This doesn't enable any new imports yet, but moves the fmed patterns
from failing on this to hitting the "complex suboperand referenced
more than once" limitation in tablegen.
This solves selection failures with generated selection patterns,
which would fail due to inferring the SGPR reg bank for virtual
registers with a set register class instead of VCC bank. Use
instruction selection would constrain the virtual register to a
specific class, so when the def was selected later the bank no longer
was set to VCC.
Remove the SCC reg bank. SCC isn't directly addressable, so it
requires copying from SCC to an allocatable 32-bit register during
selection, so these might as well be treated as 32-bit SGPR values.
Now any scalar boolean value that will produce an outupt in SCC should
be widened during RegBankSelect to s32. Any s1 value should be a
vector boolean during selection. This makes the vcc register bank
unambiguous with a normal SGPR during selection.
Summary of how this should now work:
- G_TRUNC is always a no-op, and never should use a vcc bank result.
- SALU boolean operations should be promoted to s32 in RegBankSelect
apply mapping
- An s1 value means vcc bank at selection. The exception is for
legalization artifacts that use s1, which are never VCC. All other
contexts should infer the VCC register classes for s1 typed
registers. The LLT for the register is now needed to infer the
correct register class. Extensions with vcc sources should be
legalized to a select of constants during RegBankSelect.
- Copy from non-vcc to vcc ensures high bits of the input value are
cleared during selection.
- SALU boolean inputs should ensure the inputs are 0/1. This includes
select, conditional branches, and carry-ins.
There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT
selection ignores the usual register-bank from register class
functions, and can't handle truncates with VCC result banks. I think
this is OK, since the artifacts are specially treated anyway. This
does require some care to avoid producing cases with vcc. There will
also be no 100% reliable way to verify this rule is followed in
selection in case of register classes, and violations manifests
themselves as invalid copy instructions much later.
Standard phi handling also only considers the bank of the result
register, and doesn't insert copies to make the source banks
match. This doesn't work for vcc, so we have to manually correct phi
inputs in this case. We should add a verifier check to make sure there
are no phis with mixed vcc and non-vcc register bank inputs.
There's also some duplication with the LegalizerHelper, and some code
which should live in the helper. I don't see a good way to share
special knowledge about what types to use for intermediate operations
depending on the bank for example. Using the helper to replace
extensions with selects also seems somewhat awkward to me.
Another issue is there are some contexts calling
getRegBankFromRegClass that apparently don't have the LLT type for the
register, but I haven't yet run into a real issue from this.
This also introduces new unnecessary instructions in most cases, since
we don't yet try to optimize out the zext when the source is known to
come from a compare.
This assumed a 32-bit extract size, which would produce invalid copies
with 64-bit extracts. Handle the easy case. Ideally we would have a
way to get the proper subreg index for any 32-bit offset, but there
should probably be a tablegenerated way of getting the subreg index
for any size and offset.
Summary:
G_GEP is rather poorly named. It's a simple pointer+scalar addition and
doesn't support any of the complexities of getelementptr. I therefore
propose that we rename it. There's a G_PTR_MASK so let's follow that
convention and go with G_PTR_ADD
Reviewers: volkan, aditya_nandakumar, bogner, rovka, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, hiraditya, jrtc27, atanasyan, arphaman, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69734
Mostly use SReg_32 instead of SReg_32_XM0 for arbitrary values. This
will allow the register coalescer to do a better job eliminating
copies to m0.
For GlobalISel, as a terrible hack, use SGPR_32 for things that should
use SCC until booleans are solved.
llvm-svn: 375267
Start manually writing a table to get the subreg index. TableGen
should probably generate this, but I'm not sure what it looks like in
the arbitrary case where subregisters are allowed to not fully cover
the super-registers.
llvm-svn: 373947
At minimum handle the s64 insert type, which are emitted in real cases
during legalization.
We really need TableGen to emit something to emit something like the
inverse of composeSubRegIndices do determine the subreg index to use.
llvm-svn: 373938
Allows targets to introduce regbankselectable
pseudo-instructions. Currently the closet feature to this is an
intrinsic. However this requires creating a public intrinsic
declaration. This litters the public intrinsic namespace with
operations we don't necessarily want to expose to IR producers, and
would rather leave as private to the backend.
Use a new instruction bit. A previous attempt tried to keep using enum
value ranges, but it turned into a mess.
llvm-svn: 373937
Summary:
Extend cachepolicy operand in the new VMEM buffer intrinsics
to supply information whether the buffer data is swizzled.
Also, propagate this information to MIR.
Intrinsics updated:
int_amdgcn_raw_buffer_load
int_amdgcn_raw_buffer_load_format
int_amdgcn_raw_buffer_store
int_amdgcn_raw_buffer_store_format
int_amdgcn_raw_tbuffer_load
int_amdgcn_raw_tbuffer_store
int_amdgcn_struct_buffer_load
int_amdgcn_struct_buffer_load_format
int_amdgcn_struct_buffer_store
int_amdgcn_struct_buffer_store_format
int_amdgcn_struct_tbuffer_load
int_amdgcn_struct_tbuffer_store
Furthermore, disable merging of VMEM buffer instructions
in SI Load/Store optimizer, if the "swizzled" bit on the instruction
is on.
The default value of the bit is 0, meaning that data in buffer
is linear and buffer instructions can be merged.
There is no difference in the generated code with this commit.
However, in the future it will be expected that front-ends
use buffer intrinsics with correct "swizzled" bit set.
Reviewers: arsenm, nhaehnle, tpr
Reviewed By: nhaehnle
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, arphaman, jfb, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68200
llvm-svn: 373491
My toolchain stopped working (LLVM 8.0 , libstdc++ 5.4.0) after
r372338.
The same problem was seen in clang-cuda-build buildbots:
clang-cuda-build/llvm/lib/Target/AMDGPU/AMDGPUInstructionSelector.cpp:763:12:
error: chosen constructor is explicit in copy-initialization
return {Reg, 0, nullptr};
^~~~~~~~~~~~~~~~~
/usr/bin/../lib/gcc/x86_64-linux-gnu/5.4.0/../../../../include/c++/5.4.0/tuple:479:19:
note: explicit constructor declared here
constexpr tuple(_UElements&&... __elements)
^
This commit adds explicit calls to std::make_tuple to work around
the problem.
llvm-svn: 372384
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
This needs special handling due to some subtargets that have a
nonstandard register layout for f16 vectors
Also reject some illegal types on other targets.
llvm-svn: 372293
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Currently we can't keep any state in the selector object that we get from
subtarget. As a result we have to plumb through all our variables through
multiple functions. This change makes it non-const and adds a virtual init()
method to allow further state to be captured for each target.
AArch64 makes use of this in this patch to cache a call to hasFnAttribute()
which is expensive to call, and is used on each selection of G_BRCOND.
Differential Revision: https://reviews.llvm.org/D65984
llvm-svn: 368652
Now that the patterns use the new PatFrag address space support, the
only blocker to importing most load patterns is the addressing mode
complex patterns.
llvm-svn: 366237
Apparently the check for legal instructions during instruction
select does not happen without an asserts build, so these would
successfully select in release, and fail in debug.
Make s16 and/or/xor legal. These can just be selected directly
to the 32-bit operation, as is already done in SelectionDAG, so just
make them legal.
llvm-svn: 366210
This is a hack until I come up with a better way of dealing with the
pseudo-register banks used for boolean values. If the use instruction
constrains the register, the selector for the def instruction won't
see that the bank was VCC. A 1-bit SReg_32 is could ambiguously have
been SCCRegBank or VCCRegBank in wave32.
This is necessary to successfully select branches with and and/or/xor
condition.
llvm-svn: 366120
The extra test change is correct, although how it arrives there is a
bug that needs work. With wave32, the test for isVCC ambiguously
reports true for an SCC or VCC source. A new allocatable pseudo
register class for SCC may be necesssary.
llvm-svn: 366119
The register bank for the destination of the sample argument copy was
wrong. We shouldn't be constraining each source to the result register
bank. Allow constraining the original register to the right size.
llvm-svn: 364928
Also works around tablegen defect in selecting add with unused carry,
but if we have to manually select GEP, might as well handle add
manually.
llvm-svn: 364806
This was checking the size of the register with the value of the size,
which happens to be exec. Also fix assuming VCC is 64-bit to fix
wave32.
Also remove some untested handling for physical registers which is
skipped. This doesn't insert the V_CNDMASK_B32 if SCC is the physical
copy source. I'm not sure if this should be trying to handle this
special case instead of dealing with this in copyPhysReg.
llvm-svn: 364761
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This is a follow-up to r335942.
- Merge SISubtarget into AMDGPUSubtarget and rename to GCNSubtarget
- Rename AMDGPUCommonSubtarget to AMDGPUSubtarget
- Merge R600Subtarget::Generation and GCNSubtarget::Generation into
AMDGPUSubtarget::Generation.
Reviewers: arsenm, jvesely
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D49037
llvm-svn: 336851
Note a normal select test is not currently possible because this
relies on input registers tracked in SIMachineFunctionInfo which
are not currently serializable in MIR, but this does work end-to-end
from the IR.
llvm-svn: 335490
Summary:
We can select all instructions that are marked as legal in a full piglit run,
so now is a good time to make the TableGen'd instruction selector default
for all opcodes. This is NFC for a full piglit run, which is why there are
no tests.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, rovka, kristof.beyls, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48198
llvm-svn: 335319
Summary:
MCTargetDesc/AMDGPUMCTargetDesc.h contains enums for all the instuction
and register defintions, which are huge so we only want to include
them where needed.
This will also make it easier if we want to split the R600 and GCN
definitions into separate tablegenerated files.
I was unable to remove AMDGPUMCTargetDesc.h from SIMachineFunctionInfo.h
because it uses some enums from the header to initialize default values
for the SIMachineFunction class, so I ended up having to remove includes of
SIMachineFunctionInfo.h from headers too.
Reviewers: arsenm, nhaehnle
Reviewed By: nhaehnle
Subscribers: MatzeB, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D46272
llvm-svn: 332930
Note: This is a candidate for LLVM 6.0, because it was planned to be
in that release but was delayed due to a long review period.
Merge conflict in release_60 - resolution:
Add "-p6:32:32" into the second (non-amdgiz) string.
Only scalar loads support 32-bit pointers. An address in a VGPR will
fail to compile. That's OK because the results of loads will only be used
in places where VGPRs are forbidden.
Updated AMDGPUAliasAnalysis and used SReg_64_XEXEC.
The tests cover all uses cases we need for Mesa.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D41651
llvm-svn: 324487
Summary:
This patch adds a LLVM_ENABLE_GISEL_COV which, like LLVM_ENABLE_DAGISEL_COV,
causes TableGen to instrument the generated table to collect rule coverage
information. However, LLVM_ENABLE_GISEL_COV goes a bit further than
LLVM_ENABLE_DAGISEL_COV. The information is written to files
(${CMAKE_BINARY_DIR}/gisel-coverage-* by default). These files can then be
concatenated into ${LLVM_GISEL_COV_PREFIX}-all after which TableGen will
read this information and use it to emit warnings about untested rules.
This technique could also be used by SelectionDAG and can be further
extended to detect hot rules and give them priority over colder rules.
Usage:
* Enable LLVM_ENABLE_GISEL_COV in CMake
* Build the compiler and run some tests
* cat gisel-coverage-[0-9]* > gisel-coverage-all
* Delete lib/Target/*/*GenGlobalISel.inc*
* Build the compiler
Known issues:
* ${LLVM_GISEL_COV_PREFIX}-all must be generated as a manual
step due to a lack of a portable 'cat' command. It should be the
concatenation of all ${LLVM_GISEL_COV_PREFIX}-[0-9]* files.
* There's no mechanism to discard coverage information when the ruleset
changes
Depends on D39742
Reviewers: ab, qcolombet, t.p.northover, aditya_nandakumar, rovka
Reviewed By: rovka
Subscribers: vsk, arsenm, nhaehnle, mgorny, kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39747
llvm-svn: 318356
We don't use it and it was removed in gfx9, and the encoding
bit repurposed.
Additionally actually using it requires changing the output register
class, which wasn't done anyway.
llvm-svn: 302814
As we introduced target triple environment amdgiz and amdgizcl, the address
space values are no longer enums. We have to decide the value by target triple.
The basic idea is to use struct AMDGPUAS to represent address space values.
For address space values which are not depend on target triple, use static
const members, so that they don't occupy extra memory space and is equivalent
to a compile time constant.
Since the struct is lightweight and cheap, it can be created on the fly at
the point of usage. Or it can be added as member to a pass and created at
the beginning of the run* function.
Differential Revision: https://reviews.llvm.org/D31284
llvm-svn: 298846
Summary:
For some reason instructions are being inserted in the wrong order with some
builds. I'm not sure why this is happening.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, tony-tye, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D29325
llvm-svn: 293639