forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			159 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			159 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
//==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a crude C++11 based thread pool.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Support/ThreadPool.h"
 | 
						|
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#if LLVM_ENABLE_THREADS
 | 
						|
 | 
						|
// Default to std::thread::hardware_concurrency
 | 
						|
ThreadPool::ThreadPool() : ThreadPool(std::thread::hardware_concurrency()) {}
 | 
						|
 | 
						|
ThreadPool::ThreadPool(unsigned ThreadCount)
 | 
						|
    : ActiveThreads(0), EnableFlag(true) {
 | 
						|
  // Create ThreadCount threads that will loop forever, wait on QueueCondition
 | 
						|
  // for tasks to be queued or the Pool to be destroyed.
 | 
						|
  Threads.reserve(ThreadCount);
 | 
						|
  for (unsigned ThreadID = 0; ThreadID < ThreadCount; ++ThreadID) {
 | 
						|
    Threads.emplace_back([&] {
 | 
						|
      while (true) {
 | 
						|
        PackagedTaskTy Task;
 | 
						|
        {
 | 
						|
          std::unique_lock<std::mutex> LockGuard(QueueLock);
 | 
						|
          // Wait for tasks to be pushed in the queue
 | 
						|
          QueueCondition.wait(LockGuard,
 | 
						|
                              [&] { return !EnableFlag || !Tasks.empty(); });
 | 
						|
          // Exit condition
 | 
						|
          if (!EnableFlag && Tasks.empty())
 | 
						|
            return;
 | 
						|
          // Yeah, we have a task, grab it and release the lock on the queue
 | 
						|
 | 
						|
          // We first need to signal that we are active before popping the queue
 | 
						|
          // in order for wait() to properly detect that even if the queue is
 | 
						|
          // empty, there is still a task in flight.
 | 
						|
          {
 | 
						|
            ++ActiveThreads;
 | 
						|
            std::unique_lock<std::mutex> LockGuard(CompletionLock);
 | 
						|
          }
 | 
						|
          Task = std::move(Tasks.front());
 | 
						|
          Tasks.pop();
 | 
						|
        }
 | 
						|
        // Run the task we just grabbed
 | 
						|
#ifndef _MSC_VER
 | 
						|
        Task();
 | 
						|
#else
 | 
						|
        Task(/* unused */ false);
 | 
						|
#endif
 | 
						|
 | 
						|
        {
 | 
						|
          // Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait()
 | 
						|
          std::unique_lock<std::mutex> LockGuard(CompletionLock);
 | 
						|
          --ActiveThreads;
 | 
						|
        }
 | 
						|
 | 
						|
        // Notify task completion, in case someone waits on ThreadPool::wait()
 | 
						|
        CompletionCondition.notify_all();
 | 
						|
      }
 | 
						|
    });
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ThreadPool::wait() {
 | 
						|
  // Wait for all threads to complete and the queue to be empty
 | 
						|
  std::unique_lock<std::mutex> LockGuard(CompletionLock);
 | 
						|
  // The order of the checks for ActiveThreads and Tasks.empty() matters because
 | 
						|
  // any active threads might be modifying the Tasks queue, and this would be a
 | 
						|
  // race.
 | 
						|
  CompletionCondition.wait(LockGuard,
 | 
						|
                           [&] { return !ActiveThreads && Tasks.empty(); });
 | 
						|
}
 | 
						|
 | 
						|
std::shared_future<ThreadPool::VoidTy> ThreadPool::asyncImpl(TaskTy Task) {
 | 
						|
  /// Wrap the Task in a packaged_task to return a future object.
 | 
						|
  PackagedTaskTy PackagedTask(std::move(Task));
 | 
						|
  auto Future = PackagedTask.get_future();
 | 
						|
  {
 | 
						|
    // Lock the queue and push the new task
 | 
						|
    std::unique_lock<std::mutex> LockGuard(QueueLock);
 | 
						|
 | 
						|
    // Don't allow enqueueing after disabling the pool
 | 
						|
    assert(EnableFlag && "Queuing a thread during ThreadPool destruction");
 | 
						|
 | 
						|
    Tasks.push(std::move(PackagedTask));
 | 
						|
  }
 | 
						|
  QueueCondition.notify_one();
 | 
						|
  return Future.share();
 | 
						|
}
 | 
						|
 | 
						|
// The destructor joins all threads, waiting for completion.
 | 
						|
ThreadPool::~ThreadPool() {
 | 
						|
  {
 | 
						|
    std::unique_lock<std::mutex> LockGuard(QueueLock);
 | 
						|
    EnableFlag = false;
 | 
						|
  }
 | 
						|
  QueueCondition.notify_all();
 | 
						|
  for (auto &Worker : Threads)
 | 
						|
    Worker.join();
 | 
						|
}
 | 
						|
 | 
						|
#else // LLVM_ENABLE_THREADS Disabled
 | 
						|
 | 
						|
ThreadPool::ThreadPool() : ThreadPool(0) {}
 | 
						|
 | 
						|
// No threads are launched, issue a warning if ThreadCount is not 0
 | 
						|
ThreadPool::ThreadPool(unsigned ThreadCount)
 | 
						|
    : ActiveThreads(0) {
 | 
						|
  if (ThreadCount) {
 | 
						|
    errs() << "Warning: request a ThreadPool with " << ThreadCount
 | 
						|
           << " threads, but LLVM_ENABLE_THREADS has been turned off\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ThreadPool::wait() {
 | 
						|
  // Sequential implementation running the tasks
 | 
						|
  while (!Tasks.empty()) {
 | 
						|
    auto Task = std::move(Tasks.front());
 | 
						|
    Tasks.pop();
 | 
						|
#ifndef _MSC_VER
 | 
						|
        Task();
 | 
						|
#else
 | 
						|
        Task(/* unused */ false);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::shared_future<ThreadPool::VoidTy> ThreadPool::asyncImpl(TaskTy Task) {
 | 
						|
#ifndef _MSC_VER
 | 
						|
  // Get a Future with launch::deferred execution using std::async
 | 
						|
  auto Future = std::async(std::launch::deferred, std::move(Task)).share();
 | 
						|
  // Wrap the future so that both ThreadPool::wait() can operate and the
 | 
						|
  // returned future can be sync'ed on.
 | 
						|
  PackagedTaskTy PackagedTask([Future]() { Future.get(); });
 | 
						|
#else
 | 
						|
  auto Future = std::async(std::launch::deferred, std::move(Task), false).share();
 | 
						|
  PackagedTaskTy PackagedTask([Future](bool) -> bool { Future.get(); return false; });
 | 
						|
#endif
 | 
						|
  Tasks.push(std::move(PackagedTask));
 | 
						|
  return Future;
 | 
						|
}
 | 
						|
 | 
						|
ThreadPool::~ThreadPool() {
 | 
						|
  wait();
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |