Seems like we never had these, so here we go! I also did some refactoring as I
was chasing a bug unrelated to this revision.
Differential Revision: https://reviews.llvm.org/D66715
llvm-svn: 371765
We're building the CFG from bottom to top, so when the return-value expression
has a non-trivial CFG on its own, we need to continue building from the entry
to the return-value expression CFG rather than from the block to which
we've just appended the return statement.
Fixes a false positive warning "control may reach end of non-void function".
llvm-svn: 370406
Respect C++17 copy elision; previously it would generate destructor calls
for elided temporaries, including in initialization and return statements.
Don't generate duplicate destructor calls for statement expressions.
Fix destructors in initialization lists and comma operators.
Improve printing of implicit destructors.
Patch by Nicholas Allegra!
Differential Revision: https://reviews.llvm.org/D66404
llvm-svn: 370247
Previously, collecting CFGElements in a set was practially impossible, because
both CFGBlock::operator[] and both the iterators returned it by value. One
workaround would be to collect the iterators instead, but they don't really
capture the concept of an element, and elements from different iterator types are incomparable.
This patch introduces CFGElementRef, a wrapper around a (CFGBlock, Index) pair,
and a variety of new iterators and iterator ranges to solve this problem.
I guess you could say that this patch took a couple iterations to get right :^)
Differential Revision: https://reviews.llvm.org/D65196
llvm-svn: 368883
Well, what is says on the tin I guess!
Some more changes:
* Move isInevitablySinking() from BugReporter.cpp to CFGBlock's interface
* Rename and move findBlockForNode() from BugReporter.cpp to
ExplodedNode::getCFGBlock()
Differential Revision: https://reviews.llvm.org/D65287
llvm-svn: 368836
1. raw_ostream supports ANSI colors so that you can write messages to
the termina with colors. Previously, in order to change and reset
color, you had to call `changeColor` and `resetColor` functions,
respectively.
So, if you print out "error: " in red, for example, you had to do
something like this:
OS.changeColor(raw_ostream::RED);
OS << "error: ";
OS.resetColor();
With this patch, you can write the same code as follows:
OS << raw_ostream::RED << "error: " << raw_ostream::RESET;
2. Add a boolean flag to raw_ostream so that you can disable colored
output. If you disable colors, changeColor, operator<<(Color),
resetColor and other color-related functions have no effect.
Most LLVM tools automatically prints out messages using colors, and
you can disable it by passing a flag such as `--disable-colors`.
This new flag makes it easy to write code that works that way.
Differential Revision: https://reviews.llvm.org/D65564
llvm-svn: 367649
Summary:
Added support for analysis of if clauses in the OpenMP directives to be
able to check for the use of uninitialized variables.
Reviewers: NoQ
Subscribers: guansong, jfb, jdoerfert, caomhin, kkwli0, cfe-commits
Tags: clang
Differential Revision: https://reviews.llvm.org/D64646
llvm-svn: 366211
Summary:
Some OpenMP clauses rely on the values of the variables. If the variable
is not initialized and used in OpenMP clauses that depend on the
variables values, it should be reported that the uninitialized variable
is used in the OpenMP clause expression.
This patch adds initial processing for uninitialized variables in OpenMP
constructs. Currently, it checks for use of the uninitialized variables
in the structured blocks.
Reviewers: NoQ, Szelethus, dcoughlin, xazax.hun, a.sidorin, george.karpenkov, szepet
Subscribers: rnkovacs, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D64356
llvm-svn: 365786
getTerminatorCondition() returned a condition that may be outside of the
block, while the new function returns the proper one:
if (A && B && C) {}
Return C instead of A && B && C.
Differential Revision: https://reviews.llvm.org/D63538
llvm-svn: 365177
For the following terminator statement:
if (A && B && C && D)
The built CFG is the following:
[B5 (ENTRY)]
Succs (1): B4
[B1]
1: 10
2: j
3: [B1.2] (ImplicitCastExpr, LValueToRValue, int)
4: [B1.1] / [B1.3]
5: int x = 10 / j;
Preds (1): B2
Succs (1): B0
[B2]
1: C
2: [B2.1] (ImplicitCastExpr, LValueToRValue, _Bool)
T: if [B4.4] && [B3.2] && [B2.2]
Preds (1): B3
Succs (2): B1 B0
[B3]
1: B
2: [B3.1] (ImplicitCastExpr, LValueToRValue, _Bool)
T: [B4.4] && [B3.2] && ...
Preds (1): B4
Succs (2): B2 B0
[B4]
1: 0
2: int j = 0;
3: A
4: [B4.3] (ImplicitCastExpr, LValueToRValue, _Bool)
T: [B4.4] && ...
Preds (1): B5
Succs (2): B3 B0
[B0 (EXIT)]
Preds (4): B1 B2 B3 B4
However, even though the path of execution in B2 only depends on C's value,
CFGBlock::getCondition() would return the entire condition (A && B && C). For
B3, it would return A && B. I changed this the actual condition.
Differential Revision: https://reviews.llvm.org/D63538
llvm-svn: 365036
Syntax:
asm [volatile] goto ( AssemblerTemplate
:
: InputOperands
: Clobbers
: GotoLabels)
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
New llvm IR is "callbr" for inline asm goto instead "call" for inline asm
For:
asm goto("testl %0, %0; jne %l1;" :: "r"(cond)::label_true, loop);
IR:
callbr void asm sideeffect "testl $0, $0; jne ${1:l};", "r,X,X,~{dirflag},~{fpsr},~{flags}"(i32 %0, i8* blockaddress(@foo, %label_true), i8* blockaddress(@foo, %loop)) #1
to label %asm.fallthrough [label %label_true, label %loop], !srcloc !3
asm.fallthrough:
Compiler need to generate:
1> a dummy constarint 'X' for each label.
2> an unique fallthrough label for each asm goto stmt " asm.fallthrough%number".
Diagnostic
1> duplicate asm operand name are used in output, input and label.
2> goto out of scope.
llvm-svn: 362045
This patch adds the run-time CFG branch that would skip initialization of
virtual base classes depending on whether the constructor is called from a
superclass constructor or not. Previously the Static Analyzer was already
skipping virtual base-class initializers in such constructors, but it wasn't
skipping their arguments and their potential side effects, which was causing
pr41300 (and was generally incorrect). The previous skipping behavior is
now replaced with a hard assertion that we're not even getting there due
to how our CFG works.
The new CFG element is under a CFG build option so that not to break other
consumers of the CFG by this change. Static Analyzer support for this change
is implemented.
Differential Revision: https://reviews.llvm.org/D61816
llvm-svn: 361681
Turn it into a variant class instead. This conversion does indeed save some code
but there's a plan to add support for more kinds of terminators that aren't
necessarily based on statements, and with those in mind it becomes more and more
confusing to have CFGTerminators implicitly convertible to a Stmt *.
Differential Revision: https://reviews.llvm.org/D61814
llvm-svn: 361586
new expression.
This was voted into C++20 as a defect report resolution, so we
retroactively apply it to all prior language modes (though it can never
actually be used before C++11 mode).
llvm-svn: 360006
Currently we always inline functions that have no branches, i.e. have exactly
three CFG blocks: ENTRY, some code, EXIT. This makes sense because when there
are no branches, it means that there's no exponential complexity introduced
by inlining such function. Such functions also don't trigger various fundamental
problems with our inlining mechanism, such as the problem of inlined
defensive checks.
Sometimes the CFG may contain more blocks, but in practice it still has
linear structure because all directions (except, at most, one) of all branches
turned out to be unreachable. When this happens, still treat the function
as "small". This is useful, in particular, for dealing with C++17 if constexpr.
Differential Revision: https://reviews.llvm.org/D61051
llvm-svn: 359531
When searching for construction contexts, i.e. figuring out which statements
define the object that is constructed by each construct-expression, ignore
transparent init-list expressions because they don't add anything to the
context. This allows the Static Analyzer to model construction, destruction,
materialization, lifetime extension correctly in more cases. Also fixes
a crash caused by incorrectly evaluating initial values of variables
initialized with such expressions.
Differential Revision: https://reviews.llvm.org/D59573
llvm-svn: 356634
This builtin has the same UI as __builtin_object_size, but has the
potential to be evaluated dynamically. It is meant to be used as a
drop-in replacement for libraries that use __builtin_object_size when
a dynamic checking mode is enabled. For instance,
__builtin_object_size fails to provide any extra checking in the
following function:
void f(size_t alloc) {
char* p = malloc(alloc);
strcpy(p, "foobar"); // expands to __builtin___strcpy_chk(p, "foobar", __builtin_object_size(p, 0))
}
This is an overflow if alloc < 7, but because LLVM can't fold the
object size intrinsic statically, it folds __builtin_object_size to
-1. With __builtin_dynamic_object_size, alloc is passed through to
__builtin___strcpy_chk.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56760
llvm-svn: 352665
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
Summary:
Compound literals, enums, file-scoped arrays, etc. require their
initializers and size specifiers to be constant. Wrap the initializer
expressions in a ConstantExpr so that we can easily check for this later
on.
Reviewers: rsmith, shafik
Reviewed By: rsmith
Subscribers: cfe-commits, jyknight, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D53921
llvm-svn: 346455
Summary:
The test case added in this diff would incorrectly warn that control
flow may fall through without returning. Here's a standalone example:
https://godbolt.org/z/dCwXEi
The same program, but using `return` instead of `co_return`, does not
produce a warning: https://godbolt.org/z/mVldqQ
The issue was in how Clang analysis would structure its representation
of the control-flow graph. Specifically, when constructing the CFG,
`CFGBuilder::Visit` had special handling of a `ReturnStmt`, in which it
would place object destructors in the same CFG block as a `return` statement,
immediately after it. Doing so would allow the logic in
`lib/Sema/AnalysisBasedWarning.cpp` `CheckFallThrough` to work properly in the
program that used `return`, correctly determining that no "plain edges" preceded
the exit block of the function.
Because a `co_return` statement would not enjoy the same treatment when
it was being built into the control-flow graph, object destructors
would not be placed in the same CFG block as the `co_return`, thus
resulting in a "plain edge" preceding the exit block of the function,
and so the warning logic would be triggered.
Add special casing for `co_return` to Clang analysis, thereby
remedying the mistaken warning.
Test Plan: `check-clang`
Reviewers: GorNishanov, tks2103, rsmith
Reviewed By: GorNishanov
Subscribers: EricWF, lewissbaker, cfe-commits
Differential Revision: https://reviews.llvm.org/D54075
llvm-svn: 346074
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
The analyzer doesn't make use of them anyway and they seem to have
pretty weird AST from time to time, so let's just skip them for now.
Fixes pr37769.
Differential Revision: https://reviews.llvm.org/D50824
llvm-svn: 340975
CXXTemporaryObjectExpr is a sub-class of CXXConstructExpr. If it has arguments
that are structures passed by value, their respective constructors need to be
handled by providing a ConstructionContext, like for regular function calls and
for regular constructors.
Differential Revision: https://reviews.llvm.org/D50487
llvm-svn: 339727
This is a refactoring patch; no functional change intended.
The common part of ConstructionContextLayer and ConstructedObjectKey is
factored out into a new structure, ConstructionContextItem.
Various sub-kinds of ConstructionContextItem are enumerated in order to
provide richer information about construction contexts.
Differential Revision: https://reviews.llvm.org/D49210.
llvm-svn: 338439
In r330377 and r338425 we have already identified what constitutes function
argument constructors and added stubs in order to prevent confusing them
with other temporary object constructors.
Now we implement a ConstructionContext sub-class to carry all the necessary
information about the construction site, namely call expression and argument
index.
On the analyzer side, the patch interacts with the recently implemented
pre-C++17 copy elision support in an interesting manner. If on the CFG side we
didn't find a construction context for the elidable constructor, we build
the CFG as if the elidable constructor is not elided, and the non-elided
constructor within it is a simple temporary. But the same problem may occur
in the analyzer: if the elidable constructor has a construction context but
the analyzer doesn't implement such context yet, the analyzer should also
try to skip copy elision and still inline the non-elided temporary constructor.
This was implemented by adding a "roll back" mechanism: when elision fails,
roll back the changes and proceed as if it's a simple temporary. The approach
is wonky, but i'm fine with that as long as it's merely a defensive mechanism
that should eventually go away once all construction contexts become supported.
Differential Revision: https://reviews.llvm.org/D48681.
llvm-svn: 338436
Like any normal funciton, Objective-C message can return a C++ object
in Objective-C++. Such object would require a construction context.
This patch, therefore, is an extension of r327343 onto Objective-C++.
Differential Revision: https://reviews.llvm.org/D48608
llvm-svn: 338426
CFG now correctly identifies construction context for temporaries constructed
for the purpose of passing into a function as an argument.
Such context is still not fully implemented because the information it provides
is not rich enough: it doens't contain information about argument index.
It will be addresssed later.
This patch is an extension of r330377 to C++ construct-expressions and
Objective-C message expressions which aren't call-expressions but require
similar handling. C++ new-expressions with placement arguments still remain to
be handled.
Differential Revision: https://reviews.llvm.org/D49826
llvm-svn: 338425
in some member function calls.
Specifically, when calling a conversion function, we would fail to
create the AST node representing materialization of the class object.
llvm-svn: 338135
Copy-constructors and move-constructors may have default arguments. It is
incorrect to assert that they only have one argument, i.e. the reference to the
object being copied or moved. Remove the assertion.
Differential Revision: https://reviews.llvm.org/D49215
llvm-svn: 337229
Before C++17 copy elision was optional, even if the elidable copy/move
constructor had arbitrary side effects. The elidable constructor is present
in the AST, but marked as elidable.
In these cases CFG now contains additional information that allows its clients
to figure out if a temporary object is only being constructed so that to pass
it to an elidable constructor. If so, it includes a reference to the elidable
constructor's construction context, so that the client could elide the
elidable constructor and construct the object directly at its final destination.
Differential Revision: https://reviews.llvm.org/D47616
llvm-svn: 335795
In code like
const int &x = A().x;
automatic destructor for the object A() lifetime-extended by reference 'x' was
not present in the clang CFG due to ad-hoc pattern-matching in
getReferenceInitTemporaryType().
Re-use skipRValueSubobjectAdjustments() again to find the lifetime-extended
object in the AST and emit the correct destructor.
Lifetime extension through aggregates with references still needs to be covered.
Differential Revision: https://reviews.llvm.org/D44238
llvm-svn: 333941
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
FunctionProtoType.
We previously re-evaluated the expression each time we wanted to know whether
the type is noexcept or not. We now evaluate the expression exactly once.
This is not quite "no functional change": it fixes a crasher bug during AST
deserialization where we would try to evaluate the noexcept specification in a
situation where we have not deserialized sufficient portions of the AST to
permit such evaluation.
llvm-svn: 331428