Instead of permanently outputting "MVLL" as the file checksum, clang
will create gcno and gcda checksums by hashing the destination block
numbers of every arc. This allows for llvm-cov to check if the two gcov
files are synchronized.
Regenerated the test files so they contain the checksum. Also added
negative test to ensure error when the checksums don't match.
llvm-svn: 195191
I was able to successfully run a bootstrapped LTO build of clang with
r194701, so this change does not seem to be the cause of our failing
buildbots.
llvm-svn: 194789
This reverts commit 194701. Apple's bootstrapped LTO builds have been failing,
and this change (along with compiler-rt 194702-194704) is the only thing on
the blamelist. I will either reappy these changes or help debug the problem,
depending on whether this fixes the buildbots.
llvm-svn: 194780
Indirect call wrapping helps MSanDR (dynamic instrumentation companion tool
for MSan) to catch all cases where execution leaves a compiler-instrumented
module by allowing the tool to rewrite targets of indirect calls.
This change is an optimization that skips wrapping for calls when target is
inside the current module. This relies on the linker providing symbols at the
begin and end of the module code (or code + data, does not really matter).
Gold linker provides such symbols by default. GNU (BFD) linker needs a link
flag: -Wl,--defsym=__executable_start=0.
More info:
https://code.google.com/p/memory-sanitizer/wiki/MSanDR#Native_exec
llvm-svn: 194697
LLVM optimizers may widen accesses to packed structures that overflow the structure itself, but should be in bounds up to the alignment of the object
llvm-svn: 193317
Summary:
Given a global array G[N], which is declared in this CU and has static initializer
avoid instrumenting accesses like G[i], where 'i' is a constant and 0<=i<N.
Also add a bit of stats.
This eliminates ~1% of instrumentations on SPEC2006
and also partially helps when asan is being run together with coverage.
Reviewers: samsonov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1947
llvm-svn: 192794
Currently MSan checks that arguments of *cvt* intrinsics are fully initialized.
That's too much to ask: some of them only operate on lower half, or even
quarter, of the input register.
llvm-svn: 192599
infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
llvm-svn: 191835
Adds a flag to the MemorySanitizer pass that enables runtime rewriting of
indirect calls. This is part of MSanDR implementation and is needed to return
control to the DynamiRio-based helper tool on transition between instrumented
and non-instrumented modules. Disabled by default.
llvm-svn: 191006
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
llvm-svn: 190328
instead of having its own implementation.
The implementation of isTBAAVtableAccess is in TypeBasedAliasAnalysis.cpp
since it is related to the format of TBAA metadata.
The path for struct-path tbaa will be exercised by
test/Instrumentation/ThreadSanitizer/read_from_global.ll, vptr_read.ll, and
vptr_update.ll when struct-path tbaa is on by default.
llvm-svn: 190216
Select condition shadow was being ignored resulting in false negatives.
This change OR-s sign-extended condition shadow into the result shadow.
llvm-svn: 189785
The code was erroneously reading overflow area shadow from the TLS slot,
bypassing the local copy. Reading shadow directly from TLS is wrong, because
it can be overwritten by a nested vararg call, if that happens before va_start.
llvm-svn: 189104
DFSan changes the ABI of each function in the module. This makes it possible
for a function with the native ABI to be called with the instrumented ABI,
or vice versa, thus possibly invoking undefined behavior. A simple way
of statically detecting instances of this problem is to prepend the prefix
"dfs$" to the name of each instrumented-ABI function.
This will not catch every such problem; in particular function pointers passed
across the instrumented-native barrier cannot be used on the other side.
These problems could potentially be caught dynamically.
Differential Revision: http://llvm-reviews.chandlerc.com/D1373
llvm-svn: 189052
There are situations which can affect the correctness (or at least expectation)
of the gcov output. For instance, if a call to __gcov_flush() occurs within a
block before the execution count is registered and then the program aborts in
some way, then that block will not be marked as executed. This is not normally
what the user expects.
If we move the code that's registering when a block is executed to the
beginning, we can catch these types of situations.
PR16893
llvm-svn: 188849
Summary:
When the -dfsan-debug-nonzero-labels parameter is supplied, the code
is instrumented such that when a call parameter, return value or load
produces a nonzero label, the function __dfsan_nonzero_label is called.
The idea is that a debugger breakpoint can be set on this function
in a nominally label-free program to help identify any bugs in the
instrumentation pass causing labels to be introduced.
Reviewers: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1405
llvm-svn: 188472
This replaces the old incomplete greylist functionality with an ABI
list, which can provide more detailed information about the ABI and
semantics of specific functions. The pass treats every function in
the "uninstrumented" category in the ABI list file as conforming to
the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
additional categories for those functions, a call to one of those
functions will produce a warning message, as the labelling behaviour
of the function is unknown. The other supported categories are
"functional", "discard" and "custom".
- "discard" -- This function does not write to (user-accessible) memory,
and its return value is unlabelled.
- "functional" -- This function does not write to (user-accessible)
memory, and the label of its return value is the union of the label of
its arguments.
- "custom" -- Instead of calling the function, a custom wrapper __dfsw_F
is called, where F is the name of the function. This function may wrap
the original function or provide its own implementation.
Differential Revision: http://llvm-reviews.chandlerc.com/D1345
llvm-svn: 188402
DataFlowSanitizer is a generalised dynamic data flow analysis.
Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.
Differential Revision: http://llvm-reviews.chandlerc.com/D965
llvm-svn: 187923
The globals being generated here were given the 'private' linkage type. However,
this caused them to end up in different sections with the wrong prefix. E.g.,
they would be in the __TEXT,__const section with an 'L' prefix instead of an 'l'
(lowercase ell) prefix.
The problem is that the linker will eat a literal label with 'L'. If a weak
symbol is then placed into the __TEXT,__const section near that literal, then it
cannot distinguish between the literal and the weak symbol.
Part of the problems here was introduced because the address sanitizer converted
some C strings into constant initializers with trailing nuls. (Thus putting them
in the __const section with the wrong prefix.) The others were variables that
the address sanitizer created but simply had the wrong linkage type.
llvm-svn: 187827
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The LLVM portions of this patch simply add ppc64le coverage everywhere
that ppc64 coverage currently exists. There is nothing of any import
worth testing until such time as little-endian code generation is
implemented. In the corresponding Clang patch, there is a new test
case variant to ensure that correct built-in defines for little-endian
code are generated.
llvm-svn: 187179
A special case list can now specify categories for specific globals,
which can be used to instruct an instrumentation pass to treat certain
functions or global variables in a specific way, such as by omitting
certain aspects of instrumentation while keeping others, or informing
the instrumentation pass that a specific uninstrumentable function
has certain semantics, thus allowing the pass to instrument callers
according to those semantics.
For example, AddressSanitizer now uses the "init" category instead of
global-init prefixes for globals whose initializers should not be
instrumented, but which in all other respects should be instrumented.
The motivating use case is DataFlowSanitizer, which will have a
number of different categories for uninstrumentable functions, such
as "functional" which specifies that a function has pure functional
semantics, or "discard" which indicates that a function's return
value should not be labelled.
Differential Revision: http://llvm-reviews.chandlerc.com/D1092
llvm-svn: 185978
- Build debug metadata for 'bare' Modules using DIBuilder
- DebugIR can be constructed to generate an IR file (to be seen by a debugger)
or not in cases where the user already has an IR file on disk.
llvm-svn: 185193
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
llvm-svn: 185135
Before this change, each module defined a weak_odr global __msan_track_origins
with a value of 1 if origin tracking is enabled, 0 if disabled. If there are
modules with different values, any of them may win. If 0 wins, and there is at
least one module with 1, the program will most likely crash.
With this change, __msan_track_origins is only emitted if origin tracking is
on. Then runtime library detects if there is at least one module with origin
tracking, and enables runtime support for it.
llvm-svn: 182997
- move AsmWriter.h from public headers into lib
- marked all AssemblyWriter functions as non-virtual; no need to override them
- DebugIR now "plugs into" AssemblyWriter with an AssemblyAnnotationWriter helper
- exposed flags to control hiding of a) debug metadata b) debug intrinsic calls
C/R: Paul Redmond
llvm-svn: 182617
- requires existing debug information to be present
- fixes up file name and line number information in metadata
- emits a "<orig_filename>-debug.ll" succinct IR file (without !dbg metadata
or debug intrinsics) that can be read by a debugger
- initialize pass in opt tool to enable the "-debug-ir" flag
- lit tests to follow
llvm-svn: 181467
the things, and renames it to CBindingWrapping.h. I also moved
CBindingWrapping.h into Support/.
This new file just contains the macros for defining different wrap/unwrap
methods.
The calls to those macros, as well as any custom wrap/unwrap definitions
(like for array of Values for example), are put into corresponding C++
headers.
Doing this required some #include surgery, since some .cpp files relied
on the fact that including Wrap.h implicitly caused the inclusion of a
bunch of other things.
This also now means that the C++ headers will include their corresponding
C API headers; for example Value.h must include llvm-c/Core.h. I think
this is harmless, since the C API headers contain just external function
declarations and some C types, so I don't believe there should be any
nasty dependency issues here.
llvm-svn: 180881
If we compile a single source program, the `.gcda' file will be generated where
the program was executed. This isn't desirable, because that place may be at an
unpredictable place (the program could call `chdir' for instance).
Instead, we will output the `.gcda' file in the same place we output the `.gcno'
file. I.e., the directory where the executable was generated. This matches GCC's
behavior.
<rdar://problem/13061072> & PR11809
llvm-svn: 178084
Before: the function name was stored by the compiler as a constant string
and the run-time was printing it.
Now: the PC is stored instead and the run-time prints the full symbolized frame.
This adds a couple of instructions into every function with non-empty stack frame,
but also reduces the binary size because we store less strings (I saw 2% size reduction).
This change bumps the asan ABI version to v3.
llvm part.
Example of report (now):
==31711==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fffa77cf1c5 at pc 0x41feb0 bp 0x7fffa77cefb0 sp 0x7fffa77cefa8
READ of size 1 at 0x7fffa77cf1c5 thread T0
#0 0x41feaf in Frame0(int, char*, char*, char*) stack-oob-frames.cc:20
#1 0x41f7ff in Frame1(int, char*, char*) stack-oob-frames.cc:24
#2 0x41f477 in Frame2(int, char*) stack-oob-frames.cc:28
#3 0x41f194 in Frame3(int) stack-oob-frames.cc:32
#4 0x41eee0 in main stack-oob-frames.cc:38
#5 0x7f0c5566f76c (/lib/x86_64-linux-gnu/libc.so.6+0x2176c)
#6 0x41eb1c (/usr/local/google/kcc/llvm_cmake/a.out+0x41eb1c)
Address 0x7fffa77cf1c5 is located in stack of thread T0 at offset 293 in frame
#0 0x41f87f in Frame0(int, char*, char*, char*) stack-oob-frames.cc:12 <<<<<<<<<<<<<< this is new
This frame has 6 object(s):
[32, 36) 'frame.addr'
[96, 104) 'a.addr'
[160, 168) 'b.addr'
[224, 232) 'c.addr'
[288, 292) 's'
[352, 360) 'd'
llvm-svn: 177724
Use the new `llvm_gcov_init' function to register the writeout and flush
functions. The initialization function will also call `atexit' for some cleanups
and final writout calls. But it does this only once. This is better than
checking for the `main' function, because in a library that function may not
exist.
<rdar://problem/12439551>
llvm-svn: 177579
We don't want to write out >1000 files at the same time. That could make things
prohibitively expensive. Instead, register the "writeout" function so that it's
emitted serially.
<rdar://problem/12439551>
llvm-svn: 177437
For each compile unit, we want to register a function that will flush that
compile unit. Otherwise, __gcov_flush() would only flush the counters within the
current compile unit, and not any outside of it.
PR15191 & <rdar://problem/13167507>
llvm-svn: 177340
constructs default arguments. It can now take default arguments from
cl::opt'ions. Add a new -default-gcov-version=... option, and actually test it!
Sink the reverse-order of the version into GCOVProfiling, hiding it from our
users.
llvm-svn: 177002
emitProfileNotes(), similar to emitProfileArcs(). Also update its comment.
Also add a comment on Version[4] (there will be another comment in clang later),
and compress lines that exceeded 80 columns.
llvm-svn: 176994
it. Fortunately, versions of gcov that predate the extra checksum also ignore
any extra data, so this isn't a problem. There will be a matching commit in
compiler-rt.
llvm-svn: 176745
into the actual gcov file.
Instead of using the bottom 4 bytes as the function identifier, use a counter.
This makes the identifier numbers stable across multiple runs.
llvm-svn: 176616
Shadow checks are disabled and memory loads always produce fully initialized
values in functions that don't have a sanitize_memory attribute. Value and
argument shadow is propagated as usual.
This change also updates blacklist behaviour to match the above.
llvm-svn: 176247
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
llvm-svn: 176075
This patch makes asan instrument memory accesses with unusual sizes (e.g. 5 bytes or 10 bytes), e.g. long double or
packed structures.
Instrumentation is done with two 1-byte checks
(first and last bytes) and if the error is found
__asan_report_load_n(addr, real_size) or
__asan_report_store_n(addr, real_size)
is called.
Also, call these two new functions in memset/memcpy
instrumentation.
asan-rt part will follow.
llvm-svn: 175507
This flag makes asan use a small (<2G) offset for 64-bit asan shadow mapping.
On x86_64 this saves us a register, thus achieving ~2/3 of the
zero-base-offset's benefits in both performance and code size.
Thanks Jakub Jelinek for the idea.
llvm-svn: 174886
This reverts r171041. This was a nice idea that didn't work out well.
Clang warnings need to be associated with warning groups so that they can
be selectively disabled, promoted to errors, etc. This simplistic patch didn't
allow for that. Enhancing it to provide some way for the backend to specify
a front-end warning type seems like overkill for the few uses of this, at
least for now.
llvm-svn: 174748
It is way too slow. Change the default option value to 0.
Always do exact shadow propagation for unsigned ICmp with constants, it is
cheap (under 1% cpu time) and required for correctness.
llvm-svn: 173682
Only for integers, pointers, and vectors of those. No floats.
Instrumentation seems very heavy, and may need to be replaced
with some approximation in the future.
llvm-svn: 173452
This fixes va_start/va_copy of a va_list field which happens to not
be laid out at a 16-byte boundary.
Differential Revision: http://llvm-reviews.chandlerc.com/D276
llvm-svn: 172128
code that includes Intrinsics.gen directly.
This never showed up in my testing because the old Intrinsics.gen was
still kicking around in the make build system and was correct there. =[
Thankfully, some of the bots to clean rebuilds and that caught this.
llvm-svn: 171373
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
utils/sort_includes.py script.
Most of these are updating the new R600 target and fixing up a few
regressions that have creeped in since the last time I sorted the
includes.
llvm-svn: 171362
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
llvm-svn: 171253
When the backend is used from clang, it should produce proper diagnostics
instead of just printing messages to errs(). Other clients may also want to
register their own error handlers with the LLVMContext, and the same handler
should work for warnings in the same way as the existing emitError methods.
llvm-svn: 171041
This changes adds shadow and origin propagation for unknown intrinsics
by examining the arguments and ModRef behaviour. For now, only 3 classes
of intrinsics are handled:
- those that look like simple SIMD store
- those that look like simple SIMD load
- those that don't have memory effects and look like arithmetic/logic/whatever
operation on simple types.
llvm-svn: 170530
This change moves the code for default shadow propagaition (handleShadowOr)
and origin tracking (setOriginForNaryOp) into a new builder-like class. Also
gets rid of handleShadowOrBinary.
llvm-svn: 170192
When ASan replaces <alloca instruction> with
<offset into a common large alloca>, it should also patch
llvm.dbg.declare calls and replace debug info descriptors to mark
that we've replaced alloca with a value that stores an address
of the user variable, not the user variable itself.
See PR11818 for more context.
llvm-svn: 169984
Use explicitely aligned store and load instructions to deal with argument and
retval shadow. This matters when an argument's alignment is higher than
__msan_param_tls alignment (which is the case with __m128i).
llvm-svn: 169859
The `-mno-red-zone' flag wasn't being propagated to the functions that code
coverage generates. This allowed some of them to use the red zone when that
wasn't allowed.
<rdar://problem/12843084>
llvm-svn: 169754
MSan uses a TLS slot to pass shadow for function arguments and return values.
This makes all instrumented functions not readonly, and at the same time
requires that all callees of an instrumented function that may be
MSan-instrumented do not have readonly attribute (otherwise some of the
instrumentation may be optimized out).
llvm-svn: 169591
Instead of unconditionally storing origin with every application store,
only do this when the shadow of the stored value is != 0.
This change also delays instrumentation of stores until after the walk over
function's instructions, because adding new basic blocks confuses InstVisitor.
We only keep 1 origin value per 4 bytes of application memory. This change
fixes the bug when a store of a single clean byte wiped the origin for the
whole 4-byte area.
Since stores of uninitialized values are relatively uncommon, this change
improves performance of track-origins mode by 5% median and by up to 47% on
specs.
llvm-svn: 169490
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
depends on the IR infrastructure, there is no sense in it being off in
Support land.
This is in preparation to start working to expand InstVisitor into more
special-purpose visitors that are still generic and can be re-used
across different passes. The expansion will go into the Analylis tree
though as nothing in VMCore needs it.
llvm-svn: 168972
The old version failed on a 3-arg instruction with (-1, 0, 0) shadows (it would
pick the 3rd operand origin irrespective of its shadow).
The new version always picks the origin of the rightmost poisoned operand.
llvm-svn: 168887
Rewrite getOriginPtr in a way that lets subsequent optimizations factor out
the common part of Shadow and Origin address calculation. Improves perf by
up to 5%.
llvm-svn: 168879
This was already done for memmove, where it is required for correctness.
This change improves performance by avoiding copyingthe same memory twice.
Also, the library functions are given __msan_ prefix to prevent instcombine
pass from converting them back to intrinsics.
llvm-svn: 168876
Also a couple not-user-visible changes; using empty() instead of size(), and
make inSection() not insert NULL Regex*'s into StringMap when doing a lookup.
llvm-svn: 168833
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
llvm-svn: 167222
wrapper returns a vector of integers when passed a vector of pointers) by having
getIntPtrType itself return a vector of integers in this case. Outside of this
wrapper, I didn't find anywhere in the codebase that was relying on the old
behaviour for vectors of pointers, so give this a whirl through the buildbots.
llvm-svn: 166939
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
llvm-svn: 165488
This function writes out the current values of the counters and then resets
them. This can be used similarly to the __gcov_flush function to sync the
counters when need be. For instance, in a situation where the application
doesn't exit.
<rdar://problem/12185886>
llvm-svn: 163757
Most of the code guarded with ANDROIDEABI are not
ARM-specific, and having no relation with arm-eabi.
Thus, it will be more natural to call this
environment "Android" instead of "ANDROIDEABI".
Note: We are not using ANDROID because several projects
are using "-DANDROID" as the conditional compilation
flag.
llvm-svn: 163087
This lets the user run the program from a different directory and still have the
.gcda files show up in the correct place.
<rdar://problem/12179524>
llvm-svn: 162855
This disables malloc-specific optimization when -fno-builtin (or -ffreestanding)
is specified. This has been a problem for a long time but became more severe
with the recent memory builtin improvements.
Since the memory builtin functions are used everywhere, this required passing
TLI in many places. This means that functions that now have an optional TLI
argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead
mallocs anymore if the TLI argument is missing. I've updated most passes to do
the right thing.
Fixes PR13694 and probably others.
llvm-svn: 162841
It turns out that ASan relied on the at-the-end block insertion order to
(purely by happenstance) disable some LLVM optimizations, which in turn
start firing when the ordering is made more "normal". These
optimizations in turn merge many of the instrumentation reporting calls
which breaks the return address based error reporting in ASan.
We're looking at several different options for fixing this.
llvm-svn: 160256
This is particularly useful to the backend code generators which try to
process things in the incoming function order.
Also, cleanup some uses of IRBuilder to be a bit simpler and more clear.
llvm-svn: 160254
the move of *Builder classes into the Core library.
No uses of this builder in Clang or DragonEgg I could find.
If there is a desire to have an IR-building-support library that
contains all of these builders, that can be easily added, but currently
it seems likely that these add no real overhead to VMCore.
llvm-svn: 160243
This was always part of the VMCore library out of necessity -- it deals
entirely in the IR. The .cpp file in fact was already part of the VMCore
library. This is just a mechanical move.
I've tried to go through and re-apply the coding standard's preferred
header sort, but at 40-ish files, I may have gotten some wrong. Please
let me know if so.
I'll be committing the corresponding updates to Clang and Polly, and
Duncan has DragonEgg.
Thanks to Bill and Eric for giving the green light for this bit of cleanup.
llvm-svn: 159421
include/llvm/Analysis/DebugInfo.h to include/llvm/DebugInfo.h.
The reasoning is because the DebugInfo module is simply an interface to the
debug info MDNodes and has nothing to do with analysis.
llvm-svn: 159312
This allows the user/front-end to specify a model that is better
than what LLVM would choose by default. For example, a variable
might be declared as
@x = thread_local(initialexec) global i32 42
if it will not be used in a shared library that is dlopen'ed.
If the specified model isn't supported by the target, or if LLVM can
make a better choice, a different model may be used.
llvm-svn: 159077
inject some code in that will run via the "__mod_init_func" method that
registers the gcov "writeout" function to execute at exit time.
The problem is that the "__mod_term_func" method of specifying d'tors is
deprecated on Darwin. And it can lead to some ambiguities when dealing with
multiple libraries.
<rdar://problem/11110106>
llvm-svn: 157852
replicating the code for every place it's needed, we instead generate a function
that does that for us. This function is local to the executable, so there
shouldn't be any writing violations.
llvm-svn: 157564
are passed in. However, those arguments may be in a write-protected area, as far
as the runtime library is concerned. For instance, the data could be placed into
a 'linkedit' section, which isn't writable. Emit the code from
llvm_gcda_increment_indirect_counter directly into the function instead.
Note: The code for this is ugly, and can lead to bloat. We should look into
simplifying this code instead of having all of these branches.
<rdar://problem/11181370>
llvm-svn: 157505
- don't isntrument reads from constant globals.
Saves ~1.5% of instrumented instructions on CPU2006
(counting static instructions, not their execution).
- don't insrument reads from vtable (which is a global constant too).
Saves ~5%.
I did not measure the run-time impact of this,
but it is certainly non-negative.
llvm-svn: 154444
a write to the same temp follows in the same BB.
Also add stats printing.
On Spec CPU2006 this optimization saves roughly 4% of instrumented reads
(which is 3% of all instrumented accesses):
Writes : 161216
Reads : 446458
Reads-before-write: 18295
llvm-svn: 154418
This change replaces getTypeStoreSize with getTypeAllocSize in AddressSanitizer
instrumentation for stack allocations.
One case where old behaviour produced undesired results is an optimization in
InstCombine pass (PromoteCastOfAllocation), which can replace alloca(T) with
alloca(S), where S has the same AllocSize, but a smaller StoreSize. Another
case is memcpy(long double => long double), where ASan will poison bytes 10-15
of a stack-allocated long double (StoreSize 10, AllocSize 16,
sizeof(long double) = 16).
See http://llvm.org/bugs/show_bug.cgi?id=12047 for more context.
llvm-svn: 151887
but with a critical fix to the SelectionDAG code that optimizes copies
from strings into immediate stores: the previous code was stopping reading
string data at the first nul. Address this by adding a new argument to
llvm::getConstantStringInfo, preserving the behavior before the patch.
llvm-svn: 149800
gcc, though I thought it was older (my gcc 4.4 has it as a local patch. Whoops!)
This fixes PR10589.
Also add some debugging statements.
Remove GcnoFiles, the mapping from CompilationUnit to raw_ostream. Now that we
start by iterating over each CU and descending into them, there's no need to
maintain a mapping.
llvm-svn: 145208
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
an assert on Darwin llvm-gcc builds.
Assertion failed: (castIsValid(op, S, Ty) && "Invalid cast!"), function Create, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/build.llvm-gcc-i386-darwin9-RA/llvm.src/lib/VMCore/Instructions.cpp, li\
ne 2067.
etc.
http://smooshlab.apple.com:8013/builders/llvm-gcc-i386-darwin9-RA/builds/2354
--- Reverse-merging r134893 into '.':
U include/llvm/Target/TargetData.h
U include/llvm/DerivedTypes.h
U tools/bugpoint/ExtractFunction.cpp
U unittests/Support/TypeBuilderTest.cpp
U lib/Target/ARM/ARMGlobalMerge.cpp
U lib/Target/TargetData.cpp
U lib/VMCore/Constants.cpp
U lib/VMCore/Type.cpp
U lib/VMCore/Core.cpp
U lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Instrumentation/ProfilingUtils.cpp
U lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/CodeGen/SjLjEHPrepare.cpp
--- Reverse-merging r134888 into '.':
G include/llvm/DerivedTypes.h
U include/llvm/Support/TypeBuilder.h
U include/llvm/Intrinsics.h
U unittests/Analysis/ScalarEvolutionTest.cpp
U unittests/ExecutionEngine/JIT/JITTest.cpp
U unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
U unittests/VMCore/PassManagerTest.cpp
G unittests/Support/TypeBuilderTest.cpp
U lib/Target/MBlaze/MBlazeIntrinsicInfo.cpp
U lib/Target/Blackfin/BlackfinIntrinsicInfo.cpp
U lib/VMCore/IRBuilder.cpp
G lib/VMCore/Type.cpp
U lib/VMCore/Function.cpp
G lib/VMCore/Core.cpp
U lib/VMCore/Module.cpp
U lib/AsmParser/LLParser.cpp
U lib/Transforms/Utils/CloneFunction.cpp
G lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Utils/InlineFunction.cpp
U lib/Transforms/Instrumentation/GCOVProfiling.cpp
U lib/Transforms/Scalar/ObjCARC.cpp
U lib/Transforms/Scalar/SimplifyLibCalls.cpp
U lib/Transforms/Scalar/MemCpyOptimizer.cpp
G lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/Transforms/IPO/ArgumentPromotion.cpp
U lib/Transforms/InstCombine/InstCombineCompares.cpp
U lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
U lib/Transforms/InstCombine/InstCombineCalls.cpp
U lib/CodeGen/DwarfEHPrepare.cpp
U lib/CodeGen/IntrinsicLowering.cpp
U lib/Bitcode/Reader/BitcodeReader.cpp
llvm-svn: 134949
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
llvm-svn: 133412
between two reads (threading).
Fix an off-by-one in the indirect counter table that I meant to revert after an
earlier experiment. Whoops!
Implement GCOV_PREFIX. Doesn't handle GCOV_PREFIX_STRIP yet.
Fix an off-by-one in string emission. Extra whoops!
Tolerate DISubprograms that have null Function*'s attached to them. I don't yet
understand what this means, but it happens when you have a global static with
a non-trivial constructor/destructor.
Fix a crash on switch statements with a single successor (default-only).
llvm-svn: 130443
Add support for switch and indirectbr edges. This works by densely numbering
all blocks which have such terminators, and then separately numbering the
possible successors. The predecessors write down a number, the successor knows
its own number (as a ConstantInt) and sends that and the pointer to the number
the predecessor wrote down to the runtime, who looks up the counter in a
per-function table.
Coverage data should now be functional, but I haven't tested it on anything
other than my 2-file synthetic test program for coverage.
llvm-svn: 130186
necessary since gcov counts transitions between blocks. It can't see if you've
run every line in a straight-line function, so we add an edge for it to notice.
llvm-svn: 129905
Break the arc-profile code out to a function like the notes emission code is,
and reorder the functions in the file.
The only functionality change is that we no longer modify the Module when the
Module has no debug info to use.
llvm-svn: 129631
Use debug info in the IR to find the directory/file:line:col. Each time that location changes, bump a counter.
Unlike the existing profiling system, we don't try to look at argv[], and thusly don't require main() to be present in the IR. This matches GCC's technique where you specify the profiling flag when producing each .o file.
The runtime library is minimal, currently just calling printf at program shutdown time. The API is designed to make it possible to emit GCOV data later on.
llvm-svn: 129340
Modified patch by Adam Preuss.
This builds on the existing framework for block tracing, edge profiling and optimal edge profiling.
See -help-hidden for new flags.
For documentation, see the technical report "Implementation of Path Profiling..." in llvm.org/pubs.
llvm-svn: 124515
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
with a fix for self-hosting
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101465
with a fix
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101397
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
llvm-svn: 101364
missing ones are libsupport, libsystem and libvmcore. libvmcore is
currently blocked on bugpoint, which uses EH. Once it stops using
EH, we can switch it off.
This #if 0's out 3 unit tests, because gtest requires RTTI information.
Suggestions welcome on how to fix this.
llvm-svn: 94164
Add statistics for regular edge profiling, this enables the comparation of the
number of edges inserted by regular and optimal edge profiling.
llvm-svn: 80668
This implements the maximum spanning tree algorithm on CFGs according to
weights given by the ProfileEstimator. This is then used to implement Optimal
Edge Profiling.
llvm-svn: 80358
- Part of optimal static profiling patch sequence by Andreas Neustifter.
- Store edge, block, and function information separately for each functions
(instead of in one giant map).
- Return frequencies as double instead of int, and use a sentinel value for
missing information.
llvm-svn: 78477
- Some clients which used DOUT have moved to DEBUG. We are deprecating the
"magic" DOUT behavior which avoided calling printing functions when the
statement was disabled. In addition to being unnecessary magic, it had the
downside of leaving code in -Asserts builds, and of hiding potentially
unnecessary computations.
llvm-svn: 77019
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
llvm-svn: 75640
Make llvm_unreachable take an optional string, thus moving the cerr<< out of
line.
LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for
NDEBUG builds.
llvm-svn: 75379
failures.
To support this, add some utility functions to Type to help support
vector/scalar-independent code. Change ConstantInt::get and
ConstantFP::get to support vector types, and add an overload to
ConstantInt::get that uses a static IntegerType type, for
convenience.
Introduce a new getConstant method for ScalarEvolution, to simplify
common use cases.
llvm-svn: 73431
the Transforms library. This reduces debug library size by 132 KB, debug
binary size by 376 KB, and reduces link time for llvm tools slightly.
llvm-svn: 33939
Make the Module's dependent library use a std::vector instead of SetVector
adjust #includes in .cpp files because SetVector.h is no longer included.
llvm-svn: 33855
recommended that getBoolValue be replaced with getZExtValue and that
get(bool) be replaced by get(const Type*, uint64_t). This implements
those changes.
llvm-svn: 33110
This patch replaces signed integer types with signless ones:
1. [US]Byte -> Int8
2. [U]Short -> Int16
3. [U]Int -> Int32
4. [U]Long -> Int64.
5. Removal of isSigned, isUnsigned, getSignedVersion, getUnsignedVersion
and other methods related to signedness. In a few places this warranted
identifying the signedness information from other sources.
llvm-svn: 32785
This patch removes the SetCC instructions and replaces them with the ICmp
and FCmp instructions. The SetCondInst instruction has been removed and
been replaced with ICmpInst and FCmpInst.
llvm-svn: 32751
creation. These changes are still temporary but at least this pushes
knowledge of signedness out closer to where it can be determined properly
and allows signedness to be removed from VMCore.
llvm-svn: 32654
The long awaited CAST patch. This introduces 12 new instructions into LLVM
to replace the cast instruction. Corresponding changes throughout LLVM are
provided. This passes llvm-test, llvm/test, and SPEC CPUINT2000 with the
exception of 175.vpr which fails only on a slight floating point output
difference.
llvm-svn: 31931
Turn on -Wunused and -Wno-unused-parameter. Clean up most of the resulting
fall out by removing unused variables. Remaining warnings have to do with
unused functions (I didn't want to delete code without review) and unused
variables in generated code. Maintainers should clean up the remaining
issues when they see them. All changes pass DejaGnu tests and Olden.
llvm-svn: 31380
This patch implements the first increment for the Signless Types feature.
All changes pertain to removing the ConstantSInt and ConstantUInt classes
in favor of just using ConstantInt.
llvm-svn: 31063
The code is organized into 3 parts (2 passes)
1) a linked set of profiling passes, which implement an analysis group (linked, like alias analysis are). These insert profiling into the program, and remember what they inserted, so that at a later time they can be queried about any instruction.
2) a pass that handles inserting the random sampling framework. This also has options to control how random samples are choosen. Currently implemented are Global counters, register allocated global counters, and read cycle counter (see? there was a reason for it).
The profiling passes are almost identical to the existing ones (block, function, and null profiling is supported right now), and they are valid passes without the sampling framework (hence the existing passes can be unified with the new ones, not done yet).
Some things are a bit ugly still, but that should be fixed up soon enough.
Other todo? making the counter values not "magic 2^16 -1" values, but dynamically choosable.
llvm-svn: 24493
pointer marking the end of the list, the zero *must* be cast to the pointer
type. An un-cast zero is a 32-bit int, and at least on x86_64, gcc will
not extend the zero to 64 bits, thus allowing the upper 32 bits to be
random junk.
The new END_WITH_NULL macro may be used to annotate a such a function
so that GCC (version 4 or newer) will detect the use of un-casted zero
at compile time.
llvm-svn: 23888
Move include/Config and include/Support into include/llvm/Config,
include/llvm/ADT and include/llvm/Support. From here on out, all LLVM
public header files must be under include/llvm/.
llvm-svn: 16137
Add better comments, including a better head-of-file comment.
Prune #includes.
Fix a FIXME that Chris put here by using doInitialization().
Use DEBUG() to print out debug msgs.
Give names to basic blocks inserted by this pass.
Expand tabs.
Use InsertProfilingInitCall() from ProfilingUtils to insert the initialize call.
llvm-svn: 13581
it's used 7 different times.
Rename `getBackEdges' to `findAndInstrumentBackEdges', for clarity.
Remove some excess whitespace and commented-out code.
Use shorter forms of CallInst ctors.
Do not make `reopt_threshold' visible to the LLVM program, and do not
pass it to the call to `reoptimizerInitialize'. Don't pass the
GlobalVariable representing it to any of our helper methods.
`reopt_threshold' is an internal parameter of the reoptimizer, which
InstLoops does not need to know about.
llvm-svn: 7794
remembered in valuesStoredInFunction, but never traced at function return,
and that's too late to be finding the error anyway).
Stores trace both the value and the address being stored to,
but after some experience I think only values should be traced.
The pointer hash table just fills up far too quickly if every
store address were traced.
llvm-svn: 7169
* Renamed StatisticReporter.h/cpp to Statistic.h/cpp
* Broke constructor to take two const char * arguments instead of one, so
that indendation can be taken care of automatically.
* Sort the list by pass name when printing
* Make sure to print all statistics as a group, instead of randomly when
the statistics dtors are called.
* Updated ProgrammersManual with new semantics.
llvm-svn: 4004
* Renamed StatisticReporter.h/cpp to Statistic.h/cpp
* Broke constructor to take two const char * arguments instead of one, so
that indendation can be taken care of automatically.
* Sort the list by pass name when printing
* Make sure to print all statistics as a group, instead of randomly when
the statistics dtors are called.
* Updated ProgrammersManual with new semantics.
llvm-svn: 4001
* Add new RegisterOpt/RegisterAnalysis templates for registering passes that
are to show up in opt or analyze
* Register Analyses now
* Change optimizations to use RegisterOpt instead of RegisterPass
* Add support for different "PassType's"
* Add new RegisterOpt/RegisterAnalysis templates for registering passes that
are to show up in opt or analyze
* Register Analyses now
* Change optimizations to use RegisterOpt instead of RegisterPass
* Remove getPassName implementations from various subclasses
llvm-svn: 3113
* Add new RegisterOpt/RegisterAnalysis templates for registering passes that
are to show up in opt or analyze
* Register Analyses now
* Change optimizations to use RegisterOpt instead of RegisterPass
* Add support for different "PassType's"
* Add new RegisterOpt/RegisterAnalysis templates for registering passes that
are to show up in opt or analyze
* Register Analyses now
* Change optimizations to use RegisterOpt instead of RegisterPass
* Remove getPassName implementations from various subclasses
llvm-svn: 3112
* The global variable cannot be internal or else we cannot use it!
* Always add a function to the table, even if it only has a single basic
block.
llvm-svn: 2921
lli and llc. This is controlled with options -tracehash on|off.
Also, added an option to specify which functions should be traced.
Particularly useful to reduce output volume in basic-block tracing.
llvm-svn: 2646
- Rename runOnMethod to runOnFunction
* Transform getAnalysisUsageInfo into getAnalysisUsage
- Method is now const
- It now takes one AnalysisUsage object to fill in instead of 3 vectors
to fill in
- Pass's now specify which other passes they _preserve_ not which ones
they modify (be conservative!)
- A pass can specify that it preserves all analyses (because it never
modifies the underlying program)
* s/Method/Function/g in other random places as well
llvm-svn: 2333