Summary:
This patch disables madd/maddu/msub/msubu in both the assembler and code
generator.
Depends on D3896
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3955
llvm-svn: 210762
Summary:
The accumulator-based (HI/LO) multiplies and divides from earlier ISA's have
been removed and replaced with GPR-based equivalents. For example:
div $1, $2
mflo $3
is now:
div $3, $1, $2
This patch disables the accumulator-based multiplies and divides for
MIPS32r6/MIPS64r6 and uses the GPR-based equivalents instead.
Renamed expandPseudoDiv to insertDivByZeroTrap to better describe the
behaviour of the function.
MipsDelaySlotFiller now invalidates the liveness information when moving
instructions to the delay slot. Without this, divrem.ll will abort since
%GP ends up used before it is defined.
Reviewers: vmedic, zoran.jovanovic, jkolek
Reviewed By: jkolek
Differential Revision: http://reviews.llvm.org/D3896
llvm-svn: 210760
Summary:
Instead the system is required to provide some means of handling unaligned
load/store without special instructions. Options include full hardware
support, full trap-and-emulate, and hybrids such as hardware support within
a cache line and trap-and-emulate for multi-line accesses.
MipsSETargetLowering::allowsUnalignedMemoryAccesses() has been configured to
assume that unaligned accesses are 'fast' on the basis that I expect few
hardware implementations will opt for pure-software handling of unaligned
accesses. The ones that do handle it purely in software can override this.
mips64-load-store-left-right.ll has been merged into load-store-left-right.ll
The stricter testing revealed a Bits!=Bytes bug in passByValArg(). This has
been fixed and the variables renamed to clarify the units they hold.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3872
llvm-svn: 209512
Summary:
This isn't supported directly so we rotate the vector by the desired number of
elements, insert to element zero, then rotate back.
The i64 case generates rather poor code on MIPS32. There is an obvious
optimisation to be made in future (do both insert.w's inside a shared
rotate/unrotate sequence) but for now it's sufficient to select valid code
instead of aborting.
Depends on D3536
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://reviews.llvm.org/D3537
llvm-svn: 207640
Summary:
- Conditional moves acting on 64-bit GPR's should require MIPS-IV rather than MIPS64
- ISD::MUL, and ISD::MULH[US] should be lowered on all 64-bit ISA's
Patch by David Chisnall
His work was sponsored by: DARPA, AFRL
I've added additional testcases to cover as much of the codegen changes
affecting MIPS-IV as I can. Where I've been unable to find an existing
MIPS64 testcase that can be re-used for MIPS-IV (mainly tests covering
ISD::GlobalAddress and similar), I at least agree that MIPS-IV should
behave like MIPS64. Further testcases that are fixed by this patch will follow
in my next commit. The testcases from that commit that fail for MIPS-IV without
this patch are:
LLVM :: CodeGen/Mips/2010-07-20-Switch.ll
LLVM :: CodeGen/Mips/cmov.ll
LLVM :: CodeGen/Mips/eh-dwarf-cfa.ll
LLVM :: CodeGen/Mips/largeimmprinting.ll
LLVM :: CodeGen/Mips/longbranch.ll
LLVM :: CodeGen/Mips/mips64-f128.ll
LLVM :: CodeGen/Mips/mips64directive.ll
LLVM :: CodeGen/Mips/mips64ext.ll
LLVM :: CodeGen/Mips/mips64fpldst.ll
LLVM :: CodeGen/Mips/mips64intldst.ll
LLVM :: CodeGen/Mips/mips64load-store-left-right.ll
LLVM :: CodeGen/Mips/sint-fp-store_pattern.ll
Reviewers: dsanders
Reviewed By: dsanders
CC: matheusalmeida
Differential Revision: http://reviews.llvm.org/D3343
llvm-svn: 206183
Summary:
Highlights:
- Registers are resolved much later (by the render method).
Prior to that point, GPR32's/GPR64's are GPR's regardless of register
size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register
size or FR mode. Numeric registers can be anything.
- All registers are parsed the same way everywhere (even when handling
symbol aliasing)
- One consequence is that all registers can be specified numerically
almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing
but that can be easily resolved.
- Removes the need for the hasConsumedDollar hack
- Parenthesis and Bracket suffixes are handled generically
- Micromips instructions are parsed directly instead of going through the
standard encodings first.
- rdhwr accepts all 32 registers, and the following instructions that previously
xfailed now work:
ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d,
c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1
- Diagnostics involving registers point at the correct character (the $)
- There's only one kind of immediate in MipsOperand. LSA immediates are handled
by the predicate and renderer.
Lowlights:
- Hardcoded '$zero' in the div patterns is handled with a hack.
MipsOperand::isReg() will return true for a k_RegisterIndex token
with Index == 0 and getReg() will return ZERO for this case. Note that it
doesn't return ZERO_64 on isGP64() targets.
- I haven't cleaned up all of the now-unused functions.
Some more of the generic parser could be removed too (integers and relocs
for example).
- insve.df needed a custom decoder to handle the implicit fourth operand that
was needed to make it parse correctly. The difficulty was that the matcher
expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this.
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3222
llvm-svn: 205292
Summary:
Highlights:
- Registers are resolved much later (by the render method).
Prior to that point, GPR32's/GPR64's are GPR's regardless of register
size. Similarly FGR32's/FGR64's/AFGR64's are FGR's regardless of register
size or FR mode. Numeric registers can be anything.
- All registers are parsed the same way everywhere (even when handling
symbol aliasing)
- One consequence is that all registers can be specified numerically
almost anywhere (e.g. $fccX, $wX). The exception is symbol aliasing
but that can be easily resolved.
- Removes the need for the hasConsumedDollar hack
- Parenthesis and Bracket suffixes are handled generically
- Micromips instructions are parsed directly instead of going through the
standard encodings first.
- rdhwr accepts all 32 registers, and the following instructions that previously
xfailed now work:
ddiv, ddivu, div, divu, cvt.l.[ds], se[bh], wsbh, floor.w.[ds], c.ngl.d,
c.sf.s, dsbh, dshd, madd.s, msub.s, nmadd.s, nmsub.s, swxc1
- Diagnostics involving registers point at the correct character (the $)
- There's only one kind of immediate in MipsOperand. LSA immediates are handled
by the predicate and renderer.
Lowlights:
- Hardcoded '$zero' in the div patterns is handled with a hack.
MipsOperand::isReg() will return true for a k_RegisterIndex token
with Index == 0 and getReg() will return ZERO for this case. Note that it
doesn't return ZERO_64 on isGP64() targets.
- I haven't cleaned up all of the now-unused functions.
Some more of the generic parser could be removed too (integers and relocs
for example).
- insve.df needed a custom decoder to handle the implicit fourth operand that
was needed to make it parse correctly. The difficulty was that the matcher
expected a Token<'0'> but gets an Imm<0>. Adding an implicit zero solved this.
Reviewers: matheusalmeida, vmedic
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3222
llvm-svn: 205229
Summary:
No functional change since these predicates are (currently) synonymous.
Extracted from a patch by David Chisnall
His work was sponsored by: DARPA, AFRL
Differential Revision: http://llvm-reviews.chandlerc.com/D3202
llvm-svn: 204943
Summary:
The short name is quite convenient so provide an accessor for them instead.
No functional change
Depends on D3177
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3178
llvm-svn: 204911
Summary:
VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
<0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
VSHF concatenates the vectors in a bitwise fashion:
<0b00, 0b01> + <0b10, 0b11> ->
0b0100 + 0b1110 -> 0b01001110
<0b10, 0b11, 0b00, 0b01>
We must therefore swap the operands to get the correct result.
The test case that discovered the issue was MultiSource/Benchmarks/nbench.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3142
llvm-svn: 204480
The Octeon cpu from Cavium Networks is mips64r2 based and has an extended
instruction set. In order to utilize this with LLVM, a new cpu feature "octeon"
and a subtarget feature "cnmips" is added. A small set of new instructions
(baddu, dmul, pop, dpop, seq, sne) is also added. LLVM generates dmul, pop and
dpop instructions with option -mcpu=octeon or -mattr=+cnmips.
llvm-svn: 204337
Summary:
Correct the match patterns and the lowerings that made the CodeGen tests pass despite the mistakes.
The original testcase that discovered the problem was SingleSource/UnitTests/SignlessType/factor.c in test-suite.
During review, we also found that some of the existing CodeGen tests were incorrect and fixed them:
* bitwise.ll: In bsel_v16i8 the IfSet/IfClear were reversed because bsel and bmnz have different operand orders and the test didn't correctly account for this. bmnz goes 'IfClear, IfSet, CondMask', while bsel goes 'CondMask, IfClear, IfSet'.
* vec.ll: In the cases where a bsel is emitted as a bmnz (they are the same operation with a different input tied to the result) the operands were in the wrong order.
* compare.ll and compare_float.ll: The bsel operand order was correct for a greater-than comparison, but a greater-than comparison instruction doesn't exist. Lowering this operation inverts the condition so the IfSet/IfClear need to be swapped to match.
The differences between BSEL, BMNZ, and BMZ and how they map to/from vselect are rather confusing. I've therefore added a note to MSA.txt to explain this in a single place in addition to the comments that explain each case.
Reviewers: matheusalmeida, jacksprat
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D3028
llvm-svn: 203657
Summary:
Previously, attempting to extract lanes 2 and 3 would actually extract lane 1.
The MSA CodeGen tests only covered lanes 0 and 1.
Differential Revision: http://llvm-reviews.chandlerc.com/D2935
llvm-svn: 202848
make PIC calls a little more efficient:
1. Remove instructions setting up $gp if it is known that a function has been
called at least once.
2. Save the address of a called function in a register instead of loading
it from the GOT at every call site.
llvm-svn: 195892
lowerBUILD_VECTOR() was treating integer constant splats as being legal
regardless of whether they had undef values. This caused instruction
selection failures when the undefs were legalized to zero, making the
constant non-splat.
Fixed this by requiring HasAnyUndef to be false for a integer constant
splat to be legal. If it is true, a new node is generated with the undefs
replaced with the necessary values to remain a splat.
llvm-svn: 195455
Mask == ~InvMask asserts if the width of Mask and InvMask differ.
The combine isn't valid (with two exceptions, see below) if the widths differ
so test for this before testing Mask == ~InvMask.
In the specific cases of Mask=~0 and InvMask=0, as well as Mask=0 and
InvMask=~0, the combine is still valid. However, there are more appropriate
combines that could be used in these cases such as folding x & 0 to 0, or
x & ~0 to x.
llvm-svn: 195364
Summary:
When getConstant() is called for an expanded vector type, it is split into
multiple scalar constants which are then combined using appropriate build_vector
and bitcast operations.
In addition to the usual big/little endian differences, the case where the
element-order of the vector does not have the same endianness as the elements
themselves is also accounted for. For example, for v4i32 on big-endian MIPS,
the byte-order of the vector is <3210,7654,BA98,FEDC>. For little-endian, it is
<0123,4567,89AB,CDEF>.
Handling this case turns out to be a nop since getConstant() returns a splatted
vector (so reversing the element order doesn't change the value)
This fixes a number of cases in MIPS MSA where calling getConstant() during
operation legalization introduces illegal types (e.g. to legalize v2i64 UNDEF
into a v2i64 BUILD_VECTOR of illegal i64 zeros). It should also handle bigger
differences between illegal and legal types such as legalizing v2i64 into v8i16.
lowerMSASplatImm() in the MIPS backend no longer needs to avoid calling
getConstant() so this function has been updated in the same patch.
For the sake of transparency, the steps I've taken since the review are:
* Added 'virtual' to isVectorEltOrderLittleEndian() as requested. This revealed
that the MIPS tests were falsely passing because a polymorphic function was
not actually polymorphic in the reviewed patch.
* Fixed the tests that were now failing. This involved deleting the code to
handle the MIPS MSA element-order (which was previously doing an byte-order
swap instead of an element-order swap). This left
isVectorEltOrderLittleEndian() unused and it was deleted.
* Fixed build failures caused by rebasing beyond r194467-r194472. These build
failures involved the bset, bneg, and bclr instructions added in these commits
using lowerMSASplatImm() in a way that was no longer valid after this patch.
Some of these were fixed by calling SelectionDAG::getConstant() instead,
others were fixed by a new function getBuildVectorSplat() that provided the
removed functionality of lowerMSASplatImm() in a more sensible way.
Reviewers: bkramer
Reviewed By: bkramer
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1973
llvm-svn: 194811
Fixing this Windows build error:
..\lib\Target\Mips\MipsSEISelLowering.cpp(997) : error C2027: use of undefined type 'llvm::raw_ostream'
llvm-svn: 193696
Also corrected the definition of the intrinsics for these instructions (the
result register is also the first operand), and added intrinsics for bsel and
bseli to clang (they already existed in the backend).
These four operations are mostly equivalent to bsel, and bseli (the difference
is which operand is tied to the result). As a result some of the tests changed
as described below.
bitwise.ll:
- bsel.v test adapted so that the mask is unknown at compile-time. This stops
it emitting bmnzi.b instead of the intended bsel.v.
- The bseli.b test now tests the right thing. Namely the case when one of the
values is an uimm8, rather than when the condition is a uimm8 (which is
covered by bmnzi.b)
compare.ll:
- bsel.v tests now (correctly) emits bmnz.v instead of bsel.v because this
is the same operation (see MSA.txt).
i8.ll
- CHECK-DAG-ized test.
- bmzi.b test now (correctly) emits equivalent bmnzi.b with swapped operands
because this is the same operation (see MSA.txt).
- bseli.b still emits bseli.b though because the immediate makes it
distinguishable from bmnzi.b.
vec.ll:
- CHECK-DAG-ized test.
- bmz.v tests now (correctly) emits bmnz.v with swapped operands (see
MSA.txt).
- bsel.v tests now (correctly) emits bmnz.v with swapped operands (see
MSA.txt).
llvm-svn: 193693
This required correcting the definition of the bins[lr]i intrinsics because
the result is also the first operand.
It also required removing the (arbitrary) check for 32-bit immediates in
MipsSEDAGToDAGISel::selectVSplat().
Currently using binsli.d with 2 bits set in the mask doesn't select binsli.d
because the constant is legalized into a ConstantPool. Similar things can
happen with binsri.d with more than 10 bits set in the mask. The resulting
code when this happens is correct but not optimal.
llvm-svn: 193687
(or (and $a, $mask), (and $b, $inverse_mask)) => (vselect $mask, $a, $b).
where $mask is a constant splat. This allows bitwise operations to make use
of bsel.
It's also a stepping stone towards matching bins[lr], and bins[lr]i from
normal IR.
Two sets of similar tests have been added in this commit. The bsel_* functions
test the case where binsri cannot be used. The binsr_*_i functions will
start to use the binsri instruction in the next commit.
llvm-svn: 193682
splat.d is implemented but this subtest is currently disabled. This is because
it is difficult to match the appropriate IR on MIPS32. There is a patch under
review that should help with this so I hope to enable the subtest soon.
llvm-svn: 193680
These were present in a previous version of the MSA spec but are not
present in the published version. There is no hardware that uses these
instructions.
llvm-svn: 192888
accumulator instead of its sub-registers, $hi and $lo.
We need this change to prevent a mflo following a mtlo from reading an
unpredictable/undefined value, as shown in the following example:
mult $6, $7 // result of $6 * $7 is written to $lo and $hi.
mflo $2 // read lower 32-bit result from $lo.
mtlo $4 // write to $lo. the content of $hi becomes unpredictable.
mfhi $3 // read higher 32-bit from $hi, which has an unpredictable value.
I don't have a test case for this change that reliably reproduces the problem.
llvm-svn: 192119
For v4f32 and v2f64, EXTRACT_VECTOR_ELT is matched by a pseudo-insn which may
be expanded to subregister copies and/or instructions as appropriate.
llvm-svn: 191514
lowerMSABinaryIntr, lowerMSABinaryImmIntr, lowerMSABranchIntr,
and lowerMSAUnaryIntr were trivially small functions. Inlined them into
their callers.
lowerMSASplat now takes its callers SDLoc instead of making a new one.
No functional change.
llvm-svn: 191503
Most constant BUILD_VECTOR's are matched using ComplexPatterns which cover
bitcasted as well as normal vectors. However, it doesn't seem to be possible to
match ldi.[bhwd] in a type-agnostic manner (e.g. to support the widest range of
immediates, it should be possible to use ldi.b to load v2i64) using TableGen so
ldi.[bhwd] is matched using custom code in MipsSEISelDAGToDAG.cpp
This made the majority of the constant splat BUILD_VECTOR lowering redundant.
The only transformation remaining for constant splats is when an (up-to) 32-bit
constant splat is possible but the value does not fit into a 10-bit signed
integer. In this case, the BUILD_VECTOR is transformed into a bitcasted
BUILD_VECTOR so that fill.[bhw] can be used to splat the vector from a GPR32
register (which is initialized using the usual lui/addui sequence).
There are no additional tests since this is a re-implementation of previous
functionality. The change is intended to make it easier to implement some of
the upcoming instruction selection patches since they can rely on existing
support for BUILD_VECTOR's in the DAGCombiner.
compare_float.ll changed slightly because a BITCAST is no longer
introduced during legalization.
llvm-svn: 191299
Changes to MIPS SelectionDAG:
* Added nodes VEXTRACT_[SZ]EXT_ELT to represent extract and extend in a single
operation and implemented the DAG combines necessary to fold sign/zero
extends into the extract.
llvm-svn: 191199
Note: There's a later patch on my branch that re-implements this to select
build_vector without the custom SelectionDAG nodes. The future patch avoids
the constant-folding problems stemming from the custom node (i.e. it doesn't
need to re-implement all the DAG combines related to BUILD_VECTOR).
Changes to MIPS specific SelectionDAG nodes:
* Added VSPLAT
This is a special case of BUILD_VECTOR that covers the case the
BUILD_VECTOR is a splat operation.
* Added VSPLATD
This is a special case of VSPLAT that handles the cases when v2i64 is legal
llvm-svn: 191191
stores, make sure the load or store that accesses the higher half does not have
an alignment that is larger than the offset from the original address.
llvm-svn: 190318
precision loads and stores as well as reg+imm double precision loads and stores.
Previously, expansion of loads and stores was done after register allocation,
but now it takes place during legalization. As a result, users will see double
precision stores and loads being emitted to spill and restore 64-bit FP registers.
llvm-svn: 190235
has hard float, when you compile the mips32 code you have to make sure
that it knows to compile any mips32 routines as hard float. I need to clean
up the way mips16 hard float is specified but I need to first think through
all the details. Mips16 always has a form of soft float, the difference being
whether the underlying hardware has floating point. So it's not really
necessary to pass the -soft-float to llvm since soft-float is always true
for mips16 by virtue of the fact that it will not register floating point
registers. By using this fact, I can simplify the way this is all handled.
llvm-svn: 189690
These intrinsics are legalized to V(ALL|ANY)_(NON)?ZERO nodes,
are matched as SN?Z_[BHWDV]_PSEUDO pseudo's, and emitted as
a branch/mov sequence to evaluate to 0 or 1.
Note: The resulting code is sub-optimal since it doesnt seem to be possible
to feed the result of an intrinsic directly into a brcond. At the moment
it uses (SETCC (VALL_ZERO $ws), 0, SETEQ) and similar which unnecessarily
evaluates the boolean twice.
llvm-svn: 189478
* msa SubtargetFeature
* registers
* ld.[bhwd], and st.[bhwd] instructions
Does not correctly prohibit use of both 32-bit FPU registers and MSA together.
Patch by Daniel Sanders
llvm-svn: 188313