Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
This is the second attempt. In the first attempt (r169837), a few
getSimpleVT() were hoisted too far, detected by bootstrap failures.
llvm-svn: 170104
mention the inline memcpy / memset expansion code is a mess?
This patch split the ZeroOrLdSrc argument into two: IsMemset and ZeroMemset.
The first indicates whether it is expanding a memset or a memcpy / memmove.
The later is whether the memset is a memset of zero. It's totally possible
(likely even) that targets may want to do different things for memcpy and
memset of zero.
llvm-svn: 169959
Also added more comments to explain why it is generally ok to return true.
- Rename getOptimalMemOpType argument IsZeroVal to ZeroOrLdSrc. It's meant to
be true for loaded source (memcpy) or zero constants (memset). The poor name
choice is probably some kind of legacy issue.
llvm-svn: 169954
ScalarTargetTransformInfo::getIntImmCost() instead. "Legal" is a poorly defined
term for something like integer immediate materialization. It is always possible
to materialize an integer immediate. Whether to use it for memcpy expansion is
more a "cost" conceern.
llvm-svn: 169929
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
llvm-svn: 169837
1. Teach it to use overlapping unaligned load / store to copy / set the trailing
bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies.
2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g.
x86 and ARM.
3. When memcpy from a constant string, do *not* replace the load with a constant
if it's not possible to materialize an integer immediate with a single
instruction (required a new target hook: TLI.isIntImmLegal()).
4. Use unaligned load / stores more aggressively if target hooks indicates they
are "fast".
5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8.
Also increase the threshold to something reasonable (8 for memset, 4 pairs
for memcpy).
This significantly improves Dhrystone, up to 50% on ARM iOS devices.
rdar://12760078
llvm-svn: 169791
understand target implementation of any_extend / extload, just generate
zero_extend in place of any_extend for liveouts when the target knows the
zero_extend will be implicit (e.g. ARM ldrb / ldrh) or folded (e.g. x86 movz).
rdar://12771555
llvm-svn: 169536
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Codegen was failing with an assertion because of unexpected vector
operands when legalizing the selection DAG for a MUL instruction.
The asserting code was legalizing multiplies for vectors of size 128
bits. It uses a custom lowering to try and detect cases where it can
use a VMULL instruction instead of a VMOVL + VMUL. The code was
looking for input operands to the MUL that had been sign or zero
extended. If it found the extended operands it would drop the
sign/zero extension and use the original vector size as input to a
VMULL instruction.
The code assumed that the original input vector was 64 bits so that
after dropping the extension it would fit directly into a D register
and could be used as an operand of a VMULL instruction. The input
code that trigger the failure used a vector of <4 x i8> that was
sign extended to <4 x i32>. It was not safe to drop the sign
extension in this case because the original vector is only 32 bits
wide. The fix is to insert a sign extension for the vector to reach
the required 64 bit size. In this particular example, the vector would
need to be sign extented to a <4 x i16>.
llvm-svn: 169024
This patch replaces the hard coded GPR pair [R0, R1] of
Intrinsic:arm_ldrexd and [R2, R3] of Intrinsic:arm_strexd with
even/odd GPRPair reg class.
Similar to the lowering of atomic_64 operation.
llvm-svn: 168207
mov lr, pc
b.w _foo
The "mov" instruction doesn't set bit zero to one, it's putting incorrect
value in lr. It messes up backtraces.
rdar://12663632
llvm-svn: 167657
registers. Previously, the register we being marked as implicitly defined, but
not killed. In some cases this would cause the register scavenger to spill a
dead register.
Also, use an empty register mask to simplify the logic and to reduce the memory
footprint.
rdar://12592448
llvm-svn: 167499
Removed extra stack frame object for fixed byval arguments,
VarArgsStyleRegisters invocation was reworked due to some improper usage in
past. PR14099 also demonstrates it.
llvm-svn: 166273
Stack is formed improperly for long structures passed as byval arguments for
EABI mode.
If we took AAPCS reference, we can found the next statements:
A: "If the argument requires double-word alignment (8-byte), the NCRN (Next
Core Register Number) is rounded up to the next even register number." (5.5
Parameter Passing, Stage C, C.3).
B: "The alignment of an aggregate shall be the alignment of its most-aligned
component." (4.3 Composite Types, 4.3.1 Aggregates).
So if we have structure with doubles (9 double fields) and 3 Core unused
registers (r1, r2, r3): caller should use r2 and r3 registers only.
Currently r1,r2,r3 set is used, but it is invalid.
Callee VA routine should also use r2 and r3 regs only. All is ok here. This
behaviour is guessed by rounding up SP address with ADD+BFC operations.
Fix:
Main fix is in ARMTargetLowering::HandleByVal. If we detected AAPCS mode and
8 byte alignment, we waste odd registers then.
P.S.:
I also improved LDRB_POST_IMM regression test. Since ldrb instruction will
not generated by current regression test after this patch.
llvm-svn: 166018
local frame causes problem.
For example:
void f(StructToPass s) {
g(&s, sizeof(s));
}
will cause problem with tail-call since part of s is passed via registers and
saved in f's local frame. When g tries to access s, part of s may be corrupted
since f's local frame is popped out before the tail-call.
The current fix is to disable tail-call if getVarArgsRegSaveSize is not 0 for
the caller. This is a conservative approach, if we can prove the address of
s or part of s is not taken and passed to g, it should be okay to perform
tail-call.
rdar://12442472
llvm-svn: 165853
The backend already pattern matches to form VBSL when it can. We may want to
teach it to use the vbsl intrinsics at some point to prevent machine licm from
mucking with this, but using the Expand is completely correct.
http://llvm.org/bugs/show_bug.cgi?id=13831http://llvm.org/bugs/show_bug.cgi?id=13961
Patch by Peter Couperus <peter.couperus@st.com>.
llvm-svn: 165845
SDNode for LDRB_POST_IMM is invalid: number of registers added to SDNode fewer
that described in .td.
7 ops is needed, but SDNode with only 6 is created.
In more details:
In ARMInstrInfo.td, in multiclass AI2_ldridx, in definition _POST_IMM, offset
operand is defined as am2offset_imm. am2offset_imm is complex parameter type,
and actually it consists from dummy register and imm itself. As I understood
trick with dummy reg was made for AsmParser. In ARMISelLowering.cpp, this dummy
register was not added to SDNode, and it cause crash in Peephole Optimizer pass.
The problem fixed by setting up additional dummy reg when emitting
LDRB_POST_IMM instruction.
llvm-svn: 165617
SchedulerDAGInstrs::buildSchedGraph ignores dependencies between FixedStack
objects and byval parameters. So loading byval parameters from stack may be
inserted *before* it will be stored, since these operations are treated as
independent.
Fix:
Currently ARMTargetLowering::LowerFormalArguments saves byval registers with
FixedStack MachinePointerInfo. To fix the problem we need to store byval
registers with MachinePointerInfo referenced to first the "byval" parameter.
Also commit adds two new fields to the InputArg structure: Function's argument
index and InputArg's part offset in bytes relative to the start position of
Function's argument. E.g.: If function's argument is 128 bit width and it was
splitted onto 32 bit regs, then we got 4 InputArg structs with same arg index,
but different offset values.
llvm-svn: 165616
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
llvm-svn: 165488
aligned address. Based on patch by David Peixotto.
Also use vld1.64 / vst1.64 with 128-bit alignment to take advantage of alignment
hints. rdar://12090772, rdar://12238782
llvm-svn: 164089
If we have a BUILD_VECTOR that is mostly a constant splat, it is often better to splat that constant then insertelement the non-constant lanes instead of insertelementing every lane from an undef base.
llvm-svn: 163304
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
llvm-svn: 163136
Add these transformations to the existing add/sub ones:
(and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
(or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
(xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
The selects can then be transformed to a single predicated instruction
by peephole.
This transformation will make it possible to eliminate the ISD::CAND,
COR, and CXOR custom DAG nodes.
llvm-svn: 162176
The ARM select instructions are just predicated moves. If the select is
the only use of an operand, the instruction defining the operand can be
predicated instead, saving one instruction and decreasing register
pressure.
This implementation can turn AND/ORR/EOR instructions into their
corresponding ANDCC/ORRCC/EORCC variants. Ideally, we should be able to
predicate any instruction, but we don't yet support predicated
instructions in SSA form.
llvm-svn: 161994
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
llvm-svn: 161581
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
llvm-svn: 161232
This patch will optimize abs(x-y)
FROM
sub, movs, rsbmi
TO
subs, rsbmi
For abs, we will use cmp instead of movs. This is necessary because we already
have an existing peephole pass which optimizes away cmp following sub.
rdar: 11633193
llvm-svn: 158551
We turned off the CMN instruction because it had semantics which we weren't
getting correct. If we are comparing with an immediate, then it's okay to use
the CMN instruction.
<rdar://problem/7569620>
llvm-svn: 158302
We handle struct byval by inserting a pseudo op, which will be expanded to a
loop at ExpandISelPseudos.
A separate patch for clang will be submitted to enable struct byval.
rdar://9877866
llvm-svn: 157793
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
llvm-svn: 157479
This will be used to determine whether it's profitable to turn a select into a
branch when the branch is likely to be predicted.
Currently enabled for everything but Atom on X86 and Cortex-A9 devices on ARM.
I'm not entirely happy with the name of this flag, suggestions welcome ;)
llvm-svn: 156233
This moves the logic for selecting a TLS model to a single place,
instead of the previous three (ARM, Mips, and X86 which already
uses this function).
llvm-svn: 156162
ARM BUILD_VECTORs created after type legalization cannot use i8 or i16
operands, since those types are not legal. Instead use i32 operands, which
will be implicitly truncated by the BUILD_VECTOR to match the element type.
llvm-svn: 155824
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
llvm-svn: 154370
in-register, such that we can use a single vector store rather then a
series of scalar stores.
For func_4_8 the generated code
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vmov.u16 r0, d16[3]
strb r0, [r2, #3]
vmov.u16 r0, d16[2]
strb r0, [r2, #2]
vmov.u16 r0, d16[1]
strb r0, [r2, #1]
vmov.u16 r0, d16[0]
strb r0, [r2]
bx lr
becomes
vldr d16, LCPI0_0
vmov d17, r0, r1
vadd.i16 d16, d17, d16
vuzp.8 d16, d17
vst1.32 {d16[0]}, [r2, :32]
bx lr
I'm not fond of how this combine pessimizes 2012-03-13-DAGCombineBug.ll,
but I couldn't think of a way to judiciously apply this combine.
This
ldrh r0, [r0, #4]
strh r0, [r1]
becomes
vldr d16, [r0]
vmov.u16 r0, d16[2]
vmov.32 d16[0], r0
vuzp.16 d16, d17
vst1.32 {d16[0]}, [r1, :32]
PR11158
rdar://10703339
llvm-svn: 154340
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
llvm-svn: 154011
floating point equality comparisons into integer ones with -ffast-math. The
issue is the optimization causes +0.0 != -0.0.
Now the optimization is only done when one side is known to be 0.0. The other
side's sign bit is masked off for the comparison.
rdar://10964603
llvm-svn: 151861
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
llvm-svn: 151623
I'll let the buildbots determine the compile time improvements from this
change, but 464.h264ref has 5% faster codegen at -O2.
This patch does cause some assembly changes. Branch folding can make
different decisions about calls with dead return values.
CriticalAntiDepBreaker may choose different registers because its
liveness tracking is affected. MachineCopyPropagation may sometimes
leave a dead copy behind.
llvm-svn: 151331
value is zero. Instead of a cmov + op, issue an conditional op instead. e.g.
cmp r9, r4
mov r4, #0
moveq r4, #1
orr lr, lr, r4
should be:
cmp r9, r4
orreq lr, lr, #1
That is, optimize (or x, (cmov 0, y, cond)) to (or.cond x, y). Similarly extend
this to xor as well as (and x, (cmov -1, y, cond)) => (and.cond x, y).
It's possible to extend this to ADD and SUB but I don't think they are common.
rdar://8659097
llvm-svn: 151224
My change r146949 added register clobbers to the eh_sjlj_dispatchsetup pseudo
instruction, but on Thumb1 some of those registers cannot be used. This
caused massive failures on the testsuite when compiling for Thumb1. While
fixing that, I noticed that the eh_sjlj_setjmp instruction has a "nofp"
variant, and I realized that dispatchsetup needs the same thing, so I have
added that as well.
llvm-svn: 147204
undefined result. This adds new ISD nodes for the new semantics,
selecting them when the LLVM intrinsic indicates that the undef behavior
is desired. The new nodes expand trivially to the old nodes, so targets
don't actually need to do anything to support these new nodes besides
indicating that they should be expanded. I've done this for all the
operand types that I could figure out for all the targets. Owners of
various targets, please review and let me know if any of these are
incorrect.
Note that the expand behavior is *conservatively correct*, and exactly
matches LLVM's current behavior with these operations. Ideally this
patch will not change behavior in any way. For example the regtest suite
finds the exact same instruction sequences coming out of the code
generator. That's why there are no new tests here -- all of this is
being exercised by the existing test suite.
Thanks to Duncan Sands for reviewing the various bits of this patch and
helping me get the wrinkles ironed out with expanding for each target.
Also thanks to Chris for clarifying through all the discussions that
this is indeed the approach he was looking for. That said, there are
likely still rough spots. Further review much appreciated.
llvm-svn: 146466
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.
For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.
llvm-svn: 146026
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
The EmitBasePointerRecalculation function has 2 problems, one minor and one
fatal. The minor problem is that it inserts the code at the setjmp
instead of in the dispatch block. The fatal problem is that at the point
where this code runs, we don't know whether there will be a base pointer,
so the entire function is a no-op. The base pointer recalculation needs to
be handled as it was before, by inserting a pseudo instruction that gets
expanded late.
Most of the support for the old approach is still here, but it no longer
has any connection to the eh_sjlj_dispatchsetup intrinsic. Clean up the
parts related to the intrinsic and just generate the pseudo instruction
directly.
llvm-svn: 144781
Add support for trimming constants to GetDemandedBits. This fixes some funky
constant generation that occurs when stores are expanded for targets that don't
support unaligned stores natively.
llvm-svn: 144102
When this field is true it means that the load is from constant (runt-time or compile-time) and so can be hoisted from loops or moved around other memory accesses
llvm-svn: 144100
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
that the set of callee-saved registers is correct for the specific platform.
<rdar://problem/10313708> & ctor_dtor_count & ctor_dtor_count-2
llvm-svn: 142706
On spec/gcc, this caused a codesize improvement of ~1.9% for ARM mode and ~4.9% for Thumb(2) mode. This is
codesize including literal pools.
The pools themselves doubled in size for ARM mode and quintupled for Thumb mode, leaving suggestion that there
is still perhaps redundancy in LLVM's use of constant pools that could be decreased by sharing entries.
Fixes PR11087.
llvm-svn: 142530
register and then compare against that" method when it's too large. We have to
move the value into the register in the "movw, movt" pair of instructions.
llvm-svn: 142440
register and then compare against that" method when it's too large. We have to
move the value into the register in the "movw, movt" pair of instructions.
llvm-svn: 142437
Clean up the patterns, fix comments, and avoid confusing both tools
and coders. Note that the special adds/subs SelectionDAG nodes no
longer have the dummy cc_out operand.
llvm-svn: 142397
predecessor to remove the jump to it as well. Delay clearing the 'landing pad'
flag until after the jumps have been removed. (There is an implicit assumption
in several modules that an MBB which jumps to a landing pad has only two
successors.)
<rdar://problem/10304224>
llvm-svn: 142390
Once the intrinsics are marked as having a custom inserter, it will call this
method to emit the dispatch table into the machine function.
llvm-svn: 142245
The callee-saved registers cannot be live across an invoke call because the
control flow may continue along the exceptional edge. When this happens, all of
the callee-saved registers are no longer valid.
llvm-svn: 142018
successor. Remove the old landing pad from their successor list, because it's
now the successor of the dispatch block. Now that the landing pad blocks are no
longer the destination of invokes, we can mark them as normal basic blocks
instead of landing pads.
This more closely resembles what the CFG is actually doing.
llvm-svn: 141436
This is a first pass at generating the jump table for the sjlj dispatch. It
currently generates something plausible, but hasn't been tested thoroughly.
llvm-svn: 141140
This code will replace the version in ARMAsmPrinter.cpp. It creates a new
machine basic block, which is the dispatch for the return from a longjmp
call. It then shoves the address of that machine basic block into the correct
place in the function context so that the EH runtime will jump to it directly
instead of having to go through a compare-and-jump-to-the-dispatch bit. This
should be more efficient in the common case.
llvm-svn: 141031
Encode the immediate into its 8-bit form as part of isel rather than later,
which simplifies things for mapping the encoding bits, allows the removal
of the custom disassembler decoding hook, makes the operand printer trivial,
and prepares things more cleanly for handling these in the asm parser.
rdar://10211428
llvm-svn: 140834
This is still a hack until we can teach tblgen to generate the
optional CPSR operand rather than an implicit CPSR def. But the
strangeness is now limited to the selection DAG. ADD/SUB MI's no
longer have implicit CPSR defs, nor do we allow flag setting variants
of these opcodes in machine code. There are several corner cases to
consider, and getting one wrong would previously lead to nasty
miscompilation. It's not the first time I've debugged one, so this
time I added enough verification to ensure it won't happen again.
llvm-svn: 140228
Modified ARMISelLowering::AdjustInstrPostInstrSelection to handle the
full gamut of CPSR defs/uses including instructins whose "optional"
cc_out operand is not really optional. This allowed removal of the
hasPostISelHook to simplify the .td files and make the implementation
more robust.
Fixes rdar://10137436: sqlite3 miscompile
llvm-svn: 140134
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
llvm-svn: 139159
Now the 'S' instructions, e.g. ADDS, treat S bit as optional operand as well.
Also fix isel hook to correctly set the optional operand.
rdar://10073745
llvm-svn: 139157
Add a instruction flag: hasPostISelHook which tells the pre-RA scheduler to
call a target hook to adjust the instruction. For ARM, this is used to
adjust instructions which may be setting the 's' flag. ADC, SBC, RSB, and RSC
instructions have implicit def of CPSR (required since it now uses CPSR physical
register dependency rather than "glue"). If the carry flag is used, then the
target hook will *fill in* the optional operand with CPSR. Otherwise, the hook
will remove the CPSR implicit def from the MachineInstr.
llvm-svn: 138810
register dependency (rather than glue them together). This is general
goodness as it gives scheduler more freedom. However it is motivated by
a nasty bug in isel.
When a i64 sub is expanded to subc + sube.
libcall #1
\
\ subc
\ / \
\ / \
\ / libcall #2
sube
If the libcalls are not serialized (i.e. both have chains which are dag
entry), legalizer can serialize them in arbitrary orders. If it's
unlucky, it can force libcall #2 before libcall #1 in the above case.
subc
|
libcall #2
|
libcall #1
|
sube
However since subc and sube are "glued" together, this ends up being a
cycle when the scheduler combine subc and sube as a single scheduling
unit.
The right solution is to fix LegalizeType too chains the libcalls together.
However, LegalizeType is not processing nodes in order so that's harder than
it should be. For now, the move to physical register dependency will do.
rdar://10019576
llvm-svn: 138791
I don't really like the patterns, but I'm having trouble coming up with a
better way to handle them.
I plan on making other targets use the same legalization
ARM-without-memory-barriers is using... it's not especially efficient, but
if anyone cares, it's not that hard to fix for a given target if there's
some better lowering.
llvm-svn: 138621
Refactor STR[B] pre and post indexed instructions to use addressing modes for
memory operands, which is necessary for assembly parsing and is more consistent
with the rest of the memory instruction definitions. Make some incremental
progress on refactoring away the mega-operand addrmode2 along the way, which
is nice.
llvm-svn: 136978
Refactor the SXTB, SXTH, SXTB16, UXTB, UXTH, and UXTB16 instructions to not
have an 'r' and an 'r_rot' version, but just a single version with a rotate
that can be zero. Use plain Pat<>'s for the ISel of the non-rotated version.
llvm-svn: 136225
if (x != 0) x = 1
if (x == 1) x = 1
Previous codegen looks like this:
mov r1, r0
cmp r1, #1
mov r0, #0
moveq r0, #1
The naive lowering select between two different values. It should recognize the
test is equality test so it's more a conditional move rather than a select:
cmp r0, #1
movne r0, #0
rdar://9758317
llvm-svn: 135017
The DSP instructions in the Thumb2 instruction set are an optional extension
in the Cortex-M* archtitecture. When present, the implementation is considered
an "ARMv7E-M implementation," and when not, an "ARMv7-M implementation."
Add a subtarget feature hook for the v7e-m instructions and hook it up. The
cortex-m3 cpu is an example of a v7m implementation, while the cortex-m4 is
a v7e-m implementation.
rdar://9572992
llvm-svn: 134261
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
llvm-svn: 134021
instructions can be used to match combinations of multiply/divide and VCVT
(between floating-point and integer, Advanced SIMD). Basically the VCVT
immediate operand that specifies the number of fraction bits corresponds to a
floating-point multiply or divide by the corresponding power of 2.
For example, VCVT (floating-point to fixed-point, Advanced SIMD) can replace a
combination of VMUL and VCVT (floating-point to integer) as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vmul.f32 d16, d17, d16
vcvt.s32.f32 d16, d16
becomes:
vcvt.s32.f32 d16, d16, #3
Similarly, VCVT (fixed-point to floating-point, Advanced SIMD) can replace a
combinations of VCVT (integer to floating-point) and VDIV as follows:
Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
vcvt.f32.s32 d16, d16
vdiv.f32 d16, d17, d16
becomes:
vcvt.f32.s32 d16, d16, #3
llvm-svn: 133813
accumulator forwarding. Specifically (from SVN log entry):
Distribute (A + B) * C to (A * C) + (B * C) to make use of NEON multiplier
accumulator forwarding:
vadd d3, d0, d1
vmul d3, d3, d2
=>
vmul d3, d0, d2
vmla d3, d1, d2
Make sure it catches cases where operand 1 is add/fadd/sub/fsub, which was
intended in the original revision.
llvm-svn: 133127
the bits being cleared by the AND are not demanded by the BFI.
The previous BFI dag combine rule was actually incorrect (or used to be
correct until BFI representation changed).
rdar://9609030
llvm-svn: 133034
causing an assertion failure downstream. This fixes <rdar://problem/9562908>.
This really seems like it should always be set at CCState creation time, so mistakes like
this can never happen. I'll take a look at doing that.
llvm-svn: 132811
This is important for the correct lowering of unwind instructions
(which doesn't matter at all) and llvm.eh.resume calls (which does).
Take 2, now with more basic competence.
llvm-svn: 132295
This is important for the correct lowering of unwind instructions
(which doesn't matter at all) and llvm.eh.resume calls (which does).
llvm-svn: 132291
to load/store i64 values. Since there's no current support to explicitly
declare such restrictions, implement it by using specific hardcoded register
pairs during isel.
llvm-svn: 132248
intrinsic call. This prevents it from being reordered so that it appears
*before* the setjmp intrinsic (thus making it completely useless).
<rdar://problem/9409683>
llvm-svn: 131174
model constants which can be added to base registers via add-immediate
instructions which don't require an additional register to materialize
the immediate.
llvm-svn: 130743
Fixes Thumb2 ADCS and SBCS lowering: <rdar://problem/9275821>.
t2ADCS/t2SBCS are now pseudo instructions, consistent with ARM, so the
assembly printer correctly prints the 's' suffix.
Fixes Thumb2 adde -> SBC matching to check for live/dead carry flags.
Fixes the internal ARM machine opcode mnemonic for ADCS/SBCS.
Fixes ARM SBC lowering to check for live carry (potential bug).
llvm-svn: 130048
It needed to be moved closer to the setjmp statement, because the code directly
after the setjmp needs to know about values that are on the stack. Also, the
'bitcast' of the function context was causing a dead load. This wouldn't be too
horrible, except that at -O0 it wasn't optimized out, and because it wasn't
using the correct base pointer (if there is a VLA), it would try to access a
value from a garbage address.
<rdar://problem/9130540>
llvm-svn: 128873
registers that arise from argument shuffling with the soft float ABI. These
instructions are particularly slow on Cortex A8. This fixes one half of
<rdar://problem/8674845>.
llvm-svn: 128759
was lowering them to sext / uxt + mul instructions. Unfortunately the
optimization passes may hoist the extensions out of the loop and separate them.
When that happens, the long multiplication instructions can be broken into
several scalar instructions, causing significant performance issue.
Note the vmla and vmls intrinsics are not added back. Frontend will codegen them
as intrinsics vmull* + add / sub. Also note the isel optimizations for catching
mul + sext / zext are not changed either.
First part of rdar://8832507, rdar://9203134
llvm-svn: 128502
isel lowering to fold the zero-extend's and take advantage of no-stall
back to back vmul + vmla:
vmull q0, d4, d6
vmlal q0, d5, d6
is faster than
vaddl q0, d4, d5
vmovl q1, d6
vmul q0, q0, q1
This allows us to vmull + vmlal for:
f = vmull_u8( vget_high_u8(s), c);
f = vmlal_u8(f, vget_low_u8(s), c);
rdar://9197392
llvm-svn: 128444
masks to match inversely for the code as is to work. For the example given
we actually want:
bfi r0, r2, #1, #1
not #0, however, given the way the pattern is written it's not possible
at the moment.
Fixes rdar://9177502
llvm-svn: 128320
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
llvm-svn: 127953
The previous codegen for the slow path (when values are in VFP / NEON
registers) was incorrect if the source is NaN.
The new codegen uses NEON vbsl instruction to copy the sign bit. e.g.
vmov.i32 d1, #0x80000000
vbsl d1, d2, d0
If NEON is not available, it uses integer instructions to copy the sign bit.
rdar://9034702
llvm-svn: 126295
In other words, do not keep track of argument's location. The debugger (gdb) is not prepared to see line table entries for arguments. For the debugger, "second" line table entry marks beginning of function body.
This requires some coordination with debugger to get this working.
- The debugger needs to be aware of prolog_end attribute attached with line table entries.
- The compiler needs to accurately mark prolog_end in line table entries (at -O0 and at -O1+)
llvm-svn: 126155
This
define float @foo(float %x, float %y) nounwind readnone {
entry:
%0 = tail call float @copysignf(float %x, float %y) nounwind readnone
ret float %0
}
Was compiled to:
vmov s0, r1
bic r0, r0, #-2147483648
vmov s1, r0
vcmpe.f32 s0, #0
vmrs apsr_nzcv, fpscr
it lt
vneglt.f32 s1, s1
vmov r0, s1
bx lr
This fails to copy the sign of -0.0f because it's lost during the float to int
conversion. Also, it's sub-optimal when the inputs are in GPR registers.
Now it uses integer and + or operations when it's profitable. And it's correct!
lsrs r1, r1, #31
bfi r0, r1, #31, #1
bx lr
rdar://8984306
llvm-svn: 125357
The vld1-lane, vld1-dup and vst1-lane instructions do not yet support using
post-increment versions, but all the rest of the NEON load/store instructions
should be handled now.
llvm-svn: 125014
the load, then it may be legal to transform the load and store to integer
load and store of the same width.
This is done if the target specified the transformation as profitable. e.g.
On arm, this can transform:
vldr.32 s0, []
vstr.32 s0, []
to
ldr r12, []
str r12, []
rdar://8944252
llvm-svn: 124708
1. Fixed ARM pc adjustment.
2. Fixed dynamic-no-pic codegen
3. CSE of pc-relative load of global addresses.
It's now enabled by default for Darwin.
llvm-svn: 123991
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
llvm-svn: 123905
of the floating point types less than 64-bits. It's somewhat of a temporary
hack but forces more accurate modeling of register pressure and results
in fewer spills.
llvm-svn: 123811
movw r0, :lower16:(L_foo$non_lazy_ptr-(LPC0_0+4))
movt r0, :upper16:(L_foo$non_lazy_ptr-(LPC0_0+4))
LPC0_0:
add r0, pc, r0
It's not yet enabled by default as some tests are failing. I suspect bugs in
down stream tools.
llvm-svn: 123619
Also fix an off-by-one in SelectionDAGBuilder that was preventing shuffle
vectors from being translated to EXTRACT_SUBVECTOR.
Patch by Tim Northover.
The test changes are needed to keep those spill-q tests from testing aligned
spills and restores. If the only aligned stack objects are spill slots, we
no longer realign the stack frame. Prior to this patch, an EXTRACT_SUBVECTOR
was legalized by loading from the stack, which created an aligned frame index.
Now, however, there is nothing except the spill slot in the stack frame, so
I added an aligned alloca.
llvm-svn: 122995
If the basic block containing the BCCi64 (or BCCZi64) instruction ends with
an unconditional branch, that branch needs to be deleted before appending
the expansion of the BCCi64 to the end of the block.
llvm-svn: 122521
Type legalization splits up i64 values into pairs of i32 values, which leads
to poor quality code when inserting or extracting i64 vector elements.
If the vector element is loaded or stored, it can be treated as an f64 value
and loaded or stored directly from a VPR register. Use the pre-legalization
DAG combiner to cast those vector elements to f64 types so that the type
legalizer won't mess them up. Radar 8755338.
llvm-svn: 122319
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
legalization time. Since at legalization time there is no mapping from
SDNode back to the corresponding LLVM instruction and the return
SDNode is target specific, this requires a target hook to check for
eligibility. Only x86 and ARM support this form of sibcall optimization
right now.
rdar://8707777
llvm-svn: 120501
We need to check if the individual vector elements are sign/zero-extended
values. For now this only handles constants values. Radar 8687140.
llvm-svn: 120034
This function was being called from two different places for completely
unrelated reasons. During type legalization, it was called to expand 64-bit
shift operations. During operation legalization, it was called to handle
Neon vector shifts. The vector shift code was not written to check for
illegal types, since it was assumed to be only called after type legalization.
Fixed this by splitting off the 64-bit shift expansion into a separate
function. I don't have a particular testcase for this; I just noticed it
by inspection.
llvm-svn: 119738
It is only supported for ARM code. Normally Thumb2 code would use DMB instead,
but depending on how the compiler is invoked (e.g., -mattr=-db) that might be
disabled. This prevents a "cannot select MEMBARRIER_MCR" error in that
situation. Radar 8644195
llvm-svn: 118642
There were a number of issues to fix up here:
* The "device" argument of the llvm.memory.barrier intrinsic should be
used to distinguish the "Full System" domain from the "Inner Shareable"
domain. It has nothing to do with using DMB vs. DSB instructions.
* The compiler should never need to emit DSB instructions. Remove the
ARMISD::SYNCBARRIER node and also remove the instruction patterns for DSB.
* Merge the separate DMB/DSB instructions for options only used for the
disassembler with the default DMB/DSB instructions. Add the default
"full system" option ARM_MB::SY to the ARM_MB::MemBOpt enum.
* Add a separate ARMISD::MEMBARRIER_MCR node for subtargets that implement
a data memory barrier using the MCR instruction.
* Fix up encodings for these instructions (except MCR).
I also updated the tests and added a few new ones to check for DMB options
that were not currently being exercised.
llvm-svn: 117756
elements than the result vector type. So, when an instruction like:
%8 = shufflevector <2 x float> %4, <2 x float> %7, <4 x i32> <i32 1, i32 0, i32 3, i32 2>
is translated to a DAG, each operand is changed to a concat_vectors node that appends 2 undef elements. That is:
shuffle [a,b], [c,d] is changed to:
shuffle [a,b,u,u], [c,d,u,u]
That's probably the right thing for x86 but for NEON, we'd much rather have:
shuffle [a,b,c,d], undef
Teach the DAG combiner how to do that transformation for ARM. Radar 8597007.
llvm-svn: 117482
new VariantKind to the MCSymbolExpr seems like overkill, but I'm not sure
there's a more straightforward way to get the printing difference captured.
(i.e., x86 uses @PLT, ARM uses (PLT)).
llvm-svn: 114613
CombineTo to avoid putting the result on the worklist. I don't think it makes
much difference for now, but it might help someday as we add more DAG
combine optimizations.
llvm-svn: 114595
of those. Refactor to share code for handling BUILD_VECTOR(VMOVRRD).
I don't have a testcase that exercises this, but it seems like an obvious
good thing to do.
llvm-svn: 114589
value should be in GPRs when it's going to be used as a scalar, and we use
VMOVRRD to make that happen, but if the value is converted back to a vector
we need to fold to a simple bit_convert. Radar 8407927.
llvm-svn: 114233
take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
llvm-svn: 113570
vabd intrinsic and add and/or zext operations. In the case of vaba, this
also avoids the need for a DAG combine pattern to combine vabd with add.
Update tests. Auto-upgrade the old intrinsics.
llvm-svn: 112941
add, and subtract operations with zero-extended or sign-extended vectors.
Update tests. Add auto-upgrade support for the old intrinsics.
llvm-svn: 112773
comparison that would overflow.
- The other under/overflow cases can't actually happen because the immediates
which would trigger them are legal (so we don't enter this code), but
adjusted the style to make it clear the transform is always valid.
llvm-svn: 112053
float t1(int argc) {
return (argc == 1123) ? 1.234f : 2.38213f;
}
We would generate truly awful code on ARM (those with a weak stomach should look
away):
_t1:
movw r1, #1123
movs r2, #1
movs r3, #0
cmp r0, r1
mov.w r0, #0
it eq
moveq r0, r2
movs r1, #4
cmp r0, #0
it ne
movne r3, r1
adr r0, #LCPI1_0
ldr r0, [r0, r3]
bx lr
The problem was that legalization was creating a cascade of SELECT_CC nodes, for
for the comparison of "argc == 1123" which was fed into a SELECT node for the ?:
statement which was itself converted to a SELECT_CC node. This is because the
ARM back-end doesn't have custom lowering for SELECT nodes, so it used the
default "Expand".
I added a fairly simple "LowerSELECT" to the ARM back-end. It takes care of this
testcase, but can obviously be expanded to include more cases.
Now we generate this, which looks optimal to me:
_t1:
movw r1, #1123
movs r2, #0
cmp r0, r1
adr r0, #LCPI0_0
it eq
moveq r2, #4
ldr r0, [r0, r2]
bx lr
.align 2
LCPI0_0:
.long 1075344593 @ float 2.382130e+00
.long 1067316150 @ float 1.234000e+00
llvm-svn: 110799
memory and synchronization barrier dmb and dsb instructions.
- Change instruction names to something more sensible (matching name of actual
instructions).
- Added tests for memory barrier codegen.
llvm-svn: 110785
Also added a test case to check for the added benefit of this patch: it's optimizing away the unnecessary restore of sp from fp for some non-leaf functions.
llvm-svn: 110707
reserved, not available for general allocation. This eliminates all the
extra checks for Darwin.
This change also fixes the use of FP to access frame indices in leaf
functions and cleaned up some confusing code in epilogue emission.
llvm-svn: 110655
Add support for using the FPSCR in conjunction with the vcvtr instruction, for controlling fp to int rounding.
Add support for the FLT_ROUNDS_ node now that the FPSCR is exposed.
llvm-svn: 110152
integers with mov + vdup. 8003375. This is
currently disabled by default because LICM will
not hoist a VDUP, so it pessimizes the code if
the construct occurs inside a loop (8248029).
llvm-svn: 109799
it's too late to start backing off aggressive latency scheduling when most
of the registers are in use so the threshold should be a bit tighter.
- Correctly handle live out's and extract_subreg etc.
- Enable register pressure aware scheduling by default for hybrid scheduler.
For ARM, this is almost always a win on # of instructions. It's runtime
neutral for most of the tests. But for some kernels with high register
pressure it can be a huge win. e.g. 464.h264ref reduced number of spills by
54 and sped up by 20%.
llvm-svn: 109279
it should set the jump table encloding the EK_Inline. This prevents
a second, unused, copy of the table from being emitted after the function
body. PR6581.
llvm-svn: 108730
it should set the jump table encloding the EK_Inline. This prevents
a second, unused, copy of the table from being emitted after the function
body. PR7499.
llvm-svn: 108722
-enable-no-nans-fp-math and -enable-no-infs-fp-math. All of the current codegen fp math optimizations only care whether the fp arithmetics arguments and results can never be NaN.
llvm-svn: 108465
instructions already have implicit defs of LR. The comment suggests that
this is intended to fix something like pr6111, but it doesn't really do
that either.
llvm-svn: 108186
correct alignment information, which simplifies ExpandRes_VAARG a bit.
The patch introduces a new alignment information to TargetLoweringInfo. This is
needed since the two natural candidates cannot be used:
* The 's' in target data: If this is set to the minimal alignment of any
argument, getCallFrameTypeAlignment would return 4 for doubles on ARM for
example.
* The getTransientStackAlignment method. It is possible for an architecture to
have argument less aligned than what we maintain the stack pointer.
llvm-svn: 108072
1. The arguments are f32.
2. The arguments are loads and they have no uses other than the comparison.
3. The comparison code is EQ or NE.
e.g.
vldr.32 s0, [r1]
vldr.32 s1, [r0]
vcmpe.f32 s1, s0
vmrs apsr_nzcv, fpscr
beq LBB0_2
=>
ldr r1, [r1]
ldr r0, [r0]
cmp r0, r1
beq LBB0_2
More complicated cases will be implemented in subsequent patches.
llvm-svn: 107852
Add explicit testcases for tail calls within the same module.
Duplicate some code to humor those who think .w doesn't apply on ARM.
Leave this disabled on Thumb1, and add some comments explaining why it's hard
and won't gain much.
llvm-svn: 107851
getFunctionAlignment and the corresponding use of that value in the ARM
asm printer, but now we're using the standard asm printer. The result of
this was that function alignments were dropped completely for Thumb functions.
Radar 8143571.
llvm-svn: 107435
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
llvm-svn: 106893
branch turns out to be ARM-to-Thumb or vice versa
the linker cannot resolve this. 8120438.
If this optimization is going to be useful we probably
need a compiler flag "assume callees are same architecture"
or something like that.
llvm-svn: 106662
basic tests.
This has been well tested on Darwin but not elsewhere.
It should work provided the linker correctly resolves
B.W <label in other function>
which it has not seen before, at least from llvm-based
compilers. I'm leaving the arm-tail-calls switch in
until I see if there's any problems because of that;
it might need to be disabled for some environments.
llvm-svn: 106299
call must not be callee-saved; following x86, add a new
regclass to represent this. Also fixes a couple of bugs.
Still disabled by default; Thumb doesn't work yet.
llvm-svn: 106053
immediate" operands. These functions have so far only been used for VMOV
but they also apply to other NEON instructions with modified immediate
operands. No functional changes.
llvm-svn: 105969
i64 and f64 types, but now it also handle Neon vector types, so the f64 result
of VMOVDRR may need to be converted to a Neon type. Radar 8084742.
llvm-svn: 105845
the machine instruction representation of the immediate value to be encoded
into an integer with similar fields as the actual VMOV instruction. This makes
things easier for the disassembler, since it can just stuff the bits into the
immediate operand, but harder for the asm printer since it has to decode the
value to be printed. Testcase for the encoding will follow later when MC has
more support for ARM.
llvm-svn: 105836
- change isShuffleMaskLegal to show that all shuffles with 32-bit and 64-bit
elements are legal
- the Neon shuffle instructions do not support 64-bit elements, but we were
not checking for that before lowering shuffles to use them
- remove some 64-bit element vduplane patterns that are no longer needed
llvm-svn: 105586
VECTOR_SHUFFLEs to REG_SEQUENCE instructions. The standard ISD::BUILD_VECTOR
node corresponds closely to REG_SEQUENCE but I couldn't use it here because
its operands do not get legalized. That is pretty awful, but I guess it
makes sense for other targets. Instead, I have added an ARM-specific version
of BUILD_VECTOR that will have its operands properly legalized.
This fixes the rest of Radar 7872877.
llvm-svn: 105439
A temporary flag -arm-tail-calls defaults to off,
so there is no functional change by default.
Intrepid users may try this; simple cases work
but there are bugs.
llvm-svn: 105413
copying VFP subregs. This exposed a bunch of dead code in the *spill-q.ll
tests, so I tweaked those tests to keep that code from being optimized away.
Radar 7872877.
llvm-svn: 104415
Move EmitTargetCodeForMemcpy, EmitTargetCodeForMemset, and
EmitTargetCodeForMemmove out of TargetLowering and into
SelectionDAGInfo to exercise this.
llvm-svn: 103481
const_casts, and it reinforces the design of the Target classes being
immutable.
SelectionDAGISel::IsLegalToFold is now a static member function, because
PIC16 uses it in an unconventional way. There is more room for API
cleanup here.
And PIC16's AsmPrinter no longer uses TargetLowering.
llvm-svn: 101635
may be called when either the source or destination type is i64, and my
change also hadn't fixed the most obvious problem -- assuming that i64 will
only be bitconverted to f64, ignoring the various vector types.
Radar 7873160.
llvm-svn: 101615
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
llvm-svn: 100304
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
llvm-svn: 100191
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
A update of langref will occur in a subsequent checkin.
llvm-svn: 99928