This disables malloc-specific optimization when -fno-builtin (or -ffreestanding)
is specified. This has been a problem for a long time but became more severe
with the recent memory builtin improvements.
Since the memory builtin functions are used everywhere, this required passing
TLI in many places. This means that functions that now have an optional TLI
argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead
mallocs anymore if the TLI argument is missing. I've updated most passes to do
the right thing.
Fixes PR13694 and probably others.
llvm-svn: 162841
This patch implements ProfileDataLoader which loads profile data generated by
-insert-edge-profiling and updates branch weight metadata accordingly.
Patch by Alastair Murray.
llvm-svn: 162799
on the size of the extraction and its position in the 64 bit word.
This patch allows support of the dext transformations with mips64 direct
object output.
0 <= msb < 32 0 <= lsb < 32 0 <= pos < 32 1 <= size <= 32
DINS
The field is entirely contained in the right-most word of the doubleword
32 <= msb < 64 0 <= lsb < 32 0 <= pos < 32 2 <= size <= 64
DINSM
The field straddles the words of the doubleword
32 <= msb < 64 32 <= lsb < 64 32 <= pos < 64 1 <= size <= 32
DINSU
The field is entirely contained in the left-most word of the doubleword
llvm-svn: 162782
delimited. llvm-mc -disassemble access these through the -mattr
option.
llvm-objdump -disassemble had no such way to set the attribute so
some instructions were just not recognized for disassembly.
This patch accepts llvm-mc mechanism for specifying the attributes.
llvm-svn: 162781
transformed to the final instruction variant. An
example would be dsrll which is transformed into
dsll32 if the shift value is greater than 32.
For direct object output we need to do this transformation
in the codegen. If the instruction was inside branch
delay slot, it was being missed. This patch corrects this
oversight.
llvm-svn: 162779
traceback table on PowerPC64. This helps gdb handle exceptions. The other
mandatory fields are ignored by gdb and harder to implement so just add
there a FIXME.
Patch by Bill Schmidt. PR13641.
llvm-svn: 162778
- Add a target-specific DAG optimization to recognize a pattern PTEST-able.
Such a pattern is a OR'd tree with X86ISD::OR as the root node. When
X86ISD::OR node has only its flag result being used as a boolean value and
all its leaves are extracted from the same vector, it could be folded into an
X86ISD::PTEST node.
llvm-svn: 162735
These extra flags are not required to properly order the atomic
load/store instructions. SelectionDAGBuilder chains atomics as if they
were volatile, and SelectionDAG::getAtomic() sets the isVolatile bit on
the memory operands of all atomic operations.
The volatile bit is enough to order atomic loads and stores during and
after SelectionDAG.
This means we set mayLoad on atomic_load, mayStore on atomic_store, and
mayLoad+mayStore on the remaining atomic read-modify-write operations.
llvm-svn: 162733
Instructions emitted to compute branch offsets now use immediate operands
instead of symbolic labels. This change was needed because there were problems
when R_MIPS_HI16/LO16 relocations were used to make shared objects.
llvm-svn: 162731
In SelectionDAGLegalize::ExpandLegalINT_TO_FP, expand INT_TO_FP nodes without
using any f64 operations if f64 is not a legal type.
Patch by Stefan Kristiansson.
llvm-svn: 162728
Allow load-immediates to be rematerialised in the register coalescer for
PPC. This makes test/CodeGen/PowerPC/big-endian-formal-args.ll fail,
because it relies on a register move getting emitted. The immediate load is
equivalent, so change this test case.
Patch by Tobias von Koch.
llvm-svn: 162727
The 32-bit ABI requires CR bit 6 to be set if the call has fp arguments and
unset if it doesn't. The solution up to now was to insert a MachineNode to
set/unset the CR bit, which produces a CR vreg. This vreg was then copied
into CR bit 6. When the register allocator saw a bunch of these in the same
function, it allocated the set/unset CR bit in some random CR register (1
extra instruction) and then emitted CR moves before every vararg function
call, rather than just setting and unsetting CR bit 6 directly before every
vararg function call. This patch instead inserts a PPCcrset/PPCcrunset
instruction which are then matched by a dedicated instruction pattern.
Patch by Tobias von Koch.
llvm-svn: 162725
The zeroextend IR instruction is lowered to an 'and' node with an immediate
mask operand, which in turn gets legalised to a sequence of ori's & ands.
This can be done more efficiently using the rldicl instruction.
Patch by Tobias von Koch.
llvm-svn: 162724
This section (introduced in DWARF-3) is used to define instruction address
ranges for functions that are not contiguous and can't be described
by low_pc/high_pc attributes (this is the usual case for inlined subroutines).
The patch is the first step to support fetching complete inlining info from DWARF.
Reviewed by Benjamin Kramer.
llvm-svn: 162657
Previously, instructions without a primary patterns wouldn't get their
properties inferred. Now, we use all single-instruction patterns for
inference, including 'def : Pat<>' instances.
This causes a lot of instruction flags to change.
- Many instructions no longer have the UnmodeledSideEffects flag because
their flags are now inferred from a pattern.
- Instructions with intrinsics will get a mayStore flag if they already
have UnmodeledSideEffects and a mayLoad flag if they already have
mayStore. This is because intrinsics properties are linear.
- Instructions with atomic_load patterns get a mayStore flag because
atomic loads can't be reordered. The correct workaround is to create
pseudo-instructions instead of using normal loads. PR13693.
llvm-svn: 162614
the case of multiple edges from one block to another.
A simple example is a switch statement with multiple values to the same
destination. The definition of an edge is modified from a pair of blocks to
a pair of PredBlock and an index into the successors.
Also set the weight correctly when building SelectionDAG from LLVM IR,
especially when converting a Switch.
IntegersSubsetMapping is updated to calculate the weight for each cluster.
llvm-svn: 162572
output (we're emitting a specification already and the information
isn't changing) and we're not in old gdb compat mode.
Saves 1% on the debug information for a build of llvm.
Fixes rdar://11043421
llvm-svn: 162493
within the codegen EK_GPRel64BlockAddress. This was not
supported for direct object output and resulted in an assertion.
This change adds support for EK_GPRel64BlockAddress for
direct object.
One fallout from this is to turn on rela relocations
for mips64 to match gas.
llvm-svn: 162334
This optimization is really just replacing allocas wholesale with
globals, there is no scalarization.
The underlying motivation for this patch is to simplify the SROA pass
and focus it on splitting and promoting allocas.
llvm-svn: 162271
IR that hasn't been through SimplifyCFG can look like this:
br i1 %b, label %r, label %r
Make sure we don't create duplicate Machine CFG edges in this case.
Fix the machine code verifier to accept conditional branches with a
single CFG edge.
llvm-svn: 162230
this allows for better code generation.
Added a new DAGCombine transformation to convert FMAX and FMIN to FMANC and
FMINC, which are commutative.
For example:
movaps %xmm0, %xmm1
movsd LC(%rip), %xmm0
minsd %xmm1, %xmm0
becomes:
minsd LC(%rip), %xmm0
llvm-svn: 162187
Add these transformations to the existing add/sub ones:
(and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
(or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
(xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
The selects can then be transformed to a single predicated instruction
by peephole.
This transformation will make it possible to eliminate the ISD::CAND,
COR, and CXOR custom DAG nodes.
llvm-svn: 162176
arithmetic instructions. However, when small data types are used, a truncate
node appears between the SETCC node and the arithmetic operation. This patch
adds support for this pattern.
Before:
xorl %esi, %edi
testb %dil, %dil
setne %al
ret
After:
xorb %dil, %sil
setne %al
ret
rdar://12081007
llvm-svn: 162160
PEI can't handle the pseudo-instructions. This can be removed when the
pseudo-instructions are replaced by normal predicated instructions.
Fixes PR13628.
llvm-svn: 162130
The previous fix only checked for simple cycles, use a set to catch longer
cycles too.
Drop the broken check from the ObjectSizeOffsetEvaluator. The BoundsChecking
pass doesn't have to deal with invalid IR like InstCombine does.
llvm-svn: 162120
make it more consistent with its intended semantics.
The `linker_private_weak_def_auto' linkage type was meant to automatically hide
globals which never had their addresses taken. It has nothing to do with the
`linker_private' linkage type, which outputs the symbols with a `l' (ell) prefix
among other things.
The intended semantic is more like the `linkonce_odr' linkage type.
Change the name of the linkage type to `linkonce_odr_auto_hide'. And therefore
changing the semantics so that it produces the correct output for the linker.
Note: The old linkage name `linker_private_weak_def_auto' will still parse but
is not a synonym for `linkonce_odr_auto_hide'. This should be removed in 4.0.
<rdar://problem/11754934>
llvm-svn: 162114
multiple edges between two blocks is linear. If the caller is iterating all
edges leaving a BB that would be a square time algorithm. It is more efficient
to have the callers handle that case.
Currently the only callers are:
* GVN: already avoids the multiple edge case.
* Verifier: could only hit this assert when looking at an invalid invoke. Since
it already rejects the invoke, just avoid computing the dominance for it.
llvm-svn: 162113
I really need to find a way to automate this, but I can't come up with a regex
that has no false positives while handling tricky cases like custom check
prefixes.
llvm-svn: 162097
It is not my plan to duplicate the entire ARM instruction set with
predicated versions. We need a way of representing predicated
instructions in SSA form without requiring a separate opcode.
Then the pseudo-instructions can go away.
llvm-svn: 162061
where some fact lake a=b dominates a use in a phi, but doesn't dominate the
basic block itself.
This feature could also be implemented by splitting critical edges, but at least
with the current algorithm reasoning about the dominance directly is faster.
The time for running "opt -O2" in the testcase in pr10584 is 1.003 times slower
and on gcc as a single file it is 1.0007 times faster.
llvm-svn: 162023
Without fastcc support, the caller just falls through to CallingConv::C
for fastcc, but callee still uses fastcc, this inconsistency of calling
convention is a problem, and fastcc support can fix it.
llvm-svn: 162013
The ARM select instructions are just predicated moves. If the select is
the only use of an operand, the instruction defining the operand can be
predicated instead, saving one instruction and decreasing register
pressure.
This implementation can turn AND/ORR/EOR instructions into their
corresponding ANDCC/ORRCC/EORCC variants. Ideally, we should be able to
predicate any instruction, but we don't yet support predicated
instructions in SSA form.
llvm-svn: 161994
around. That's not how we do things. Besides, the commit message tells us that
it is covered by the GCC test suite.
------------------------------------------------------------------------
r127497 | zwarich | 2011-03-11 13:51:56 -0800 (Fri, 11 Mar 2011) | 3 lines
Fix the GCC test suite issue exposed by r127477, which was caused by stack
protector insertion not working correctly with unreachable code. Since that
revision was rolled out, this test doesn't actual fail before this fix.
------------------------------------------------------------------------
llvm-svn: 161985
- memcpy size is wrongly truncated into 32-bit and treat 8GB memcpy is
0-sized memcpy
- as 0-sized memcpy/memset is already removed before SimplifyMemTransfer
and SimplifyMemSet in visitCallInst, replace 0 checking with
assertions.
- replace getZExtValue() with getLimitedValue() according to
Eli Friedman
llvm-svn: 161923
reversed. This leads to wrong codegen for float-to-half conversion
intrinsics which are used to support storage-only fp16 type.
NEON variants of same instructions are fine.
llvm-svn: 161907
- FP_EXTEND only support extending from vectors with matching elements.
This results in the scalarization of extending to v2f64 from v2f32,
which will be legalized to v4f32 not matching with v2f64.
- add X86-specific VFPEXT supproting extending from v4f32 to v2f64.
- add BUILD_VECTOR lowering helper to recover back the original
extending from v4f32 to v2f64.
- test case is enhanced to include different vector width.
llvm-svn: 161894
and allow some optimizations to turn conditional branches into unconditional.
This commit adds a simple control-flow optimization which merges two consecutive
basic blocks which are connected by a single edge. This allows the codegen to
operate on larger basic blocks.
rdar://11973998
llvm-svn: 161852
Currently, if GetLocation reports that it did not find a valid pointer (this is the case for volatile load/stores),
we ignore the result. This patch adds code to handle the cases where we did not obtain a valid pointer.
rdar://11872864 PR12899
llvm-svn: 161802
It is still possible to if-convert if the tail block has extra
predecessors, but the tail phis must be rewritten instead of being
removed.
llvm-svn: 161781
- FCMOV only supports a subset of X86 conditions. Skip boolean
simplification if X86 condition is not valid for FCMOV.
- add a minimal test case for PR13577.
llvm-svn: 161732
FeatureFastUAMem for Nehalem, Westmere and Sandy Bridge.
FeatureFastUAMem is already on if we pass in nehalem or westmere as a command
argument.
rdar: 7252306
llvm-svn: 161717
- if a boolean test (X86ISD::CMP or X86ISD:SUB) checks a boolean value
generated from X86ISD::SETCC, try to simplify the boolean value
generation and checking by reusing the original EFLAGS with proper
condition code
- add hooks to X86 specific SETCC/BRCOND/CMOV, the major 3 places
consuming EFLAGS
part of patches fixing PR12312
llvm-svn: 161687
When replacing Old with New, it can happen that New is already a
successor. Add the old and new edge weights instead of creating a
duplicate edge.
llvm-svn: 161653
This makes it possible to speed up def_iterator by stopping at the first
use. This makes def_empty() and getUniqueVRegDef() much faster when
there are many uses.
In a +Asserts build, LiveVariables is 100x faster in one case because
getVRegDef() has an assertion that would scan to the end of a
def_iterator chain.
Spill weight calculation is significantly faster (300x in one case)
because isTriviallyReMaterializable() calls MRI->isConstantPhysReg(%RIP)
which calls def_empty(%RIP).
llvm-svn: 161634
Use a more conventional doubly linked list where the Prev pointers form
a cycle. This means it is no longer necessary to adjust the Prev
pointers when reallocating the VRegInfo array.
The test changes are required because the register allocation hint is
using the use-list order to break ties.
llvm-svn: 161633
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
llvm-svn: 161581
There are situations where inline ASM may want to change the section -- for
instance, to create a variable in the .data section. However, it cannot do this
without (potentially) restoring to the wrong section. E.g.:
asm volatile (".section __DATA, __data\n\t"
".globl _fnord\n\t"
"_fnord: .quad 1f\n\t"
".text\n\t"
"1:" :::);
This may be wrong if this is inlined into a function that has a "section"
attribute. The user should use `.pushsection' and `.popsection' here instead.
The addition of `.previous' is added for completeness.
<rdar://problem/12048387>
llvm-svn: 161477
We perform the following:
1> Use SUB instead of CMP for i8,i16,i32 and i64 in ISel lowering.
2> Modify MachineCSE to correctly handle implicit defs.
3> Convert SUB back to CMP if possible at peephole.
Removed pattern matching of (a>b) ? (a-b):0 and like, since they are handled
by peephole now.
rdar://11873276
llvm-svn: 161462
multiple scalar promotions on a single loop. This also has the effect of
preserving the order of stores sunk out of loops, which is aesthetically
pleasing, and it happens to fix the testcase in PR13542, though it doesn't
fix the underlying problem.
llvm-svn: 161459
An unsigned value converted to floating-point will always be greater than
a negative constant. Unfortunately InstCombine reversed the check so that
unsigned values were being optimized to always be greater than all positive
floating-point constants. <rdar://problem/12029145>
llvm-svn: 161452
and "instruction address -> file/line" lookup.
Instead of plain collection of rows, debug line table for compilation unit is now
treated as the number of row ranges, describing sequences (series of contiguous machine
instructions). The sequences are not always listed in the order of increasing
address, so previously used std::lower_bound() sometimes produced wrong results.
Now the instruction address lookup consists of two stages: finding the correct
sequence, and searching for address in range of rows for this sequence.
llvm-svn: 161414
We give a bonus for every argument because the argument setup is not needed
anymore when the function is inlined. With this patch we interpret byval
arguments as a compact representation of many arguments. The byval argument
setup is implemented in the backend as an inline memcpy, so to model the
cost as accurately as possible we take the number of pointer-sized elements
in the byval argument and give a bonus of 2 instructions for every one of
those. The bonus is capped at 8 elements, which is the number of stores
at which the x86 backend switches from an expanded inline memcpy to a real
memcpy. It would be better to use the real memcpy threshold from the backend,
but it's not available via TargetData.
This change brings the performance of c-ray in line with gcc 4.7. The included
test case tries to reproduce the c-ray problem to catch regressions for this
benchmark early, its performance is dominated by the inline decision of a
specific call.
This only has a small impact on most code, more on x86 and arm than on x86_64
due to the way the ABI works. When building LLVM for x86 it gives a small
inline cost boost to virtually any function using StringRef or STL allocators,
but only a 0.01% increase in overall binary size. The size of gcc compiled by
clang actually shrunk by a couple bytes with this patch applied, but not
significantly.
llvm-svn: 161413
instsimplify+inline strategy.
The crux of the problem is that instsimplify was reasonably relying on
an invariant that is true within any single function, but is no longer
true mid-inline the way we use it. This invariant is that an argument
pointer != a local (alloca) pointer.
The fix is really light weight though, and allows instsimplify to be
resiliant to these situations: when checking the relation ships to
function arguments, ensure that the argumets come from the same
function. If they come from different functions, then none of these
assumptions hold. All credit to Benjamin Kramer for coming up with this
clever solution to the problem.
llvm-svn: 161410
Previously, MBP essentially aligned every branch target it could. This
bloats code quite a bit, especially non-looping code which has no real
reason to prefer aligned branch targets so heavily.
As Andy said in review, it's still a bit odd to do this without a real
cost model, but this at least has much more plausible heuristics.
Fixes PR13265.
llvm-svn: 161409
If the result of a common subexpression is used at all uses of the candidate
expression, CSE should not increase the live range of the common subexpression.
rdar://11393714 and rdar://11819721
llvm-svn: 161396
initialize fields of the class that it used.
The result was nonsense code.
Before:
0000000000000000 <foo>:
0: 00441100 0x441100
4: 03e00008 jr ra
8: 00000000 nop
After:
0000000000000000 <foo>:
0: 00041000 sll v0,a0,0x0
4: 03e00008 jr ra
8: 00000000 nop
llvm-svn: 161377
were using a class defined for 32 bit instructions and
thus the instruction was for addiu instead of daddiu.
This was corrected by adding the instruction opcode as a
field in the base class to be filled in by the defs.
llvm-svn: 161359
These 2 relocations gain access to the
highest and the second highest 16 bits
of a 64 bit object.
R_MIPS_HIGHER %higher(A+S)
The %higher(x) function is [ (((long long) x + 0x80008000LL) >> 32) & 0xffff ].
R_MIPS_HIGHEST %highest(A+S)
The %highest(x) function is [ (((long long) x + 0x800080008000LL) >> 48) & 0xffff ].
llvm-svn: 161348
The MFTB instruction itself is being phased out, and its functionality
is provided by MFSPR. According to the ISA docs, using MFSPR works on all known
chips except for the 601 (which did not have a timebase register anyway)
and the POWER3.
Thanks to Adhemerval Zanella for pointing this out!
llvm-svn: 161346
On PPC64, this can be done with a simple TableGen pattern.
To enable this, I've added the (otherwise missing) readcyclecounter
SDNode definition to TargetSelectionDAG.td.
llvm-svn: 161302
This patch is mostly just refactoring a bunch of copy-and-pasted code, but
it also adds a check that the call instructions are readnone or readonly.
That check was already present for sin, cos, sqrt, log2, and exp2 calls, but
it was missing for the rest of the builtins being handled in this code.
llvm-svn: 161282
I noticed that SelectionDAGBuilder::visitCall was missing a check for memcmp
in TargetLibraryInfo, so that it would use custom code for memcmp calls even
with -fno-builtin. I also had to add a new -disable-simplify-libcalls option
to llc so that I could write a test for this.
llvm-svn: 161262
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
llvm-svn: 161232