Summary:
We create attributes on-demand so we need to check the white list
on-demand. This also unifies the location at which we create,
initialize, and eventually invalidate new abstract attributes.
The tests show mixed results, a few more call site attributes are
determined which can cause more iterations.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66913
llvm-svn: 370922
Summary:
Before we tried to rule out non-exact definitions early but that lead to
on-demand attributes created for them anyway. As a consequence we needed
to look at the definition in the initialize of each attribute again.
This patch centralized this lookup and tightens the condition under
which we give up on non-exact definitions.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67115
llvm-svn: 370917
Add the no-capture argument attribute deduction to the Attributor
fixpoint framework.
The new string attributed "no-capture-maybe-returned" is introduced to
allow deduction of no-capture through functions that "capture" an
argument but only by "returning" it. It is only used by the Attributor
for testing.
Differential Revision: https://reviews.llvm.org/D59922
llvm-svn: 370817
Summary:
Instead of recomputing information for call sites we now use the
function information directly. This is always valid and once we have
call site specific information we can improve here.
This patch also bootstraps attributes that are created on-demand through
an initial update call. Information that is known will then directly be
available in the new attribute without causing an iteration delay.
The tests show how this improves the iteration count.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66781
llvm-svn: 370480
As dependences between abstract attributes can become stale, e.g., if
one was sufficient to imply another one at some point but it has since
been wakened to the point it is not usable for the formerly implied one.
To weed out spurious dependences, and thereby eliminate unneeded
updates, we introduce an option to determine how often the dependence
cache is cleared and recomputed during the fixpoint iteration.
Note that the initial value was determined such that we see a positive
result on our tests.
Differential Revision: https://reviews.llvm.org/D63315
llvm-svn: 370230
Summary:
Until we have proper call-site information we should not recompute
liveness and return information for each call site. This patch directly
uses the function versions and introduces TODOs at the usage sites.
The required iterations to get to the fixpoint are most of the time
reduced by this change and we always avoid work duplication.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66562
llvm-svn: 370208
Summary:
Try to verify how many iterations we need for a fixpoint in our tests.
This patch adjust the way we count to make it easier to follow. It also
adjusts the bounds to actually account for a fixpoint and not only the
minimum number to pass all checks.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66757
llvm-svn: 369945
Locally the tight iterations bounds work fine but the bots seem unhappy.
Try to get green bots and some time to determine the underlying problem.
llvm-svn: 369592
Summary:
To be able to track how many iterations we need to manifest all
information we check for we now make the maximum iteration count
explicit. The count is set tightly now and should be kept that way.
Reviewers: uenoku, sstefan1
Subscribers: bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66554
llvm-svn: 369586
Before, we create the set of abstract attributes initially and then
dealt with the fact hat a lookup could fail, e.g., return a nullptr.
This patch will ensure we always return a valid object from a lookup,
allowing us not only to remove the nullptr checks but also to grow the
set of abstract attributes "in-flight" on-demand.
One can now start from those that have the best chance of improving
performance without the need to specify all they might depend on.
While this introduces some boilerplate, the usage of attributes is much
easier and cleaner now.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66276
llvm-svn: 369331
Summary:
What D66126 did for AAAlign, this patch does for AANonNull. Agian, the
logic becomes more concise and localized. Again, returned poiners are
not annotated properly but that will not be an issue if this lands with
the "on-demand" generation of attributes. First improvements due to the
genericValueTraversal are already visible.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66128
llvm-svn: 369328
A function is "no-return" if we never reach a return instruction, either
because there are none or the ones that exist are dead.
Test have been adjusted:
- either noreturn was added, or
- noreturn was avoided by modifying the code.
The new noreturn_{sync,async} test make sure we do handle invoke
instructions with a noreturn (and potentially nowunwind) callee
correctly, even in the presence of potential asynchronous exceptions.
llvm-svn: 367948
Summary: As clarified in D53184, volatile load and store do not trap. Therefore, we should remove volatile checks for instructions in `isGuaranteedToTransferExecutionToSuccessor`.
Reviewers: jdoerfert, efriedma, nikic
Reviewed By: nikic
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65375
llvm-svn: 367226
Summary:
Deduce dereferenceable attribute in Attributor.
These will be added in a later patch.
* dereferenceable(_or_null)_globally (D61652)
* Deduction based on load instruction (similar to D64258)
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64876
llvm-svn: 366788
Porting function return value attribute noalias to attributor.
This will be followed with a patch for callsite and function argumets.
Reviewers: jdoerfert
Subscribers: lebedev.ri, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D63067
llvm-svn: 366728
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
Summary:
This was motivated by absence of PrunEH functionality in new PM.
It was decided that a proper way to do PruneEH is to add NoUnwind inference
into PostOrderFunctionAttrs and then perform normal SimplifyCFG on top.
This change generalizes attribute handling implemented for (a removal of)
Convergent attribute, by introducing a generic builder-like class
AttributeInferer
It registers all the attribute inference requests, storing per-attribute
predicates into a vector, and then goes through an SCC Node, scanning all
the instructions for not breaking attribute assumptions.
The main idea is that as soon all the instructions from all the functions
of SCC Node conform to attribute assumptions then we are free to infer
the attribute as set for all the functions of SCC Node.
It handles two distinct cases of attributes:
- those that might break due to derefinement of the function code
for these attributes we are allowed to apply inference only if all the
functions are "exact definitions". Example - NoUnwind.
- those that do not care about derefinement
for these attributes we are allowed to apply inference as soon as we see
any function definition. Example - removal of Convergent attribute.
Also in this commit:
* Converted all the FunctionAttrs tests to use FileCheck and added new-PM
invocations to them
* FunctionAttrs/convergent.ll test demonstrates a difference in behavior between
new and old PM implementations. Marked with FIXME.
* PruneEH tests were converted to new-PM as well, using function-attrs+simplify-cfg
combo as intended
* some of "other" tests were updated since function-attrs now infers 'nounwind'
even for old PM pipeline
* -disable-nounwind-inference hidden option added as a possible workaround for a supposedly
rare case when nounwind being inferred by default presents a problem
Reviewers: chandlerc, jlebar
Reviewed By: jlebar
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D44415
llvm-svn: 328377
It now knows the tricks of both functions.
Also, fix a bug that considered allocas of non-zero address space to be always non null
Differential Revision: https://reviews.llvm.org/D37628
llvm-svn: 312869
Teach FunctionAttr to infer the nonnull attribute on return values of functions which never return a potentially null value. This is done both via a conservative local analysis for the function itself and a optimistic per-SCC analysis. If no function in the SCC returns anything which could be null (other than values from other functions in the SCC), we can conclude no function returned a null pointer. Even if some function within the SCC returns a null pointer, we may be able to locally conclude that some don't.
Differential Revision: http://reviews.llvm.org/D9688
llvm-svn: 246476