Decl::dump is primarily used for debugging to visualise the current state of a
declaration. Usually Decl::dump just displays the current state of the Decl and
doesn't actually change any of its state, however since commit
457226e02a the method actually started loading
additional declarations from the ExternalASTSource. This causes that calling
Decl::dump during a debugging session now actually does permanent changes to the
AST and will cause the debugged program run to deviate from the original run.
The change that caused this behaviour is the addition of
`hasConstexprDestructor` (which is called from the TextNodeDumper) which
performs a lookup into the current CXXRecordDecl to find the destructor. All
other similar methods just return their respective bit in the DefinitionData
(which obviously doesn't have such side effects).
This just changes the node printer to emit "unknown_constexpr" in case a
CXXRecordDecl is dumped that could potentially call into the ExternalASTSource
instead of the usually empty string/"constexpr". For CXXRecordDecls that can
safely be dumped the old behaviour is preserved
Reviewed By: bruno
Differential Revision: https://reviews.llvm.org/D80878
This change groups
* Rename: `ignoreParenBaseCasts` -> `IgnoreParenBaseCasts` for uniformity
* Rename: `IgnoreConversionOperator` -> `IgnoreConversionOperatorSingleStep` for uniformity
* Inline `IgnoreNoopCastsSingleStep` into a lambda inside `IgnoreNoopCasts`
* Refactor `IgnoreUnlessSpelledInSource` to make adequate use of `IgnoreExprNodes`
Differential Revision: https://reviews.llvm.org/D86880
Rationale:
This allows users to use `IgnoreExprNodes` and `Ignore*SingleStep` outside of
`clang/AST/Expr.cpp`.
Minor:
Rename `IgnoreImp...SingleStep` into `IgnoreImplicit...SingleStep`.
Differential Revision: https://reviews.llvm.org/D86778
On x86, long double has 6 unused trailing bytes. This patch changes the
constant evaluator to treat them as though they were padding bytes, so reading
from them results in an indeterminate value, and nothing is written for them.
Also, fix a similar bug with bool, but instead of treating the unused bits as
padding, enforce that they're zero.
Differential revision: https://reviews.llvm.org/D76323
This effectively disables r340386 on Darwin, and provides a command line flag
to opt into/out of this behaviour. This change is needed to compile certain
Apple headers correctly.
rdar://47688592
Differential revision: https://reviews.llvm.org/D86881
This relands D85743 with a fix for test
CodeGen/attr-arm-sve-vector-bits-call.c that disables the new pass
manager with '-fno-experimental-new-pass-manager'. Test was failing due
to IR differences with the new pass manager which broke the Fuchsia
builder [1]. Reverted in 2e7041f.
[1] http://lab.llvm.org:8011/builders/fuchsia-x86_64-linux/builds/10375
Original summary:
This patch implements codegen for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
VLSTs are represented as VectorType in the AST and fixed-length vectors
in the IR everywhere except in function args/return. Implemented in this
patch is codegen support for the following:
* Implicit casting between VLA <-> VLS types.
* Coercion of VLS types in function args/return.
* Mangling of VLS types.
Casting is handled by the CK_BitCast operation, which has been extended
to support the two new vector kinds for fixed-length SVE predicate and
data vectors, where the cast is implemented through memory rather than a
bitcast which is unsupported. Implementing this as a normal bitcast
would require relaxing checks in LLVM to allow bitcasting between
scalable and fixed types. Another option was adding target-specific
intrinsics, although codegen support would need to be added for these
intrinsics. Given this, casting through memory seemed like the best
approach as it's supported today and existing optimisations may remove
unnecessary loads/stores, although there is room for improvement here.
Coercion of VLSTs in function args/return from fixed to scalable is
implemented through the AArch64 ABI in TargetInfo.
The VLA and VLS types are defined by the ACLE to map to the same
machine-level SVE vectors. VLS types are mangled in the same way as:
__SVE_VLS<typename, unsigned>
where the first argument is the underlying variable-length type and the
second argument is the SVE vector length in bits. For example:
#if __ARM_FEATURE_SVE_BITS==512
// Mangled as 9__SVE_VLSIu11__SVInt32_tLj512EE
typedef svint32_t vec __attribute__((arm_sve_vector_bits(512)));
// Mangled as 9__SVE_VLSIu10__SVBool_tLj512EE
typedef svbool_t pred __attribute__((arm_sve_vector_bits(512)));
#endif
The latest ACLE specification (00bet5) does not contain details of this
mangling scheme, it will be specified in the next revision. The
mangling scheme is otherwise defined in the appendices to the Procedure
Call Standard for the Arm Architecture, see [2] for more information.
[1] https://developer.arm.com/documentation/100987/latest
[2] https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85743
This patch implements codegen for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
VLSTs are represented as VectorType in the AST and fixed-length vectors
in the IR everywhere except in function args/return. Implemented in this
patch is codegen support for the following:
* Implicit casting between VLA <-> VLS types.
* Coercion of VLS types in function args/return.
* Mangling of VLS types.
Casting is handled by the CK_BitCast operation, which has been extended
to support the two new vector kinds for fixed-length SVE predicate and
data vectors, where the cast is implemented through memory rather than a
bitcast which is unsupported. Implementing this as a normal bitcast
would require relaxing checks in LLVM to allow bitcasting between
scalable and fixed types. Another option was adding target-specific
intrinsics, although codegen support would need to be added for these
intrinsics. Given this, casting through memory seemed like the best
approach as it's supported today and existing optimisations may remove
unnecessary loads/stores, although there is room for improvement here.
Coercion of VLSTs in function args/return from fixed to scalable is
implemented through the AArch64 ABI in TargetInfo.
The VLA and VLS types are defined by the ACLE to map to the same
machine-level SVE vectors. VLS types are mangled in the same way as:
__SVE_VLS<typename, unsigned>
where the first argument is the underlying variable-length type and the
second argument is the SVE vector length in bits. For example:
#if __ARM_FEATURE_SVE_BITS==512
// Mangled as 9__SVE_VLSIu11__SVInt32_tLj512EE
typedef svint32_t vec __attribute__((arm_sve_vector_bits(512)));
// Mangled as 9__SVE_VLSIu10__SVBool_tLj512EE
typedef svbool_t pred __attribute__((arm_sve_vector_bits(512)));
#endif
The latest ACLE specification (00bet5) does not contain details of this
mangling scheme, it will be specified in the next revision. The
mangling scheme is otherwise defined in the appendices to the Procedure
Call Standard for the Arm Architecture, see [2] for more information.
[1] https://developer.arm.com/documentation/100987/latest
[2] https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85743
This patch implements the semantics for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
The semantics were already implemented by D83551, although the
implementation approach has since changed to represent VLSTs as
VectorType in the AST and fixed-length vectors in the IR everywhere
except in function args/returns. This is described in the prototype
patch D85128 demonstrating the new approach.
The semantic changes added in D83551 are changed since the
AttributedType is replaced by VectorType in the AST. Minimal changes
were necessary in the previous patch as the canonical type for both VLA
and VLS was the same (i.e. sizeless), except in constructs such as
globals and structs where sizeless types are unsupported. This patch
reverts the changes that permitted VLS types that were represented as
sizeless types in such circumstances, and adds support for implicit
casting between VLA <-> VLS types as described in section 3.7.3.2 of the
ACLE.
Since the SVE builtin types for bool and uint8 are both represented as
BuiltinType::UChar in VLSTs, two new vector kinds are implemented to
distinguish predicate and data vectors.
[1] https://developer.arm.com/documentation/100987/latest
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D85736
This fixes a crash when declaring a destructor with a wrong name, then
writing result to pch file and loading it again. The PCH storage uses
DeclarationNameKey as key and it is the same key for both the invalid
destructor and the implicit one that was created because the other one
was invalid. When querying for the Foo::~Foo we end up getting
Foo::~Bar, which is then rejected and we end up with nullptr in
CXXRecordDecl::GetDestructor().
Fixes https://bugs.llvm.org/show_bug.cgi?id=47270
Differential Revision: https://reviews.llvm.org/D86624
OpenMP 5.0 supports nested declare target regions. So, in general,it is
allow to mark a declarationas declare target with different device_type
or link type. Patch adds support for such kind of nesting.
Differential Revision: https://reviews.llvm.org/D86239
This enables us to use the __builtin_rotateleft / __builtin_rotateright 8/16/32/64 intrinsics inside constexpr code.
Differential Revision: https://reviews.llvm.org/D86342
No functionality change intended: there doesn't seem to be any way to
cause Clang to print such a value, but they can show up when dumping
APValues from a debugger.
This patch moves FixedPointSemantics and APFixedPoint
from Clang to LLVM ADT.
This will make it easier to use the fixed-point
classes in LLVM for constructing an IR builder for
fixed-point and for reusing the APFixedPoint class
for constant evaluation purposes.
RFC: http://lists.llvm.org/pipermail/llvm-dev/2020-August/144025.html
Reviewed By: leonardchan, rjmccall
Differential Revision: https://reviews.llvm.org/D85312
In D79719, LayoutField was refactored to fetch the size of field
types in bits and then convert to chars, rather than fetching
them in chars directly. This is not ideal, since it makes the
calculations char size dependent, and breaks for sizes that
are not a multiple of the char size.
This patch changes it to use getTypeInfoInChars instead of
getTypeInfo.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85191
This function returns a struct `BuiltinVectorTypeInfo` that contains
the builtin vector's element type, element count and number of vectors
(used for vector tuples).
Reviewed By: c-rhodes
Differential Revision: https://reviews.llvm.org/D86100
We don't appear to use these FPOptions for anything right now, but
they shouldn't be uninitialized because that makes our AST file output
nondeterministic.
We can use this to remove some calls to initFeatureMap from Sema
and CodeGen when a function doesn't have a target attribute.
This reduces compile time of the linux kernel where this map
is needed to diagnose some inline assembly constraints based
on whether sse, avx, or avx512 is enabled.
Differential Revision: https://reviews.llvm.org/D85807
ASTContext::removeAddrSpaceQualType does not properly deal
with sugar. QualTypes derive their ASes from the AS on the
canonical type, not the type itself. However,
removeAddrSpaceQualType only strips the outermost qualifiers,
which means that it can fail to remove addrspace qualifiers
if there is sugar in the way.
Change the function to desugar types until the address space
really no longer exists on the corresponding QualType. This
should guarantee the removal of the address space.
This fixes the erroneous behavior in D62574.
Reviewed By: rjmccall, svenvh
Differential Revision: https://reviews.llvm.org/D83325
Summary:
Introduced OMPChildren class to handle all associated clauses, statement
and child expressions/statements. It allows to represent some directives
more correctly (like flush, depobj etc. with pseudo clauses, ordered
depend directives, which are standalone, and target data directives).
Also, it will make easier to avoid using of CapturedStmt in directives,
if required (atomic, tile etc. directives).
Also, it simplifies serialization/deserialization of the
executable/declarative directives.
Reduces number of allocation operations for mapper declarations.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, jfb, cfe-commits, sstefan1, aaron.ballman, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D83261
NamedDecl::printName will print the pretty-printed name of the entity, which
is not what we want here (we should print "enum { e };" instead of "enum
(unnamed enum at input.cc:1:5) { e };").
For now only DecompositionDecl and MDGuidDecl have an overloaded printName so
this does not result in any functional change, but this change is needed since
I will be adding overloads to better handle unnamed entities in diagnostics.
sizeof(ConstantMatrixTypeBitfields) > 8 which increases the size of every type.
This was not detected because no corresponding static_assert for its size was
added.
To prevent this from occuring again replace the various static_asserts for
the size of each of the bit-field classes by a single static_assert for the
size of Type.
I have left ConstantMatrixType::MaxElementsPerDimension unchanged since
the limit is exercised by multiple tests.
`OS << ND->getDeclName();` is equivalent to `OS << ND->getNameAsString();`
without the extra temporary string.
This is not quite a NFC since two uses of `getNameAsString` in a
diagnostic are replaced, which results in the named entity being
quoted with additional "'"s (ie: 'var' instead of var).
nvcc supports accessing file-scope static device variables in host code by host APIs
like cudaMemcpyToSymbol etc.
CUDA/HIP let users access device variables in host code by shadow variables. In host compilation,
clang emits a shadow variable for each device variable, and calls __*RegisterVariable to
register it in init function. The address of the shadow variable and the device side mangled
name of the device variable is passed to __*RegisterVariable. Runtime looks up the symbol
by name in the device binary to find the address of the device variable.
The problem with static device variables is that they have internal linkage, therefore their
name may be changed by the linker if there are multiple symbols with the same name. Also
they end up as local symbols in the elf file, whereas the runtime only looks up the global symbols.
Another reason for making the static device variables external linkage is that they may be
initialized externally by host code and their final value may be accessed by host code
after kernel execution, therefore they actually have external linkage. Giving them internal
linkage will cause incorrect optimizations on them.
To support accessing static device var in host code for -fno-gpu-rdc mode, change the intnernal
linkage to external linkage. The name does not need change since there is only one TU for
-fno-gpu-rdc mode. Also the externalization is done only if the device static var is referenced
by host code.
Differential Revision: https://reviews.llvm.org/D80858