This fixes the regression of several tests on Windows after rL258621.
The root problem is that ObjectFilePECOFF was not setting type information for the symbols, and the new CL rejects symbols without type information, breaking functionality like thread step-over.
The fix sets the type information for functions (and creates a TODO for other types).
Along the way, I fixed some typos and formatting that made the code I was debugging harder to understand.
In the long run, we should consider replacing most of ObjectFilePECOFF with the COFF parsing code from LLVM.
Differential Revision: http://reviews.llvm.org/D16563
llvm-svn: 258758
r256927 included a duplicate StreamString header file. This patch simply removes the duplicate.
Author: Luke Drummond <luke.drummond@codeplay.com>
Differential Revision: http://reviews.llvm.org/D15948
llvm-svn: 257061
This patch eases the printing of iterable string containers.
Author: Luke Drummond <luke.drummond@codeplay.com>
Differential Revision: http://reviews.llvm.org/D15773
llvm-svn: 256927
This patch adds support for printing global static const variables which are given a DW_AT_const_value DWARF tag by clang.
Fix for bug https://llvm.org/bugs/show_bug.cgi?id=25653
Reviewers: clayborg, tberghammer
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D15576
llvm-svn: 255887
This patch reworks the breakpoint filter-by-language patch to use the
symbol context instead of trying to guess the language solely from the
symbol's name. This has the advantage that symbols compiled with debug
info will have their actual language known. Symbols without debug info
will still do the same "guess"ing because Symbol::GetLanguage() is
implemented using Mangled::GuessLanguage(). The recognition of ObjC
names was merged into Mangled::GuessLanguage.
Reviewed by: jingham, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15326
llvm-svn: 255808
Change Test-rdar-12481949.py to expect GetValueAsUnsigned() to return
0xffffffff if the variable is an int32_t (signed, 4 byte integer) with
value of -1. The previous expectation where we expected the value to be
0xffffffffffffffff doesn't make sense as nothing explains why we would
treat it as an 8 byte value.
This CL also removes a hack from Scalar::ULongLong what was most likely
added to get this test passing as it only worked in case the value of
the variable is -1 and didn't make any sense even in that case.
Differential revision: http://reviews.llvm.org/D14611
llvm-svn: 253027
This latter determination may or may not be possible on a per-language basis; and neither is mandatory to implement for any language
Use this knowledge in the ValueObjectPrinter to generalize the notion of IsObjCNil() and the respective printout
llvm-svn: 252663
In this way, when a language needs to tell itself things that are not bound to a type but to a value (imagine a base-class relation, this is not about the type, but about the ValueObject), it can do so in a clean and general fashion
The interpretation of the values of the flags is, of course, up to the language that owns the value (the value object's runtime language, that is)
llvm-svn: 252503
Summary:
Since this is within the lldb namespace, the compiler tries to
export a symbol for it. Unfortunately, since it is inlined, the
symbol is hidden and this results in a mess of warnings when
building on OS X with cmake.
Moving it to the lldb_private namespace eliminates that problem.
Reviewers: clayborg
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D14417
llvm-svn: 252396
vendors & oses, especially on Apple, to handle the new environment
where we have more than macosx or ios (now we have watchos and tvos).
llvm-svn: 252264
Summary:
The reason for it is limit of detecting ncurses on various systems. For
example, Ubuntu ships with <curses.h> and linkage from <ncurses.h>, <ncurses.h>
isn't detected by CMake. Detecting `<curses.h>` on NetBSD is reusing
conflicting header from the host curses(8) and pkgsrc's ncurses library.
ncurses ships on most (till conflicting) systems with curses.h. On NetBSD it
might be conflicting, so the ncurses headers are installed with pkgsrc to a
subdirectory "ncurses/".
Patch by Kamil Rytarowski. Thanks!
Reviewers: clayborg
Subscribers: youri, akat1, brucem, joerg, lldb-commits
Differential Revision: http://reviews.llvm.org/D14037
llvm-svn: 252250
The Timer class already had some support for multi-threaded access
but it still contained several race conditions. This CL fixes them
in preparation of adding multi-threaded dwarf parsing (and other
multi-threaded parts later).
Differential revision: http://reviews.llvm.org/D13940
llvm-svn: 251105
libraries" altogether. On Mac/iOS, these are libraries which have
a UUID and nlist records but no text or data. If one of these
gets into the global module list, every time we try to search
for a given filename/arch/UUID, we'll get this stub library back.
We need to prevent them from getting added to the module list
altogether.
I thought about doing this down in ObjectFileMachO -- just rejecting
the file as a valid binary file altogether -- but Greg didn't want
to take that hard line approach at this point, he wanted to keep
the ability for lldb to read one of these if someone wanted to in
the future.
<rdar://problem/23035075>
llvm-svn: 250979
Before, in the absence of any configured REPLs, LLDB would act as if there were
multiple possible REPL options, whereas actually no REPL language is supported.
Now we make a better error.
llvm-svn: 250931
Summary:
Along with this, support for an optional argument to the "num_children"
method of a Python synthetic child provider has also been added. These have
been added with the following use case in mind:
Synthetic child providers currently have a method "has_children" and
"num_children". While the former is good enough to know if there are
children, it does not give any insight into how many children there are.
Though the latter serves this purpose, calculating the number for children
of a data structure could be an O(N) operation if the data structure has N
children. The new method added in this change provide a middle ground.
One can call GetNumChildren(K) to know if a child exists at an index K
which can be as large as the callers tolerance can be. If the caller wants
to know about children beyond K, it can make an other call with 2K. If the
synthetic child provider maintains state about it counting till K
previosly, then the next call is only an O(K) operation. Infact, all
calls made progressively with steps of K will be O(K) operations.
Reviewers: vharron, clayborg, granata.enrico
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D13778
llvm-svn: 250930
This makes LLDB launch and create a REPL, specifying no target so that the REPL
can create one for itself. Also added the "--repl-language" option, which
specifies the language to use. Plumbed the relevant arguments and errors
through the REPL creation mechanism.
llvm-svn: 250773
A REPL takes over the command line and typically treats input as source code.
REPLs can also do code completion. The REPL class allows its subclasses to
implement the language-specific functionality without having to know about the
IOHandler-specific internals.
Also added a PluginManager-based way of getting to a REPL given a language and
a target.
Also brought in some utility code and expression options that are useful for
REPLs, such as line offsets for expressions, ANSI terminal coloring of errors,
and a few IOHandler convenience functions.
llvm-svn: 250753
There were a number of const qualifiers being cast away which caused warnings.
This cluttered the output hiding real errors. Silence them by explicit casting.
NFC.
llvm-svn: 250662
Previous commit r250281 broke TestDataFormatterSmartArray.py
Resolved in in this patch by adding the new enum eFormatVectorOfFloat16 to FormatManager.
Differential Revision: http://reviews.llvm.org/D13730
llvm-svn: 250499
Previously ConstString had a single mutex guarding the global string
pool for each access what become a bottleneck when using it with a
large number of threads.
This CL distributes the strings to 256 individual string pools based on
a simple hash function to eliminate the bottleneck and speed up the
multi-thread access.
The goal of the change is to prepare to multi-threaded symbol parsing code
to speed up the symbol parsing speed.
Differential revision: http://reviews.llvm.org/D13652
llvm-svn: 250289
This patch adds the command 'language renderscript allocation dump <ID>' for printing the contents of a RS allocation.
Displaying the coordinate of each element as well as its formatted value
e.g (lldb) language renderscript allocation dump 1
Data (X, Y, Z):
(0, 0, 0) = {0 1}
(1, 0, 0) = {2 3}
(2, 0, 0) = {4 5}
A --file <filename> option is also included, since for large allocations it may be more helpful to view this text as a file.
Reviewed by: jingham, clayborg
Subscribers: lldb-commits, ADodds, domipheus, brucem
Differential Revision: http://reviews.llvm.org/D13699
llvm-svn: 250281
* ArchSpec::MergeFrom() would erroneously promote an unspecified
unknown to a specified unknown when both the ArchSpec and the merged
in ArchSpec were both unspecified unknowns. This no longer happens,
which fixes issues with global module cache lookup in some
situations.
* Added ArchSpec::DumpTriple(Stream&) that now properly prints
unspecified unknowns as '*' and specified unknows as 'unknown'.
This makes it trivial to tell the difference between the two.
Converted printing code over ot using DumpTriple() rather than
building from scratch.
* Fixed up a couple places that were not guaranteeing that an
unspecified unknown was recorded as such.
llvm-svn: 250253
The underlying raw_string_stream buffer was not being flushed
after asking llvm to collect the backtrace. This worked fine
on OS X but was failing to print anything on Linux.
llvm-svn: 249930
when they introduced android testsuite regressions. Pavel has run the
testsuite against the updated patch and it completes cleanly now.
The original commit message:
Fixing a subtle issue on Mac OS X systems with dSYMs (possibly
introduced by r235737 but I didn't look into it too closely).
A dSYM can have a per-UUID plist in it which tells lldb where
to find an executable binary for the dSYM (DBGSymbolRichExecutable)
- other information can be included in this plist, like how to
remap the source file paths from their build pathnames to their
long-term storage pathnames.
This per-UUID plist is a unusual; it is used probably exclusively
inside apple with our build system. It is not created by default
in normal dSYMs.
The problem was like this:
1. lldb wants to find an executable, given only a UUID
(this happens when lldb is doing cross-host debugging
and doesn't have a copy of the target system's binaries)
2. It eventually calls LocateMacOSXFilesUsingDebugSymbols
which does a spotlight search for the dSYM on the local
system, and failing that, tries the DBGShellCommands
command to find the dSYM.
3. It gets a dSYM. It reads the per-UUID plist in the dSYM.
The dSYM has a DBGSymbolRichExecutable kv pair pointing to
the binary on a network filesystem.
4. Using the binary on the network filesystem, lldb now goes
to find the dSYM.
5. It starts by looking for a dSYM next to the binary it found.
6. lldb is now reading the dSYM over a network filesystem,
ignoring the one it found on its local filesystem earlier.
Everything still *works* but it's much slower.
This would be a tricky one to write up in a testsuite case;
you really need the binary to not exist on the local system.
And LocateMacOSXFilesUsingDebugSymbols will only compile on
Mac OS X - even if I found a way to write up a test case, it
would not run anywhere but on a mac.
One change Greg wanted while I was touching this code was to
have LocateMacOSXFilesUsingDebugSymbols (which could be asked
to find a binary OR find a dSYM) to instead return a ModuleSpec
with the sum total of everything it could find. This
change of passing around a ModuleSpec instead of a FileSpec
was percolated up into ModuleList::GetSharedModule.
The changes to LocateMacOSXFilesUsingDebugSymbols look larger
than they really are - there's a lot of simple whitespace changes
in there.
I ran the testsuites on mac, no new regressions introduced
<rdar://problem/21993813>
llvm-svn: 249755
This involved changing the TypeSystem::CreateInstance to take a module or a target. This allows type systems to create an AST for modules (no expression support needed) or targets (expression support is needed) and return the correct class instance for both cases.
llvm-svn: 249747
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
-> This patch was reverted due to segfaults in
FreeBSD and Mac, I fixed the problems for both now.
Reviewers: emaste, granata.enrico, jingham, clayborg
Differential Revision: http://reviews.llvm.org/D13290
llvm-svn: 249673
The ClangExpressionVariable::CreateVariableInList functions looked cute, but
caused more confusion than they solved. I removed them, and instead made sure
that there are adequate facilities for easily adding newly-constructed
ExpressionVariables to lists.
I also made some of the constructors that are common be generic, so that it's
possible to construct expression variables from generic places (like the ABI and
ValueObject) without having to know the specifics about the class.
llvm-svn: 249095
Also added some target-level search functions so that persistent variables and
symbols can be searched for without hand-iterating across the map of
TypeSystems.
llvm-svn: 249027
introduced by r235737 but I didn't look into it too closely).
A dSYM can have a per-UUID plist in it which tells lldb where
to find an executable binary for the dSYM (DBGSymbolRichExecutable)
- other information can be included in this plist, like how to
remap the source file paths from their build pathnames to their
long-term storage pathnames.
This per-UUID plist is a unusual; it is used probably exclusively
inside apple with our build system. It is not created by default
in normal dSYMs.
The problem was like this:
1. lldb wants to find an executable, given only a UUID
(this happens when lldb is doing cross-host debugging
and doesn't have a copy of the target system's binaries)
2. It eventually calls LocateMacOSXFilesUsingDebugSymbols
which does a spotlight search for the dSYM on the local
system, and failing that, tries the DBGShellCommands
command to find the dSYM.
3. It gets a dSYM. It reads the per-UUID plist in the dSYM.
The dSYM has a DBGSymbolRichExecutable kv pair pointing to
the binary on a network filesystem.
4. Using the binary on the network filesystem, lldb now goes
to find the dSYM.
5. It starts by looking for a dSYM next to the binary it found.
6. lldb is now reading the dSYM over a network filesystem,
ignoring the one it found on its local filesystem earlier.
Everything still *works* but it's much slower.
This would be a tricky one to write up in a testsuite case;
you really need the binary to not exist on the local system.
And LocateMacOSXFilesUsingDebugSymbols will only compile on
Mac OS X - even if I found a way to write up a test case, it
would not run anywhere but on a mac.
One change Greg wanted while I was touching this code was to
have LocateMacOSXFilesUsingDebugSymbols (which could be asked
to find a binary OR find a dSYM) to instead return a ModuleSpec
with the sum total of everything it could find. This
change of passing around a ModuleSpec instead of a FileSpec
was percolated up into ModuleList::GetSharedModule.
The changes to LocateMacOSXFilesUsingDebugSymbols look larger
than they really are - there's a lot of simple whitespace changes
in there.
I ran the testsuites on mac, no new regressions introduced
<rdar://problem/21993813>
llvm-svn: 248985
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
Summary:
In bug 24074, the type information is not shown
correctly. This commit includes the following -
-> Changes for displaying correct type based on
current lexical scope for the command "image
lookup -t"
-> The corresponding testcase.
Reviewers: jingham, ovyalov, spyffe, richard.mitton, clayborg
Differential Revision: http://reviews.llvm.org/D12404
llvm-svn: 248366
This is meant to cover cases such as the obvious
Base *base = new Derived();
where GetDynamicTypeAndAddress(base) would return the type "Derived", not "Derived *"
llvm-svn: 248315
Summary:
Normally, these macros are defined in fnctl.h. However, GLIBC exposes their
definition through <sys/file.h> too. This change allows us to compile
LLDB with non-GLIBC C libraries.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13022
llvm-svn: 248255
Summary:
With the recent changes to separate clang from the core structures
of LLDB, many inclusions of clang headers can be removed.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12954
llvm-svn: 248004
For C++ and ObjC, dynamic values are always (at least somewhat) pointer-like in nature, so a ValueType of scalar is actually good enough that it could originally be hardcoded as the right choice
Other languages, might have broader notions of things that are dynamic (e.g. a language where a value type can be dynamic). In those cases, it might actually be the case that a dynamic value is a pointer-to the data, or even a host address if dynamic expression results entirely in host space are being talked about
This patch enables the language runtime to make that decision, and makes ValueObjectDynamicValue comply with it
llvm-svn: 247957
This cleans up type systems to be more pluggable. Prior to this we had issues:
- Module, SymbolFile, and many others has "ClangASTContext &GetClangASTContext()" functions. All have been switched over to use "TypeSystem *GetTypeSystemForLanguage()"
- Cleaned up any places that were using the GetClangASTContext() functions to use TypeSystem
- Cleaned up Module so that it no longer has dedicated type system member variables:
lldb::ClangASTContextUP m_ast; ///< The Clang AST context for this module.
lldb::GoASTContextUP m_go_ast; ///< The Go AST context for this module.
Now we have a type system map:
typedef std::map<lldb::LanguageType, lldb::TypeSystemSP> TypeSystemMap;
TypeSystemMap m_type_system_map; ///< A map of any type systems associated with this module
- Many places in code were using ClangASTContext static functions to place with CompilerType objects and add modifiers (const, volatile, restrict) and to make typedefs, L and R value references and more. These have been made into CompilerType functions that are abstract:
class CompilerType
{
...
//----------------------------------------------------------------------
// Return a new CompilerType that is a L value reference to this type if
// this type is valid and the type system supports L value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetLValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType that is a R value reference to this type if
// this type is valid and the type system supports R value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetRValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a const modifier to this type if
// this type is valid and the type system supports const modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddConstModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a volatile modifier to this type if
// this type is valid and the type system supports volatile modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddVolatileModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a restrict modifier to this type if
// this type is valid and the type system supports restrict modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddRestrictModifier () const;
//----------------------------------------------------------------------
// Create a typedef to this type using "name" as the name of the typedef
// this type is valid and the type system supports typedefs, else return
// an invalid type.
//----------------------------------------------------------------------
CompilerType
CreateTypedef (const char *name, const CompilerDeclContext &decl_ctx) const;
};
Other changes include:
- Removed "CompilerType TypeSystem::GetIntTypeFromBitSize(...)" and CompilerType TypeSystem::GetFloatTypeFromBitSize(...) and replaced it with "CompilerType TypeSystem::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size);"
- Fixed code in Type.h to not request the full type for a type for no good reason, just request the forward type and let the type expand as needed
llvm-svn: 247953
The Go runtime schedules user level threads (goroutines) across real threads.
This adds an OS plugin to create memory threads for goroutines.
It supports the 1.4 and 1.5 go runtime.
Differential Revision: http://reviews.llvm.org/D5871
llvm-svn: 247852
"gcc" register numbers are now correctly referred to as "ehframe"
register numbers. In almost all cases, ehframe and dwarf register
numbers are identical (the one exception is i386 darwin where ehframe
regnums were incorrect).
The old "gdb" register numbers, which I incorrectly thought were
stabs register numbers, are now referred to as "Process Plugin"
register numbers. This is the register numbering scheme that the
remote process controller stub (lldb-server, gdbserver, core file
support, kdp server, remote jtag devices, etc) uses to refer to the
registers. The process plugin register numbers may not be contiguous
- there are remote jtag devices that have gaps in their register
numbering schemes.
I removed all of the enums for "gdb" register numbers that we had
in lldb - these were meaningless - and I put LLDB_INVALID_REGNUM
in all of the register tables for the Process Plugin regnum slot.
This change is almost entirely mechnical; the one actual change in
here is to ProcessGDBRemote.cpp's ParseRegisters() which parses the
qXfer:features:read:target.xml response. As it parses register
definitions from the xml, it will assign sequential numbers as the
eRegisterKindLLDB numbers (the lldb register numberings must be
sequential, without any gaps) and if the xml file specifies register
numbers, those will be used as the eRegisterKindProcessPlugin
register numbers (and those may have gaps). A J-Link jtag device's
target.xml does contain a gap in register numbers, and it only
specifies the register numbers for the registers after that gap.
The device supports many different ARM boards and probably selects
different part of its register file as appropriate.
http://reviews.llvm.org/D12791
<rdar://problem/22623262>
llvm-svn: 247741
It is required because of the following edge case on arm:
bx <addr> Non-tail call in a no return function
[data-pool] Marked with $d mapping symbol
The return address of the function call will point to the data pool but
we have to treat it as code so the StackFrame can calculate the symbols
correctly.
Differential revision: http://reviews.llvm.org/D12556
llvm-svn: 246958
stores information about a variable that different parts of LLDB use, from the
compiler-specific portion that only the expression parser cares about.
http://reviews.llvm.org/D12602
llvm-svn: 246871
* Change Module::MatchesModuleSpec to return true in case the file spec
in the specified module spec matches with the platform file spec, but
not with the local file spec
* Change the module_resolver used when resolving a remote shared module
to always set the platform file spec to the file spec requested
Differential revision: http://reviews.llvm.org/D12601
llvm-svn: 246852
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
This is still something I need to fix, but at least it's not so ugly, and it's
consistent with the other code that does that so we will catch it when we purge
all such code.
llvm-svn: 246738
Clang-specific part, create the ExpressionVariable source/header file and
move ClangExpressionVariable into the Clang expression parser plugin.
It is expected that there are some ugly #include paths... these will be resolved
by either (1) making that code use generic expression variables (once they're
separated appropriately) or (2) moving that code into a plug-in, often
the expression parser plug-in.
llvm-svn: 246737