load/stores to be combined,
and results in much more optimal code for our hardware.
Differential Revision: https://reviews.llvm.org/D54042
llvm-svn: 348937
Summary:
Moving SMRD to VMEM in SIFixSGPRCopies is rather bad for performance if
the load is really uniform. So select the scalar load intrinsics directly
to either VMEM or SMRD buffer loads based on divergence analysis.
If an offset happens to end up in a VGPR -- either because a floating
point calculation was involved, or due to other remaining deficiencies
in SIFixSGPRCopies -- we use v_readfirstlane.
There is some unrelated churn in tests since we now select MUBUF offsets
in a unified way with non-scalar buffer loads.
Change-Id: I170e6816323beb1348677b358c9d380865cd1a19
Reviewers: arsenm, alex-t, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53283
llvm-svn: 348050
Also revert fix r347876
One of the buildbots was reporting a failure in some relevant tests that I can't
repro or explain at present, so reverting until I can isolate.
llvm-svn: 347911
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
llvm-svn: 347871
Summary:
Reduce the statefulness of the algorithm in two ways:
1. More clearly split generateWaitcntInstBefore into two phases: the
first one which determines the required wait, if any, without changing
the ScoreBrackets, and the second one which actually inserts the wait
and updates the brackets.
2. Communicate pre-existing s_waitcnt instructions using an argument to
generateWaitcntInstBefore instead of through the ScoreBrackets.
To simplify these changes, a Waitcnt structure is introduced which carries
the counts of an s_waitcnt instruction in decoded form.
There are some functional changes:
1. The FIXME for the VCCZ bug workaround was implemented: we only wait for
SMEM instructions as required instead of waiting on all counters.
2. We now properly track pre-existing waitcnt's in all cases, which leads
to less conservative waitcnts being emitted in some cases.
s_load_dword ...
s_waitcnt lgkmcnt(0) <-- pre-existing wait count
ds_read_b32 v0, ...
ds_read_b32 v1, ...
s_waitcnt lgkmcnt(0) <-- this is too conservative
use(v0)
more code
use(v1)
This increases code size a bit, but the reduced latency should still be a
win in basically all cases. The worst code size regressions in my shader-db
are:
WORST REGRESSIONS - Code Size
Before After Delta Percentage
1724 1736 12 0.70 % shaders/private/f1-2015/1334.shader_test [0]
2276 2284 8 0.35 % shaders/private/f1-2015/1306.shader_test [0]
4632 4640 8 0.17 % shaders/private/ue4_elemental/62.shader_test [0]
2376 2384 8 0.34 % shaders/private/f1-2015/1308.shader_test [0]
3284 3292 8 0.24 % shaders/private/talos_principle/1955.shader_test [0]
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54226
llvm-svn: 347848