We really want to try and avoid spilling P0, which can be difficult
since there's only one register, so try to rematerialize any VCTP
instructions.
Differential Revision: https://reviews.llvm.org/D87280
Enable default outlining when the function has the minsize attribute
and we're targeting an m-class core.
Differential Revision: https://reviews.llvm.org/D82951
Fix the ARM backend's analyzeBranch so it doesn't ignore predicated
return instructions, and make the MachineVerifier rule more strict.
Differential Revision: https://reviews.llvm.org/D40061
Use the stack to save and restore the link register when there is no
available register to do it.
Differential Revision: https://reviews.llvm.org/D76069
IT blocks with more than one instruction were performance deprecated in Armv8
but that doesn't mean we should follow that advise when optimising for size.
Differential Revision: https://reviews.llvm.org/D85638
Fixes a regression caused by D82439, in which IT blocks were no longer being
generated when -Oz is present. This was due to the CPSR register being marked as
dead, while this case was not accounted for.
Differential Revision: https://reviews.llvm.org/D83667
Optimize some specific immediates selection by materializing them with sub/mvn
instructions as opposed to loading them from the constant pool.
Patch by Ben Shi, powerman1st@163.com.
Differential Revision: https://reviews.llvm.org/D83745
Many Thumb1 instructions are defined to set CPSR if executed outside an IT
block, but leave it alone from inside one. In MachineIR this is represented by
whether an optional register is CPSR or NoReg (0), and affects how the
instructions are printed.
This sets the instruction to the appropriate form during if-conversion.
Before this instruction supported output values, it fit fairly
naturally as a terminator. However, being a terminator while also
supporting outputs causes some trouble, as the physreg->vreg COPY
operations cannot be in the same block.
Modeling it as a non-terminator allows it to be handled the same way
as invoke is handled already.
Most of the changes here were created by auditing all the existing
users of MachineBasicBlock::isEHPad() and
MachineBasicBlock::hasEHPadSuccessor(), and adding calls to
isInlineAsmBrIndirectTarget or mayHaveInlineAsmBr, as appropriate.
Reviewed By: nickdesaulniers, void
Differential Revision: https://reviews.llvm.org/D79794
Outline chunks of code which need to save and restore the link register
when a spare register can be used to it.
Differential Revision: https://reviews.llvm.org/D80127
Enables Machine Outlining for ARM and Thumb2 modes. This is the first
patch of the series which adds all the basic logic for the support, and
only handles tail-calls and thunks.
The outliner can be turned on by using clang -moutline option or -mllvm
-enable-machine-outliner one (like AArch64).
Differential Revision: https://reviews.llvm.org/D76066
Summary:
The INLINEASM MIR instructions use immediate operands to encode the values of some operands.
The MachineInstr pretty printer function already handles those operands and prints human readable annotations instead of the immediates. This patch adds similar annotations to the output of the MIRPrinter, however uses the new MIROperandComment feature.
Reviewers: SjoerdMeijer, arsenm, efriedma
Reviewed By: arsenm
Subscribers: qcolombet, sdardis, jvesely, wdng, nhaehnle, hiraditya, jrtc27, atanasyan, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78088
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, jrtc27, atanasyan, jfb, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76925
As a narrow stopgap for the assertion failure described in PR45025, add
a describeLoadedValue override to ARMBaseInstrInfo and use it to detect
copies in which the forwarding reg is a super/sub reg of the copy
destination. For the moment this is unsupported.
Several follow ups are possible:
1) Handle VORRq. At the moment, we do not, because isCopyInstrImpl
returns early when !MI.isMoveReg().
2) In the case where forwarding reg is a super-reg of the copy
destination, we should be able to describe the forwarding reg as a
subreg within the copy destination. I'm not 100% sure about this, but
it looks like that's what's done in AArch64InstrInfo.
3) In the case where the forwarding reg is a sub-reg of the copy
destination, maybe we could describe the forwarding reg using the
copy destinaion and a DW_OP_LLVM_fragment (I guess this should be
possible after D75036).
https://bugs.llvm.org/show_bug.cgi?id=45025
rdar://59772698
Differential Revision: https://reviews.llvm.org/D75273
This adds infrastructure to print and parse MIR MachineOperand comments.
The motivation for the ARM backend is to print condition code names instead of
magic constants that are difficult to read (for human beings). For example,
instead of this:
dead renamable $r2, $cpsr = tEOR killed renamable $r2, renamable $r1, 14, $noreg
t2Bcc %bb.4, 0, killed $cpsr
we now print this:
dead renamable $r2, $cpsr = tEOR killed renamable $r2, renamable $r1, 14 /* CC::always */, $noreg
t2Bcc %bb.4, 0 /* CC:eq */, killed $cpsr
This shows that MachineOperand comments are enclosed between /* and */. In this
example, the EOR instruction is not conditionally executed (i.e. it is "always
executed"), which is encoded by the 14 immediate machine operand. Thus, now
this machine operand has /* CC::always */ as a comment. The 0 on the next
conditional branch instruction represents the equal condition code, thus now
this operand has /* CC:eq */ as a comment.
As it is a comment, the MI lexer/parser completely ignores it. The benefit is
that this keeps the change in the lexer extremely minimal and no target
specific parsing needs to be done. The changes on the MIPrinter side are also
minimal, as there is only one target hooks that is used to create the machine
operand comments.
Differential Revision: https://reviews.llvm.org/D74306
Summary:
This patch fixes pr23772 [ARM] r226200 can emit illegal thumb2 instruction: "sub sp, r12, #80".
The violation was that SUB and ADD (reg, immediate) instructions can only write to SP if the source register is also SP. So the above instructions was unpredictable.
To enforce that the instruction t2(ADD|SUB)ri does not write to SP we now enforce the destination register to be rGPR (That exclude PC and SP).
Different than the ARM specification, that defines one instruction that can read from SP, and one that can't, here we inserted one that can't write to SP, and other that can only write to SP as to reuse most of the hard-coded size optimizations.
When performing this change, it uncovered that emitting Thumb2 Reg plus Immediate could not emit all variants of ADD SP, SP #imm instructions before so it was refactored to be able to. (see test/CodeGen/Thumb2/mve-stacksplot.mir where we use a subw sp, sp, Imm12 variant )
It also uncovered a disassembly issue of adr.w instructions, that were only written as SUBW instructions (see llvm/test/MC/Disassembler/ARM/thumb2.txt).
Reviewers: eli.friedman, dmgreen, carwil, olista01, efriedma, andreadb
Reviewed By: efriedma
Subscribers: gbedwell, john.brawn, efriedma, ostannard, kristof.beyls, hiraditya, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70680
Summary:
This patch fixes pr23772 [ARM] r226200 can emit illegal thumb2 instruction: "sub sp, r12, #80".
The violation was that SUB and ADD (reg, immediate) instructions can only write to SP if the source register is also SP. So the above instructions was unpredictable.
To enforce that the instruction t2(ADD|SUB)ri does not write to SP we now enforce the destination register to be rGPR (That exclude PC and SP).
Different than the ARM specification, that defines one instruction that can read from SP, and one that can't, here we inserted one that can't write to SP, and other that can only write to SP as to reuse most of the hard-coded size optimizations.
When performing this change, it uncovered that emitting Thumb2 Reg plus Immediate could not emit all variants of ADD SP, SP #imm instructions before so it was refactored to be able to. (see test/CodeGen/Thumb2/mve-stacksplot.mir where we use a subw sp, sp, Imm12 variant )
It also uncovered a disassembly issue of adr.w instructions, that were only written as SUBW instructions (see llvm/test/MC/Disassembler/ARM/thumb2.txt).
Reviewers: eli.friedman, dmgreen, carwil, olista01, efriedma
Reviewed By: efriedma
Subscribers: john.brawn, efriedma, ostannard, kristof.beyls, hiraditya, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70680
Summary:
Currently the describeLoadedValue() hook is assumed to describe the
value of the instruction's first explicit define. The hook will not be
called for instructions with more than one explicit define.
This commit adds a register parameter to the describeLoadedValue() hook,
and invokes the hook for all registers in the worklist.
This will allow us to for example describe instructions which produce
more than two parameters' values; e.g. Hexagon's various combine
instructions.
This also fixes situations in our downstream target where we may pass
smaller parameters in the high part of a register. If such a parameter's
value is produced by a larger copy instruction, we can't describe the
call site value using the super-register, and we instead need to know
which sub-register that should be used.
This also allows us to handle cases like this:
$ebx = [...]
$rdi = MOVSX64rr32 $ebx
$esi = MOV32rr $edi
CALL64pcrel32 @call
The hook will first be invoked for the MOV32rr instruction, which will
say that @call's second parameter (passed in $esi) is described by $edi.
As $edi is not preserved it will be added to the worklist. When we get
to the MOVSX64rr32 instruction, we need to describe two values; the
sign-extended value of $ebx -> $rdi for the first parameter, and $ebx ->
$edi for the second parameter, which is now possible.
This commit modifies the dbgcall-site-lea-interpretation.mir test case.
In the test case, the values of some 32-bit parameters were produced
with LEA64r. Perhaps we can in general cases handle such by emitting
expressions that AND out the lower 32-bits, but I have not been able to
land in a case where a LEA64r is used for a 32-bit parameter instead of
LEA64_32 from C code.
I have not found a case where it would be useful to describe parameters
using implicit defines, so in this patch the hook is still only invoked
for explicit defines of forwarding registers.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: djtodoro, vsk
Subscribers: ormris, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D70431
Currently the describeLoadedValue() hook is assumed to describe the
value of the instruction's first explicit define. The hook will not be
called for instructions with more than one explicit define.
This commit adds a register parameter to the describeLoadedValue() hook,
and invokes the hook for all registers in the worklist.
This will allow us to for example describe instructions which produce
more than two parameters' values; e.g. Hexagon's various combine
instructions.
This also fixes a case in our downstream target where we may pass
smaller parameters in the high part of a register. If such a parameter's
value is produced by a larger copy instruction, we can't describe the
call site value using the super-register, and we instead need to know
which sub-register that should be used.
This also allows us to handle cases like this:
$ebx = [...]
$rdi = MOVSX64rr32 $ebx
$esi = MOV32rr $edi
CALL64pcrel32 @call
The hook will first be invoked for the MOV32rr instruction, which will
say that @call's second parameter (passed in $esi) is described by $edi.
As $edi is not preserved it will be added to the worklist. When we get
to the MOVSX64rr32 instruction, we need to describe two values; the
sign-extended value of $ebx -> $rdi for the first parameter, and $ebx ->
$edi for the second parameter, which is now possible.
This commit modifies the dbgcall-site-lea-interpretation.mir test case.
In the test case, the values of some 32-bit parameters were produced
with LEA64r. Perhaps we can in general cases handle such by emitting
expressions that AND out the lower 32-bits, but I have not been able to
land in a case where a LEA64r is used for a 32-bit parameter instead of
LEA64_32 from C code.
I have not found a case where it would be useful to describe parameters
using implicit defines, so in this patch the hook is still only invoked
for explicit defines of forwarding registers.
The VCMP instructions in MVE can accept a register or ZR, but only as
the right hand operator. Most of the time this will already be correct
because the icmp will have been canonicalised that way already. There
are some cases in the lowering of float conditions that this will not
apply to though. This code should fix up those cases.
Differential Revision: https://reviews.llvm.org/D70822
Refactor usage of isCopyInstrImpl, isCopyInstr and isAddImmediate methods
to return optional machine operand pair of destination and source
registers.
Patch by Nikola Prica
Differential Revision: https://reviews.llvm.org/D69622
Refactor usage of isCopyInstrImpl, isCopyInstr and isAddImmediate methods
to return optional machine operand pair of destination and source
registers.
Patch by Nikola Prica
Differential Revision: https://reviews.llvm.org/D69622
Extend the describeLoadedValue() with support for target specific ARM and
AArch64 instructions interpretation. The patch provides specialization for
ADD and SUB operations that include a register and an immediate/offset
operand. Some of the instructions can operate with global string addresses
or constant pool indexes but such cases are omitted since we currently lack
flexible support for processing such operands at DWARF production stage.
Patch by Nikola Prica
Differential Revision: https://reviews.llvm.org/D67556
Currently, the heuristics the if-conversion pass uses for diamond if-conversion
are based on execution time, with no consideration for code size. This adds a
new set of heuristics to be used when optimising for code size.
This is mostly target-independent, because the if-conversion pass can
see the code size of the instructions which it is removing. For thumb,
there are a few passes (insertion of IT instructions, selection of
narrow branches, and selection of CBZ instructions) which are run after
if conversion and affect these heuristics, so I've added target hooks to
better predict the code-size effect of a proposed if-conversion.
Differential revision: https://reviews.llvm.org/D67350
llvm-svn: 374301
The static analyzer is warning about potential null dereferences, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 372992
We should not be generating Neon stack loads/stores even for these large
registers.
No test here because my understanding is we will only generate these QQPR regs
for intrinsics and VLDn's. The tests will follow once those are available.
Differential revision: https://reviews.llvm.org/D67169
llvm-svn: 371386
This moves ConstantMaterializationCost into ARMBaseInstrInfo so that it can
also be used in ISel Lowering, adding codesize values to the computed costs, to
be able to compare either approximate instruction counts or codesize costs.
It also adds a HasLowerConstantMaterializationCost, which compares the
ConstantMaterializationCost of two values, returning true if the first is
smaller either in instruction count/codesize, or falling back to the other in
the case that they are equal.
This is used in constant CSEL lowering to invert the predicate if the opposite
is easier to materialise.
Differential revision: https://reviews.llvm.org/D66701
llvm-svn: 370741
Arm 8.1-M adds a number of related CSEL instructions, including CSINC, CSNEG and CSINV. These choose between two values given the content in CPSR and a condition, performing an increment, negation or inverse of the false value.
This adds some selection for them, either from constant values or patterns. It does not include CSEL directly, which is currently not always making code better. It is still useful, but we will have to check more carefully where it should and shouldn't be used.
Code by Ranjeet Singh and Simon Tatham, with some modifications from me.
Differential revision: https://reviews.llvm.org/D66483
llvm-svn: 370739
To save a 'add sp,#val' instruction by adding registers to the final pop instruction,
the first register transferred by this pop instruction need to be found.
If the function to be optimized has a non-void return value, the operand list contains
r0 (implicit) which prevents the optimization to take place.
Therefore implicit register references should be skipped in the search loop,
because this registers are never popped from the stack.
Patch by Rainer Herbertz (rOptimizer)!
Differential revision: https://reviews.llvm.org/D66730
llvm-svn: 370728