print-stack-trace.cc test failure of compiler-rt has been fixed by
r266869 (http://reviews.llvm.org/D19148), so reenable sibling call
optimization on ppc64
Reviewers: nemanjai kbarton
llvm-svn: 267527
[PPC] Previously when casting generic loads to LXV2DX/ST instructions we
would leave the original load return type in place allowing for an
assertion failure when we merge two equivalent LXV2DX nodes with
different types.
This fixes PR27350.
Reviewers: nemanjai
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19133
llvm-svn: 266438
This is the same change on PPC64 as r255821 on AArch64. I have even borrowed
his commit message.
The access function has a short entry and a short exit, the initialization
block is only run the first time. To improve the performance, we want to
have a short frame at the entry and exit.
We explicitly handle most of the CSRs via copies. Only the CSRs that are not
handled via copies will be in CSR_SaveList.
Frame lowering and prologue/epilogue insertion will generate a short frame
in the entry and exit according to CSR_SaveList. The majority of the CSRs will
be handled by register allcoator. Register allocator will try to spill and
reload them in the initialization block.
We add CSRsViaCopy, it will be explicitly handled during lowering.
1> we first set FunctionLoweringInfo->SplitCSR if conditions are met (the target
supports it for the given machine function and the function has only return
exits). We also call TLI->initializeSplitCSR to perform initialization.
2> we call TLI->insertCopiesSplitCSR to insert copies from CSRsViaCopy to
virtual registers at beginning of the entry block and copies from virtual
registers to CSRsViaCopy at beginning of the exit blocks.
3> we also need to make sure the explicit copies will not be eliminated.
Author: Tom Jablin (tjablin)
Reviewers: hfinkel kbarton cycheng
http://reviews.llvm.org/D17533
llvm-svn: 265781
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
http://reviews.llvm.org/D18405
When the integer value loaded is never used directly as integer we should use VSX
or Floating Point Facility integer loads and avoid extra direct move
llvm-svn: 265593
This patch enable sibling call optimization on ppc64 ELFv1/ELFv2 abi, and
add a couple of test cases. This patch also passed llvm/clang bootstrap
test, and spec2006 build/run/result validation.
Original issue: https://llvm.org/bugs/show_bug.cgi?id=25617
Great thanks to Tom's (tjablin) help, he contributed a lot to this patch.
Thanks Hal and Kit's invaluable opinions!
Reviewers: hfinkel kbarton
http://reviews.llvm.org/D16315
llvm-svn: 265506
Chapter 3 of the QPX manual states that, "Scalar floating-point load
instructions, defined in the Power ISA, cause a replication of the source data
across all elements of the target register." Thus, if we have a load followed
by a QPX splat (from the first lane), the splat is redundant. This adds a late
MI-level pass to remove the redundant splats in some of these cases
(specifically when both occur in the same basic block).
This optimization is scheduled just prior to post-RA scheduling. It can't happen
before anything that might replace the load with some already-computed quantity
(i.e. store-to-load forwarding).
llvm-svn: 265047
When dealing with complex<float>, and similar structures with two
single-precision floating-point numbers, especially when such things are being
passed around by value, we'll sometimes end up loading both float values by
extracting them from one 64-bit integer load. It looks like this:
t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
t16: i64 = srl t13, Constant:i32<32>
t17: i32 = truncate t16
t18: f32 = bitcast t17
t19: i32 = truncate t13
t20: f32 = bitcast t19
The problem, especially before the P8 where those bitcasts aren't legal (and
get expanded via the stack), is that it would have been better to use two
floating-point loads directly. Here we add a target-specific DAGCombine to do
just that. In short, we turn:
ld 3, 0(5)
stw 3, -8(1)
rldicl 3, 3, 32, 32
stw 3, -4(1)
lfs 3, -4(1)
lfs 0, -8(1)
into:
lfs 3, 4(5)
lfs 0, 0(5)
llvm-svn: 264988
Instead of using two feature bits, one to indicate the availability of the
popcnt[dw] instructions, and another to indicate whether or not they're fast,
use a single enum. This allows more consistent control via target attribute
strings, and via Clang's command line.
llvm-svn: 264690
The A2 cores support the popcntw/popcntd instructions, but they're microcoded,
and slower than our default software emulation. Specifically, popcnt[dw] take
approximately 74 cycles, whereas our software emulation takes only 24-28
cycles.
I've added a new target feature to indicate a slow popcnt[dw], instead of just
removing the existing target feature from the a2/a2q processor models, because:
1. This allows us to return more accurate information via the TTI interface
(I recognize that this currently makes no practical difference)
2. Is hopefully easier to understand (it allows the core's features to match
its manual while still having the desired effect).
llvm-svn: 264600
This patch corresponds to review:
http://reviews.llvm.org/D17711
It disables direct moves on these operations in 32-bit mode since the patterns
assume 64-bit registers. The final patch is slightly different from the
Phabricator review as the bitcast operations needed to be disabled in 32-bit
mode as well. This fixes PR26617.
llvm-svn: 264282
- Rename getATOMIC to getSYNC, as llvm will soon be able to emit both
'__sync' libcalls and '__atomic' libcalls, and this function is for
the '__sync' ones.
- getInsertFencesForAtomic() has been replaced with
shouldInsertFencesForAtomic(Instruction), so that the decision can be
made per-instruction. This functionality will be used soon.
- emitLeadingFence/emitTrailingFence are no longer called if
shouldInsertFencesForAtomic returns false, and thus don't need to
check the condition themselves.
llvm-svn: 263665
Corresponds to Phabricator review:
http://reviews.llvm.org/D16592
This fix includes both an update to how we handle the "generic" CPU on LE
systems as well as Anton's fix for the Fast Isel issue.
llvm-svn: 262233
Currently we always expand ISD::FNEG. For v4f32 and v2f64 vector types VSX has
native support for this opcode
Phabricator: http://reviews.llvm.org/D17647
llvm-svn: 262079
This is the second in a set of patches for soft float support for ppc32,
it enables soft float operations.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D13700
llvm-svn: 255516
The @llvm.get.dynamic.area.offset.* intrinsic family is used to get the offset
from native stack pointer to the address of the most recent dynamic alloca on
the caller's stack. These intrinsics are intendend for use in combination with
@llvm.stacksave and @llvm.restore to get a pointer to the most recent dynamic
alloca. This is useful, for example, for AddressSanitizer's stack unpoisoning
routines.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D14983
llvm-svn: 254404
Summary:
Many target lowerings copy-paste the code to test SDValues for known constants.
This code can instead be shared in SelectionDAG.cpp, and reused in the targets.
Reviewers: MatzeB, andreadb, tstellarAMD
Subscribers: arsenm, jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D14945
llvm-svn: 254085
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.
Differential revision: http://reviews.llvm.org/D14361
llvm-svn: 253965
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
This revision has introduced an issue that only affects bootstrapped compiler
when it is printing the ASM. It turns out that the new code path taken due to
legalizing a scalar_to_vector of i64 -> v2i64 exposes a missing check in a
micro optimization to change a load followed by a scalar_to_vector into a
load and splat instruction on PPC.
llvm-svn: 251798
As a follow-up to r251566, do the same for the other optionally-supported
register classes (mostly for vector registers). Don't return an unavailable
register class (which would cause an assert later), but fail cleanly when
provided an unsupported inline asm constraint.
llvm-svn: 251575
This patch corresponds to review:
http://reviews.llvm.org/D12032
This patch builds onto the patch that provided scalar to vector conversions
without stack operations (D11471).
Included in this patch:
- Vector element extraction for all vector types with constant element number
- Vector element extraction for v16i8 and v8i16 with variable element number
- Removal of some unnecessary COPY_TO_REGCLASS operations that ended up
unnecessarily moving things around between registers
Not included in this patch (will be in upcoming patch):
- Vector element extraction for v4i32, v4f32, v2i64 and v2f64 with
variable element number
- Vector element insertion for variable/constant element number
Testing is provided for all extractions. The extractions that are not
implemented yet are just placeholders.
llvm-svn: 249822
After D10403, we had FMF in the DAG but disabled by default. Nick reported no crashing errors after some stress testing,
so I enabled them at r243687. However, Escha soon notified us of a bug not covered by any in-tree regression tests:
if we don't propagate the flags, we may fail to CSE DAG nodes because differing FMF causes them to not match. There is
one test case in this patch to prove that point.
This patch hopes to fix or leave a 'TODO' for all of the in-tree places where we create nodes that are FMF-capable. I
did this by putting an assert in SelectionDAG.getNode() to find any FMF-capable node that was being created without FMF
( D11807 ). I then ran all regression tests and test-suite and confirmed that everything passes.
This patch exposes remaining work to get DAG FMF to be fully functional: (1) add the flags to non-binary nodes such as
FCMP, FMA and FNEG; (2) add the flags to intrinsics; (3) use the flags as conditions for transforms rather than the
current global settings.
Differential Revision: http://reviews.llvm.org/D12095
llvm-svn: 247815
When forming permutation-based unaligned vector loads, we need to know whether
it is valid to read ahead of the requested address by a full vector length.
Doing so is more efficient (and allows for more CSE with later loads), but
could trigger a page fault if invalid. To determine validity, we look for other
loads in the same block that access the relevant address range.
The relevant point here is that we need to do this as part of the process of
forming permutation-based vector loads, and this happens quite early in the
SDAG pipeline - specifically before many of the address calculations are fully
canonicalized. As a result, we need to try harder to recognize base+offset
address computations, because they still might appear as chain of adds
(base+offset+offset, for example). To account for this, we'll look through
chains of adds, accumulating the constant offsets.
llvm-svn: 246813
If you compute the MMO offset using unsigned arithmetic, you end up with a
large positive offset instead of a small negative one. In theory, this could
cause bad instruction-scheduling decisions later.
I noticed this by inspection from the debug output, and using that for the
regression test is the best I can do right now.
llvm-svn: 246805
LowerVECTOR_SHUFFLE needs to decide whether to pass a vector shuffle off to the
TableGen-generated matching code, and it does this by testing the same
predicates used by the TableGen files. Unfortunately, when we added new
P8Altivec-only predicates, we started universally testing them in
LowerVECTOR_SHUFFLE, and if then matched when targeting a system prior to a P8,
we'd end up with a selection failure.
llvm-svn: 246675
There were really two problems here. The first was that we had the truth tables
for signed i1 comparisons backward. I imagine these are not very common, but if
you have:
setcc i1 x, y, LT
this has the '0 1' and the '1 0' results flipped compared to:
setcc i1 x, y, ULT
because, in the signed case, '1 0' is really '-1 0', and the answer is not the
same as in the unsigned case.
The second problem was that we did not have patterns (at all) for the unsigned
comparisons select_cc nodes for i1 comparison operands. This was the specific
cause of PR24552. These had to be added (and a missing Altivec promotion added
as well) to make sure these function for all types. I've added a bunch more
test cases for these patterns, and there are a few FIXMEs in the test case
regarding code-quality.
Fixes PR24552.
llvm-svn: 246400
This DAGCombine was creating custom SDAG nodes with an illegal ppc_fp128
operand type because it was triggering on f64/f32 int2fp(fp2int(ppc_fp128 x)),
but shouldn't (it should only apply to f32/f64 types). The result was a crash.
llvm-svn: 245530
This revision has introduced an issue that only affects bootstrapped compiler
when it is printing the ASM. I am working on resolving the issue, but in the
meantime, I'm disabling the legalization of scalar_to_vector operation for v2i64
and the associated testing until I can get this fixed.
llvm-svn: 245481
This patch corresponds to review:
http://reviews.llvm.org/D11471
It improves the code generated for converting a scalar to a vector value. With
direct moves from GPRs to VSRs, we no longer require expensive stack operations
for this. Subsequent patches will handle the reverse case and more general
operations between vectors and their scalar elements.
llvm-svn: 244921
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
Given certain shuffle-vector masks, LLVM emits splat instructions
which splat the wrong bytes from the source register. The issue is
that the function PPC::isSplatShuffleMask() in PPCISelLowering.cpp
does not ensure that the splat pattern found is requesting bytes that
are aligned on an EltSize boundary. This patch detects this situation
as not a valid splat mask, resulting in a permute being generated
instead of a splat.
Patch and test case by Tyler Kenney, cleaned up a bit by me.
This is a simple bug fix that would be good to incorporate into 3.7.
llvm-svn: 243519
This fix was suggested as part of D11345 and is part of fixing PR24141.
With this change, we can avoid walking the uses of a divisor node if the target
doesn't want the combineRepeatedFPDivisors transform in the first place.
There is no NFC-intended other than that.
Differential Revision: http://reviews.llvm.org/D11531
llvm-svn: 243498
The 'common' section TLS is not implemented.
Current C/C++ TLS variables are not placed in common section.
DWARF debug info to get the address of TLS variables is not generated yet.
clang and driver changes in http://reviews.llvm.org/D10524
Added -femulated-tls flag to select the emulated TLS model,
which will be used for old targets like Android that do not
support ELF TLS models.
Added TargetLowering::LowerToTLSEmulatedModel as a target-independent
function to convert a SDNode of TLS variable address to a function call
to __emutls_get_address.
Added into lib/Target/*/*ISelLowering.cpp to call LowerToTLSEmulatedModel
for TLSModel::Emulated. Although all targets supporting ELF TLS models are
enhanced, emulated TLS model has been tested only for Android ELF targets.
Modified AsmPrinter.cpp to print the emutls_v.* and emutls_t.* variables for
emulated TLS variables.
Modified DwarfCompileUnit.cpp to skip some DIE for emulated TLS variabls.
TODO: Add proper DIE for emulated TLS variables.
Added new unit tests with emulated TLS.
Differential Revision: http://reviews.llvm.org/D10522
llvm-svn: 243438
This reverts commit r243146.
Feedback from Craig Topper and David Blaikie was that we don't put const on Type as it has no mutable state.
llvm-svn: 243282
We had a few places where we did
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
but those could instead do
for (auto *EltTy : STy->elements()) {
llvm-svn: 243136
I was looking at some vector code generation and kept seeing
unnecessary vector copies into the Altivec half of the VSX registers.
I discovered that we overlooked v4i32 when adding the register classes
for VSX; we only added v4f32 and v2f64. This means that anything that
canonicalizes into v4i32 (which is a LOT of stuff) ends up being
forced into VRRC on its way to VSRC.
The fix is one line. The rest of the patch is fixing up some test
cases whose code generation has changed as a result.
This seems like it would be a good candidate for backport to 3.7.
llvm-svn: 242442
The vec_sld interface provides access to the vsldoi instruction.
Unlike most of the vec_* interfaces, we do not attempt to change the
generated code for vec_sld based on the endian mode. It is too
difficult to correctly infer the desired semantics because of
different element types, and the corrected instruction sequence is
expensive, involving loading a permute control vector and performing a
generalized permute.
For GCC, this was implemented as "Don't touch the vec_sld"
implementation. When it came time for the LLVM implementation, I did
the same thing. However, this was hasty and incorrect. In LLVM's
version of altivec.h, vec_sld was previously defined in terms of the
vec_perm interface. Because vec_perm semantics are adjusted for
little endian, this means that leaving vec_sld untouched causes it to
generate something different for LE than for BE. Not good.
This back-end patch accompanies the changes to altivec.h that change
vec_sld's behavior for little endian. Those changes mean that we see
slightly different code in the back end when trying to recognize a
VSLDOI instruction in isVSLDOIShuffleMask. In particular, a
ShuffleKind of 1 (where the two inputs are identical) must now be
treated the same way as a ShuffleKind of 2 (little endian with
different inputs) when little endian mode is in force. This is
because ShuffleKind of 1 is defined using big-endian numbering.
This has a ripple effect on LowerBUILD_VECTOR, where we create our own
internal VSLDOI instructions. Because these are a ShuffleKind of 1,
they will now have their shift amounts subtracted from 16 when
recognizing the shuffle mask. To avoid problems we have to subtract
them from 16 again before creating the VSLDOI instructions.
There are a couple of other uses of BuildVSLDOI, but these do not need
to be modified because the shift amount is 8, which is unchanged when
subtracted from 16.
llvm-svn: 242296
r238842 added the TargetRecip system for controlling use of reciprocal
estimates for sqrt and division using a set of parameters that can be set by
the frontend. Clang now supports a sophisticated -mrecip option, and this will
allow that option to effectively control the relevant code-generation
functionality of the PPC backend.
llvm-svn: 241985
This adds support for the 'nest' attribute, which allows the static chain
register to be set for functions calls under non-Darwin PPC/PPC64 targets. r11
is the chain register (which the PPC64 ELF ABI calls the "environment
pointer"). For indirect calls under PPC64 ELFv1, this would normally be loaded
from the function descriptor, but providing an explicit 'nest' parameter will
override that process and use the value provided.
This allows __builtin_call_with_static_chain to work as expected on PowerPC.
llvm-svn: 241984
This patch allows the read_register and write_register intrinsics to
read/write the RBP/EBP registers on X86 iff the targeted register is
the frame pointer for the containing function.
Differential Revision: http://reviews.llvm.org/D10977
llvm-svn: 241827
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11042
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241779
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11040
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241778
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11038
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241777
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
This patch adds support for the vector merge even word and vector merge odd word
instructions introduced in POWER8.
Phabricator review: http://reviews.llvm.org/D10704
llvm-svn: 240650
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This is important because of different addressing modes
depending on the address space for GPU targets.
This only adds the argument, and does not update
any of the uses to provide the correct address space.
llvm-svn: 238723
in POWER8:
vadduqm
vaddeuqm
vaddcuq
vaddecuq
vsubuqm
vsubeuqm
vsubcuq
vsubecuq
In addition to adding the instructions themselves, it also adds support for the
v1i128 type for intrinsics (Intrinsics.td, Function.cpp, and
IntrinsicEmitter.cpp).
http://reviews.llvm.org/D9081
llvm-svn: 238144
This patch adds support for the ISA 2.07 additions involving the
branch history rolling buffer and event-based branching. These will
not be used by typical applications, so built-in support is not
required. They will only be available via inline assembly.
Assembly/disassembly tests are included in the patch.
llvm-svn: 238032
My recent patch to add support for ISA 2.07 vector pack/unpack
instructions didn't properly check for availability of the vpkudum
instruction when recognizing it as a special vector shuffle case.
This causes us to leave the vector shuffle in place (rather than
converting it to a vector permute) so that it can be recognized later
as a vpkudum, but that pattern is invalid for processors prior to
POWER8. Thus LLVM crashes with an "unable to select" message. We
observed this since one of our buildbots is configured to generate
code for a POWER7.
This patch fixes the problem by checking for availability of the
vpkudum instruction during custom lowering of vector shuffles.
I've added a test case variant for the vpkudum pattern when the
instruction isn't available.
llvm-svn: 237952
This patch adds support for the following new instructions in the
Power ISA 2.07:
vpksdss
vpksdus
vpkudus
vpkudum
vupkhsw
vupklsw
These instructions are available through the vec_packs, vec_packsu,
vec_unpackh, and vec_unpackl built-in interfaces. These are
lane-sensitive instructions, so the built-ins have different
implementations for big- and little-endian, and the instructions must
be marked as killing the vector swap optimization for now.
The first three instructions perform saturating pack operations. The
fourth performs a modulo pack operation, which means it can be
represented with a vector shuffle, and conversely the appropriate
vector shuffles may cause this instruction to be generated. The other
instructions are only generated via built-in support for now.
Appropriate tests have been added.
There is a companion patch to clang for the rest of this support.
llvm-svn: 237499
The code that builds the dependence graph assumes that two PseudoSourceValues
don't alias. In a tail calling function two FixedStackObjects might refer to the
same location. Worse 'immutable' fixed stack objects like function arguments are
not immutable and will be clobbered.
Change this so that a load from a FixedStackObject is not invariant in a tail
calling function and don't return a PseudoSourceValue for an instruction in tail
calling functions when building the dependence graph so that we handle function
arguments conservatively.
Fix for PR23459.
rdar://20740035
llvm-svn: 236916
This patch corresponds to review:
http://reviews.llvm.org/D9440
It adds a new register class to the PPC back end to contain single precision
values in VSX registers. Additionally, it adds scalar loads and stores for
VSX registers.
llvm-svn: 236755
It adds v1i128 to the appropriate register classes and checks parameter passing
and return values.
This is related to http://reviews.llvm.org/D9081, which will add instructions
that exploit the v1i128 datatype.
Phabricator review: http://reviews.llvm.org/D9475
llvm-svn: 236503
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235989
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235977
This patch corresponds to review:
http://reviews.llvm.org/D8928
It adds direct move instructions to/from VSX registers to GPR's. These are
exploited for FP <-> INT conversions.
llvm-svn: 234682
When we have an instruction for this (and, thus, don't generate a runtime
call), we need to custom type legalize this (in a trivial way, just as we do
for fp_to_sint).
Fixes PR23173.
llvm-svn: 234561
When enabling PPC64LE, I disabled some optimizations of BUILD_VECTOR
nodes for little endian because wrong results were produced. I've
subsequently investigated and found this is due to a call to
BuildVectorSDNode::isConstantSplat that was always specifying
big-endian. With this changed to correctly identify the target
endianness, the optimizations work as expected.
I found another case of a call to the same method with big-endian
hardcoded, in PPC::isAllNegativeZeroVector(). I discovered this was
an orphaned method with no callers, so I've just removed it.
The existing test/CodeGen/PowerPC/vec_constants.ll checks these
optimizations, so for testing I've just added a variant for little
endian.
llvm-svn: 234011
Even at -O0, we fall back to SDAG when we hit intrinsics, and if the intrinsic
is a memset/memcpy/etc. we might normally use vector types. At -O0, this is
probably not a good idea (because, if there is a bug in the lowering code,
there would be no good way to turn it off). At -O0, only use scalar preferred
types.
Related to PR22754.
llvm-svn: 233755
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], but currently only the
'PowerPC HTM Low Level Built-in Function' are implemented.
The HTM instructions follows the RC ones and the transaction initiation result
is set on RC0 (with exception of tcheck). Currently approach is to create a
register copy from CR0 to GPR and comapring. Although this is suboptimal, since
the branch could be taken directly by comparing the CR0 value, it generates code
correctly on both test and branch and just return value. A possible future
optimization could be elimitate the MFCR instruction to branch directly.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a clang patch to enabled the builtins and option switch.
[1] https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8247
llvm-svn: 233204