This is the first in a series of patches to make implicit null checks
more general. This patch identifies instructions that preserves zero
value of a register and considers that as a valid instruction to hoist
along with the faulting load. See added testcases.
Reviewed-By: reames, dantrushin
Differential Revision: https://reviews.llvm.org/D87108
X86 is the only user of this interface in tree. Previously the
X86 pass would loop over operands looking for one undef operand for
the pass to fix. But there could theoretically be multiple operands
to fix. So it makes more sense for the pass to do the looping and
ask the target if an operand needs to be fixed.
This is just a thin wrapper around computeRegisterLivness which
we can just call directly. The only real difference is that
isSafeToClobberEFLAGS returns a bool and computeRegisterLivness
returns an enum. So we need to check for the specific enum value
that isSafeToClobberEFLAGS was hiding.
I've also adjusted which sites pass an explicit value for
Neighborhood since the default for computeRegisterLivness is 10.
I messed up the bug numbers in the commit message before
Previously this function searched 4 instructions forwards or
backwards to determine if it was ok to clobber eflags.
This is called in 3 places: rematerialization, turning 2 operand
leas into adds or splitting 3 ops leas into an lea and add on some
CPU targets.
This patch increases the search limit to 10 instructions for
rematerialization and 2 operand lea to add. I've left the old
treshold for 3 ops lea spliting as that increases code size.
Fixes PR47024 and PR46315.
Previously this function searched 4 instructions forwards or
backwards to determine if it was ok to clobber eflags.
This is called in 3 places: rematerialization, turning 2 operand
leas into adds or splitting 3 ops leas into an lea and add on some
CPU targets.
This patch increases the search limit to 10 instructions for
rematerialization and 2 operand lea to add. I've left the old
treshold for 3 ops lea spliting as that increases code size.
Fixes PR47024 and PR43014
Instructions should not be scheduled across ENDBR instructions, as this would result in the ENDBR being displaced, breaking the parity needed for the Indirect Branch Tracking feature of CET.
Currently, the X86IndirectBranchTracking pass is later than the instruction scheduling in the pipeline, what causes the bug to be unnoticeable and very hard (if not unfeasible) to be triggered while compiling C files with the standard LLVM setup. Yet, for correctness and to prevent issues in future changes, the compiler should prevent the such scheduling.
Differential Revision: https://reviews.llvm.org/D84862
Summary:
Almost all uses of these iterators, including implicit ones, really
only need the const variant (as it should be). The only exception is
in NewGVN, which changes the order of dominator tree child nodes.
Change-Id: I4b5bd71e32d71b0c67b03d4927d93fe9413726d4
Reviewers: arsenm, RKSimon, mehdi_amini, courbet, rriddle, aartbik
Subscribers: wdng, Prazek, hiraditya, kuhar, rogfer01, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, vkmr, Kayjukh, jurahul, msifontes, cfe-commits, llvm-commits
Tags: #clang, #mlir, #llvm
Differential Revision: https://reviews.llvm.org/D83087
Summary:
While clustering mem ops, AMDGPU target needs to consider number of clustered bytes
to decide on max number of mem ops that can be clustered. This patch adds support to pass
number of clustered bytes to target mem ops clustering logic.
Reviewers: foad, rampitec, arsenm, vpykhtin, javedabsar
Reviewed By: foad
Subscribers: MatzeB, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, javed.absar, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80545
This enables the register to be changed from XMM/YMM/ZMM0 to
instead match the other source. This prevents a false
dependency.
I added all the integer unpck instructions, but the tests
only show changes for BW and WD.
Unfortunately, we can have undef on operand 1 or 2 of the AVX
instructions. This breaks the interface with hasUndefRegUpdate
which used to tell which operand to check.
Now we scan the input operands looking for an undef register and
then ask hasUndefRegUpdate if its an instruction we care about
and which operands of that instruction we care about.
I also had to make some changes to the load folding code to
always pass operand 1 to hasUndefRegUpdate. I've updated
hasUndefRegUpdate to return false when ForLoadFold is set for
instructions that are not explicitly blocked for load folding in
isel patterns.
Differential Revision: https://reviews.llvm.org/D79615
We generate PACK instructions with an undef second source when we are truncating from a 128-bit vector to something narrower and we don't care about the upper bits of the vector register. The register allocation process will always assign untied undef uses to xmm0. This creates a false dependency on xmm0.
By adding these instructions to hasUndefRegUpdate, we can get the BreakFalseDeps pass to reassign the source to match the other input. Normally this interface is used for instructions that might need an xor inserted to break the dependency. But the pass also has a heuristic that tries to use the same register as other sources. That should always be possible for these instructions so we'll never trigger the xor dependency break.
Differential Revision: https://reviews.llvm.org/D79032
Summary:
While looking into issues with IfConverter, I noticed that
X86InstrInfo::isUnpredicatedTerminator matched its overriden
implementation in TargetInstrInfo::isUnpredicatedTerminator.
Reviewers: craig.topper, hfinkel, MaskRay, echristo
Reviewed By: MaskRay, echristo
Subscribers: hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62749
[MachineOutliner] fix test for excluding CFI and add test to include CFI in outlining
New test to check that we only outline CFI instruction if all CFI
Instructions in the function would be captured by the outlining
adding x86 tests analagous to AARCH64 cfi tests
Revision: https://reviews.llvm.org/D77852
Summary:
Otherwise PostRA list scheduler may reorder instruction, such as
schedule this
'''
pushq $0x8
pop %rbx
lea 0x2a0(%rsp),%r15
'''
to
'''
pushq $0x8
lea 0x2a0(%rsp),%r15
pop %rbx
'''
by mistake. The patch is to prevent this to happen by making sure POP has
implicit use of SP.
Reviewers: craig.topper
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77031
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, jrtc27, atanasyan, jfb, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76925
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: dylanmckay, sdardis, nemanjai, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76551
Patch by Zola Bridges!
From the review:
"""
I moved these functions to X86InstrInfo.cpp, so they are available from
another pass. In addition, this is a step toward resolving the FIXME to
move this metadata to the instruction tables.
This is the final step to make these two data invariance checks
available for non-SLH passes.
The other two steps were here:
- https://reviews.llvm.org/D70283
- https://reviews.llvm.org/D75650
Tested via llvm-lit llvm/test/CodeGen/X86/speculative-load-hardening*
"""
Differential Revision: https://reviews.llvm.org/D75654
I believe this is the correct fix for D75506 rather than disabling all commuting. We can still commute the remaining two sources.
Differential Revision:m https://reviews.llvm.org/D75526
The code changes here are hopefully straightforward:
1. Use MachineInstruction flags to decide if FP ops can be reassociated
(use both "reassoc" and "nsz" to be consistent with IR transforms;
we probably don't need "nsz", but that's a safer interpretation of
the FMF).
2. Check that both nodes allow reassociation to change instructions.
This is a stronger requirement than we've usually implemented in
IR/DAG, but this is needed to solve the motivating bug (see below),
and it seems unlikely to impede optimization at this late stage.
3. Intersect/propagate MachineIR flags to enable further reassociation
in MachineCombiner.
We managed to make MachineCombiner flexible enough that no changes are
needed to that pass itself. So this patch should only affect x86
(assuming no other targets have implemented the hooks using MachineIR
flags yet).
The motivating example in PR43609 is another case of fast-math transforms
interacting badly with special FP ops created during lowering:
https://bugs.llvm.org/show_bug.cgi?id=43609
The special fadd ops used for converting int to FP assume that they will
not be altered, so those are created without FMF.
However, the MachineCombiner pass was being enabled for FP ops using the
global/function-level TargetOption for "UnsafeFPMath". We managed to run
instruction/node-level FMF all the way down to MachineIR sometime in the
last 1-2 years though, so we can do better now.
The test diffs require some explanation:
1. llvm/test/CodeGen/X86/fmf-flags.ll - no target option for unsafe math was
specified here, so MachineCombiner kicks in where it did not previously;
to make it behave consistently, we need to specify a CPU schedule model,
so use the default model, and there are no code diffs.
2. llvm/test/CodeGen/X86/machine-combiner.ll - replace the target option for
unsafe math with the equivalent IR-level flags, and there are no code diffs;
we can't remove the NaN/nsz options because those are still used to drive
x86 fmin/fmax codegen (special SDAG opcodes).
3. llvm/test/CodeGen/X86/pow.ll - similar to #1
4. llvm/test/CodeGen/X86/sqrt-fastmath.ll - similar to #1, but MachineCombiner
does some reassociation of the estimate sequence ops; presumably these are
perf wins based on latency/throughput (and we get some reduction of move
instructions too); I'm not sure how it affects numerical accuracy, but the
test reflects reality better now because we would expect MachineCombiner to
be enabled if the IR was generated via something like "-ffast-math" with clang.
5. llvm/test/CodeGen/X86/vec_int_to_fp.ll - this is the test added to model PR43609;
the fadds are not reassociated now, so we should get the expected results.
6. llvm/test/CodeGen/X86/vector-reduce-fadd-fast.ll - similar to #1
7. llvm/test/CodeGen/X86/vector-reduce-fmul-fast.ll - similar to #1
Differential Revision: https://reviews.llvm.org/D74851
Summary:
Making `Scale` a `TypeSize` in AArch64InstrInfo::getMemOpInfo,
has the effect that all places where this information is used
(notably, TargetInstrInfo::getMemOperandWithOffset) will need
to consider Scale - and derived, Offset - possibly being scalable.
This patch adds a new operand `bool &OffsetIsScalable` to
TargetInstrInfo::getMemOperandWithOffset and fixes up all
the places where this function is used, to consider the
offset possibly being scalable.
In most cases, this means bailing out because the algorithm does not
(or cannot) support scalable offsets in places where it does some
form of alias checking for example.
Reviewers: rovka, efriedma, kristof.beyls
Reviewed By: efriedma
Subscribers: wuzish, kerbowa, MatzeB, arsenm, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, javed.absar, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72758
Only 32 and 64 bit SBB are dependency breaking instructons on some
CPUs. The 8 and 16 bit forms have to preserve upper bits of the GPR.
This patch removes the smaller forms and selects the wider form
instead. I had to do this with custom code as the tblgen generated
code glued the eflags copytoreg to the extract_subreg instead of
to the SETB pseudo.
Longer term I think we can remove X86ISD::SETCC_CARRY and use
(X86ISD::SBB zero, zero). We'll want to keep the pseudo and select
(X86ISD::SBB zero, zero) to either a MOV32r0+SBB for targets where
there is no dependency break and SETB_C32/SETB_C64 for targets
that have a dependency break. May want some way to avoid the MOV32r0
if the instruction that produced the carry flag happened to def a
register that we can use for the dependency.
I think the flag copy lowering should be using NEG instead of SUB to
handle SETB. That would avoid the MOV32r0 there. Or maybe it should
use a ADC with -1 to recreate the carry flag and keep the SETB?
That would avoid a MOVZX on the input of the SUB.
Differential Revision: https://reviews.llvm.org/D74024
The generic BaseMemOpClusterMutation calls into TargetInstrInfo to
analyze the address of each load/store instruction, and again to decide
whether two instructions should be clustered. Previously this had to
represent each address as a single base operand plus a constant byte
offset. This patch extends it to support any number of base operands.
The old target hook getMemOperandWithOffset is now a convenience
function for callers that are only prepared to handle a single base
operand. It calls the new more general target hook
getMemOperandsWithOffset.
The only requirements for the base operands returned by
getMemOperandsWithOffset are:
- they can be sorted by MemOpInfo::Compare, such that clusterable ops
get sorted next to each other, and
- shouldClusterMemOps knows what they mean.
One simple follow-on is to enable clustering of AMDGPU FLAT instructions
with both vaddr and saddr (base register + offset register). I've left
a FIXME in the code for this case.
Differential Revision: https://reviews.llvm.org/D71655
In GlobalISel we may in some unfortunate circumstances generate PHIs with
operands that are on separate banks. If-conversion doesn't currently check for
that case and ends up generating a CSEL on AArch64 with incorrect register
operands.
Differential Revision: https://reviews.llvm.org/D72961
The 64-bit HasMemoryOperand line was using CMOV32rm instead of
CMOV64rm. Not sure how to test this. We have no test coverage
that passes true for HasMemoryOperand.
This fixes an assertion failure that triggers inside
getMemOperandWithOffset when Machine Sinking calls it on a MachineInstr
that is not a memory operation.
Different backends implement getMemOperandWithOffset differently: some
return false on non-memory MachineInstrs, others assert.
The Machine Sinking pass in at least SinkingPreventsImplicitNullCheck
relies on getMemOperandWithOffset to return false on non-memory
MachineInstrs, instead of asserting.
This patch updates the documentation on getMemOperandWithOffset that it
should return false on any MachineInstr it cannot handle, instead of
asserting. It also adapts the in-tree backends accordingly where
necessary.
Differential Revision: https://reviews.llvm.org/D71359
Summary:
Currently the describeLoadedValue() hook is assumed to describe the
value of the instruction's first explicit define. The hook will not be
called for instructions with more than one explicit define.
This commit adds a register parameter to the describeLoadedValue() hook,
and invokes the hook for all registers in the worklist.
This will allow us to for example describe instructions which produce
more than two parameters' values; e.g. Hexagon's various combine
instructions.
This also fixes situations in our downstream target where we may pass
smaller parameters in the high part of a register. If such a parameter's
value is produced by a larger copy instruction, we can't describe the
call site value using the super-register, and we instead need to know
which sub-register that should be used.
This also allows us to handle cases like this:
$ebx = [...]
$rdi = MOVSX64rr32 $ebx
$esi = MOV32rr $edi
CALL64pcrel32 @call
The hook will first be invoked for the MOV32rr instruction, which will
say that @call's second parameter (passed in $esi) is described by $edi.
As $edi is not preserved it will be added to the worklist. When we get
to the MOVSX64rr32 instruction, we need to describe two values; the
sign-extended value of $ebx -> $rdi for the first parameter, and $ebx ->
$edi for the second parameter, which is now possible.
This commit modifies the dbgcall-site-lea-interpretation.mir test case.
In the test case, the values of some 32-bit parameters were produced
with LEA64r. Perhaps we can in general cases handle such by emitting
expressions that AND out the lower 32-bits, but I have not been able to
land in a case where a LEA64r is used for a 32-bit parameter instead of
LEA64_32 from C code.
I have not found a case where it would be useful to describe parameters
using implicit defines, so in this patch the hook is still only invoked
for explicit defines of forwarding registers.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: djtodoro, vsk
Subscribers: ormris, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D70431
Currently the describeLoadedValue() hook is assumed to describe the
value of the instruction's first explicit define. The hook will not be
called for instructions with more than one explicit define.
This commit adds a register parameter to the describeLoadedValue() hook,
and invokes the hook for all registers in the worklist.
This will allow us to for example describe instructions which produce
more than two parameters' values; e.g. Hexagon's various combine
instructions.
This also fixes a case in our downstream target where we may pass
smaller parameters in the high part of a register. If such a parameter's
value is produced by a larger copy instruction, we can't describe the
call site value using the super-register, and we instead need to know
which sub-register that should be used.
This also allows us to handle cases like this:
$ebx = [...]
$rdi = MOVSX64rr32 $ebx
$esi = MOV32rr $edi
CALL64pcrel32 @call
The hook will first be invoked for the MOV32rr instruction, which will
say that @call's second parameter (passed in $esi) is described by $edi.
As $edi is not preserved it will be added to the worklist. When we get
to the MOVSX64rr32 instruction, we need to describe two values; the
sign-extended value of $ebx -> $rdi for the first parameter, and $ebx ->
$edi for the second parameter, which is now possible.
This commit modifies the dbgcall-site-lea-interpretation.mir test case.
In the test case, the values of some 32-bit parameters were produced
with LEA64r. Perhaps we can in general cases handle such by emitting
expressions that AND out the lower 32-bits, but I have not been able to
land in a case where a LEA64r is used for a 32-bit parameter instead of
LEA64_32 from C code.
I have not found a case where it would be useful to describe parameters
using implicit defines, so in this patch the hook is still only invoked
for explicit defines of forwarding registers.
Refactor usage of isCopyInstrImpl, isCopyInstr and isAddImmediate methods
to return optional machine operand pair of destination and source
registers.
Patch by Nikola Prica
Differential Revision: https://reviews.llvm.org/D69622
Refactor usage of isCopyInstrImpl, isCopyInstr and isAddImmediate methods
to return optional machine operand pair of destination and source
registers.
Patch by Nikola Prica
Differential Revision: https://reviews.llvm.org/D69622
This adds a flag to LLVM and clang to always generate a .debug_frame
section, even if other debug information is not being generated. In
situations where .eh_frame would normally be emitted, both .debug_frame
and .eh_frame will be used.
Differential Revision: https://reviews.llvm.org/D67216