An existing function Type::getScalarSizeInBits returns a uint64_t
instead of a TypeSize class because the caller is requesting a
scalar size, which cannot be scalable. This patch makes other
similar functions requesting a scalar size consistent with that,
thereby eliminating more than 1000 implicit TypeSize -> uint64_t
casts.
Differential revision: https://reviews.llvm.org/D87889
security boundary
It was never supported and that part was accidentally omitted when
upstreaming D76518.
Differential Revision: https://reviews.llvm.org/D86478
Change-Id: If6ba9506eb0431c87a1d42a38aa60e47ce263039
This adds lowering for f32 values using the vmov.f16, which zeroes the
top bits whilst setting the lower bits to a pattern. This range of
values does not often come up, except where a f16 constant value has
been converted to a f32.
Differential Revision: https://reviews.llvm.org/D87790
This adds simple constant folding for VMOVrh, to constant fold fp16
constants to integer values. It can help especially with soft calling
conventions, but some of the results are not optimal as we end up
loading using a vldr. This will be improved in a follow up patch.
Differential Revision: https://reviews.llvm.org/D87789
The predicated MVE intrinsics are generated as, for example,
llvm.arm.mve.add.predicated(x, splat(y). p). We need to sink the splat
value back into the loop, like we do for other instructions, so we can
re-select qr variants.
Differential Revision: https://reviews.llvm.org/D87693
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592
LLVM will canonicalize conditional selectors to a different pattern than the old code that was used.
This is updating the function to match the new expected patterns and select SSAT or USAT when successful.
Tests have also been updated to use the new patterns.
Differential Review: https://reviews.llvm.org/D87379
This fixes a complication on top of D87276. If we are sign extending
around a mul with the two operands that are the same, instcombine will
helpfully convert one of the sext to a zext. Reverse that so that we
again generate a reduction.
Differnetial Revision: https://reviews.llvm.org/D87287
We can sometimes get code that does:
xe = zext i16 x to i32
ye = zext i16 y to i32
m = mul i32 xe, ye
me = zext i32 m to i64
r = vecreduce.add(me)
This "double extend" can trip up the reduction identification, but
should give identical results.
This extends the pattern matching to handle them.
Differential Revision: https://reviews.llvm.org/D87276
Skip this for now, to avoid a backend crash in:
UNREACHABLE executed at llvm/lib/Target/ARM/ARMISelLowering.cpp:13412
This should fix PR45824.
Differential Revision: https://reviews.llvm.org/D86784
If gather/scatters are enabled, ARMTargetTransformInfo now allows
tail predication for loops with a much wider range of strides, up
to anything that is loop invariant.
Differential Revision: https://reviews.llvm.org/D85410
Changes the Offset arguments to both functions from int64_t to TypeSize
& updates all uses of the functions to create the offset using TypeSize::Fixed()
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85220
This adds patterns for v16i16's vecreduce, using all the existing code
to go via an i32 VADDV/VMLAV and truncating the result.
Differential Revision: https://reviews.llvm.org/D85452
Similar to 8fa824d7a3 but this time for MLA patterns, this selects
predicated vmlav/vmlava/vmlalv/vmlava instructions from
vecreduce.add(select(p, mul(x, y), 0)) nodes.
Differential Revision: https://reviews.llvm.org/D84102
Given a vecreduce.add(select(p, x, 0)), we can convert that to a
predicated vaddv, as the else value for the select is the identity
value, a zero. That is what this patch does for the vaddv, vaddva,
vaddlv and vaddlva instructions, copying the existing patterns to also
handle predication through a select.
Differential Revision: https://reviews.llvm.org/D84101
Vector bitwise selects are matched by pseudo VBSP instruction
and expanded to VBSL/VBIT/VBIF after register allocation
depend on operands registers to minimize extra copies.
MVE has native reductions for integer add and min/max. The others need
to be expanded to a series of extract's and scalar operators to reduce
the vector into a single scalar. The default codegen for that expands
the reduction into a series of in-order operations.
This modifies that to something more suitable for MVE. The basic idea is
to use vector operations until there are 4 remaining items then switch
to pairwise operations. For example a v8f16 fadd reduction would become:
Y = VREV X
Z = ADD(X, Y)
z0 = Z[0] + Z[1]
z1 = Z[2] + Z[3]
return z0 + z1
The awkwardness (there is always some) comes in from something like a
v4f16, which is first legalized by adding identity values to the extra
lanes of the reduction, and which can then not be optimized away through
the vrev; fadd combo, the inserts remain. I've made sure they custom
lower so that we can produce the pairwise additions before the extra
values are added.
Differential Revision: https://reviews.llvm.org/D81397
Pre-commit for D82257, this adds a DemandedElts arg to ShrinkDemandedConstant/targetShrinkDemandedConstant which will allow future patches to (optionally) add vector support.
This extends PerformSplittingToWideningLoad to also handle FP_Ext, as
well as sign and zero extends. It uses an integer extending load
followed by a VCVTL on the bottom lanes to efficiently perform an fpext
on a smaller than legal type.
The existing code had to be rewritten a little to not just split the
node in two and let legalization handle it from there, but to actually
split into legal chunks.
Differential Revision: https://reviews.llvm.org/D81340
This adds code to lower f16 to f32 fp_exts's using an MVE VCVT
instructions, similar to a recent similar patch for fp_trunc. Again it
goes through the lowering of a BUILD_VECTOR, but is slightly simpler
only having to deal with interleaved indices. It adds a VCVTL node to
lower to, similar to VCVTN.
Differential Revision: https://reviews.llvm.org/D81339
This splits MVE vector stores of a fp_trunc in the same way that we do
for standard trunc's. It extends PerformSplittingToNarrowingStores to
handle fp_round, splitting the store into pieces and adding a VCVTNb to
perform the actual fp_round. The actual store is then converted to an
integer store so that it can truncate bottom lanes of the result.
Differential Revision: https://reviews.llvm.org/D81141
This adds code to lower f32 to f16 fp_trunc's using a pair of MVE VCVT
instructions. Due to v4f16 not being legal, fp_round are often split up
fairly early. So this reconstructs the vcvt's from a buildvector of
fp_rounds from two vector inputs. Something like:
BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
FP_ROUND(EXTRACT_ELT(Y, 0),
FP_ROUND(EXTRACT_ELT(X, 1),
FP_ROUND(EXTRACT_ELT(Y, 1), ...)
It adds a VCVTN node to handle this, which like VMOVN or VQMOVN lowers
into the top/bottom lanes of an MVE instruction.
Differential Revision: https://reviews.llvm.org/D81139
Summary:
This change permits scalar bfloats to be loaded, stored, moved and
used as function call arguments and return values, whenever the bf16
feature is supported by the subtarget.
Previously that was only supported in the presence of the fullfp16
feature, because the code generation strategy depended on instructions
from that extension. This change adds alternative code generation
strategies so that those operations can be done even without fullfp16.
The strategy for loads and stores is to replace VLDRH/VSTRH with
integer LDRH/STRH plus a move between register classes. I've written
isel patterns for those, conditional on //not// having the fullfp16
feature (so that in the fullfp16 case, the existing patterns will
still be used).
For function arguments and returns, instead of writing isel patterns
to match `VMOVhr` and `VMOVrh`, I've avoided generating those SDNodes
in the first place, by factoring out the code that constructs them
into helper functions `MoveToHPR` and `MoveFromHPR` which have a
fallback for non-fullfp16 subtargets.
The current output code is not especially pretty: in the new test file
you can see unnecessary store/load pairs implementing no-op bitcasts,
and lots of pointless moves back and forth between FP registers and
GPRs. But it at least works, which is an improvement on the previous
situation.
Reviewers: dmgreen, SjoerdMeijer, stuij, chill, miyuki, labrinea
Reviewed By: dmgreen, labrinea
Subscribers: labrinea, kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82372
Implement them on top of sdiv/udiv, similar to what we do for integer
types.
Potential future work: implementing i8/i16 srem/urem, optimizations for
constant divisors, optimizing the mul+sub to mls.
Differential Revision: https://reviews.llvm.org/D81511
This patch adds basic support for BFloat in the Arm backend.
For now the code generation relies on fullfp16 being present.
Briefly:
* adds the bfloat scalar and vector types in the necessary register classes,
* adjusts the calling convention to cope with bfloat argument passing and return,
* adds codegen patterns for moves, loads and stores.
It's tested mostly by the intrinsic patches that depend on it (load/store, convert/copy).
The following people contributed to this patch:
* Alexandros Lamprineas
* Ties Stuij
Differential Revision: https://reviews.llvm.org/D81373
Summary:
As half-precision floating point arguments and returns were previously
coerced to either float or int32 by clang's codegen, the CMSE handling
of those was also performed in clang's side by zeroing the unused MSBs
of the coercer values.
This patch moves this handling to the backend's calling convention
lowering, making sure the high bits of the registers used by
half-precision arguments and returns are zeroed.
Reviewers: chill, rjmccall, ostannard
Reviewed By: ostannard
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D81428
Summary:
Half-precision floating point arguments and returns are currently
promoted to either float or int32 in clang's CodeGen and there's
no existing support for the lowering of `half` arguments and returns
from IR in AArch32's backend.
Such frontend coercions, implemented as coercion through memory
in clang, can cause a series of issues in argument lowering, as causing
arguments to be stored on the wrong bits on big-endian architectures
and incurring in missing overflow detections in the return of certain
functions.
This patch introduces the handling of half-precision arguments and returns in
the backend using the actual "half" type on the IR. Using the "half"
type the backend is able to properly enforce the AAPCS' directions for
those arguments, making sure they are stored on the proper bits of the
registers and performing the necessary floating point convertions.
Reviewers: rjmccall, olista01, asl, efriedma, ostannard, SjoerdMeijer
Reviewed By: ostannard
Subscribers: stuij, hiraditya, dmgreen, llvm-commits, chill, dnsampaio, danielkiss, kristof.beyls, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75169
The rearranges PerformANDCombine and PerformORCombine to try and make
sure we don't call isConstantSplat on any i1 vectors. As pointed out in
D81860 it may not be very well defined in those cases.
These code patterns attempt to call isVMOVModifiedImm on a splat of i1
values, leading to an unreachable being hit. I've guarded the call on a
more specific set of sizes, as i1 vectors are legal under MVE.
Differential Revision: https://reviews.llvm.org/D81860
Summary: Note to downstream target maintainers: this might silently change the semantics of your code if you override `TargetLowering::HandleByVal` without marking it `override`.
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81365
Summary:
With -mbig-endian -mexecute-only and targeting an fpu,
an incorrect sequence of movw/movt was generated to construct a double literal.
The test suite was hardwired to check these wrong values.
The fault was caused by the explicit word swap in LowerConstantFP().
With -mbig-endian -mexecute-only -mfpu=none, a correct sequence of
movw/movt is generated to construct a double literal.
The test suite did not test this no fpu case.
The test suite expected values have been corrected.
The test file is updated to add testing of fpu=none case
Reviewers: christof, llvm-commits, dmgreen
Reviewed By: dmgreen
Subscribers: dmgreen, kristof.beyls, hiraditya, danielkiss
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81259
Change-Id: Ia3737df243218c89c82f02b7f9f4032ecd5a3917
Similar to VMOVN, a VQMOVN will only demand the top/bottom lanes of it's
first input. However unlike VMOVN it will need access to the entire
second argument, as that value is saturated not just moved in place.
Differential Revision: https://reviews.llvm.org/D80515
Let the codegen recognized the nomerge attribute and disable branch folding when the attribute is given
Differential Revision: https://reviews.llvm.org/D79537
Summary:
Instead of generating two i32 instructions for each load or store of a volatile
i64 value (two LDRs or STRs), now emit LDRD/STRD.
These improvements cover architectures implementing ARMv5TE or Thumb-2.
The code generation explicitly deviates from using the register-offset
variant of LDRD/STRD. In this variant, the register allocated to the
register-offset cannot be reused in any of the remaining operands. Such
restriction seems to be non-trivial to implement in LLVM, thus it is
left as a to-do.
Differential Revision: https://reviews.llvm.org/D70072
This reverts commit 8a12553223.
A bug has been found when generating code for Thumb2. In some very
specific cases, the prologue/epilogue emitter generates erroneous stack
offsets for the new LDRD instructions that access the stack.
This bug does not seem to be caused by the reverted patch though. Likely
the latter has made an undiscovered issue emerge in the
prologue/epilogue emission pass. Nevertheless, this reversion is
necessary since it is blocking users of the ARM backend.
This adds two combines for VMOVN, one to fold
VMOVN[tb](c, VQMOVNb(a, b)) => VQMOVN[tb](c, b)
The other to perform demand bits analysis on the lanes of a VMOVN. We
know that only the bottom lanes of the second operand and the top or
bottom lanes of the Qd operand are needed in the result, depending on if
the VMOVN is bottom or top.
Differential Revision: https://reviews.llvm.org/D77718
This adds some custom lowering for VQMOVN, an instruction that can be
used to perform saturating truncates from a pair of min(max(X, -0x8000),
0x7fff), providing those constants are correct. This leaves a VQMOVNBs
which saturates the value and inserts that into the bottom lanes of an
existing vector. We then need to do something with the other lanes,
extending the value using a vmovlb.
Ideally, as will often be the case, only the bottom lane of what remains
will be demanded, allowing the vmovlb to be removed. Which should mean
the instruction is either equal or a win most of the time, and allows
some extra follow-up folding to happen.
Differential Revision: https://reviews.llvm.org/D77590
This patch implements the final bits of CMSE code generation:
* emit special linker symbols
* restrict parameter passing to no use memory
* emit BXNS and BLXNS instructions for returns from non-secure entry
functions, and non-secure function calls, respectively
* emit code to save/restore secure floating-point state around calls
to non-secure functions
* emit code to save/restore non-secure floating-pointy state upon
entry to non-secure entry function, and return to non-secure state
* emit code to clobber registers not used for arguments and returns
* when switching to no-secure state
Patch by Momchil Velikov, Bradley Smith, Javed Absar, David Green,
possibly others.
Differential Revision: https://reviews.llvm.org/D76518