forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1860 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1860 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InductiveRangeCheckElimination.cpp - -------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The InductiveRangeCheckElimination pass splits a loop's iteration space into
 | 
						|
// three disjoint ranges.  It does that in a way such that the loop running in
 | 
						|
// the middle loop provably does not need range checks. As an example, it will
 | 
						|
// convert
 | 
						|
//
 | 
						|
//   len = < known positive >
 | 
						|
//   for (i = 0; i < n; i++) {
 | 
						|
//     if (0 <= i && i < len) {
 | 
						|
//       do_something();
 | 
						|
//     } else {
 | 
						|
//       throw_out_of_bounds();
 | 
						|
//     }
 | 
						|
//   }
 | 
						|
//
 | 
						|
// to
 | 
						|
//
 | 
						|
//   len = < known positive >
 | 
						|
//   limit = smin(n, len)
 | 
						|
//   // no first segment
 | 
						|
//   for (i = 0; i < limit; i++) {
 | 
						|
//     if (0 <= i && i < len) { // this check is fully redundant
 | 
						|
//       do_something();
 | 
						|
//     } else {
 | 
						|
//       throw_out_of_bounds();
 | 
						|
//     }
 | 
						|
//   }
 | 
						|
//   for (i = limit; i < n; i++) {
 | 
						|
//     if (0 <= i && i < len) {
 | 
						|
//       do_something();
 | 
						|
//     } else {
 | 
						|
//       throw_out_of_bounds();
 | 
						|
//     }
 | 
						|
//   }
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopSimplify.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
 | 
						|
                                        cl::init(64));
 | 
						|
 | 
						|
static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
 | 
						|
                                       cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
 | 
						|
                                      cl::init(false));
 | 
						|
 | 
						|
static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
 | 
						|
                                          cl::Hidden, cl::init(10));
 | 
						|
 | 
						|
static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
 | 
						|
                                             cl::Hidden, cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
 | 
						|
                                                 cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
static const char *ClonedLoopTag = "irce.loop.clone";
 | 
						|
 | 
						|
#define DEBUG_TYPE "irce"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// An inductive range check is conditional branch in a loop with
 | 
						|
///
 | 
						|
///  1. a very cold successor (i.e. the branch jumps to that successor very
 | 
						|
///     rarely)
 | 
						|
///
 | 
						|
///  and
 | 
						|
///
 | 
						|
///  2. a condition that is provably true for some contiguous range of values
 | 
						|
///     taken by the containing loop's induction variable.
 | 
						|
///
 | 
						|
class InductiveRangeCheck {
 | 
						|
  // Classifies a range check
 | 
						|
  enum RangeCheckKind : unsigned {
 | 
						|
    // Range check of the form "0 <= I".
 | 
						|
    RANGE_CHECK_LOWER = 1,
 | 
						|
 | 
						|
    // Range check of the form "I < L" where L is known positive.
 | 
						|
    RANGE_CHECK_UPPER = 2,
 | 
						|
 | 
						|
    // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
 | 
						|
    // conditions.
 | 
						|
    RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
 | 
						|
 | 
						|
    // Unrecognized range check condition.
 | 
						|
    RANGE_CHECK_UNKNOWN = (unsigned)-1
 | 
						|
  };
 | 
						|
 | 
						|
  static StringRef rangeCheckKindToStr(RangeCheckKind);
 | 
						|
 | 
						|
  const SCEV *Begin = nullptr;
 | 
						|
  const SCEV *Step = nullptr;
 | 
						|
  const SCEV *End = nullptr;
 | 
						|
  Use *CheckUse = nullptr;
 | 
						|
  RangeCheckKind Kind = RANGE_CHECK_UNKNOWN;
 | 
						|
  bool IsSigned = true;
 | 
						|
 | 
						|
  static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
 | 
						|
                                            ScalarEvolution &SE, Value *&Index,
 | 
						|
                                            Value *&Length, bool &IsSigned);
 | 
						|
 | 
						|
  static void
 | 
						|
  extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
 | 
						|
                             SmallVectorImpl<InductiveRangeCheck> &Checks,
 | 
						|
                             SmallPtrSetImpl<Value *> &Visited);
 | 
						|
 | 
						|
public:
 | 
						|
  const SCEV *getBegin() const { return Begin; }
 | 
						|
  const SCEV *getStep() const { return Step; }
 | 
						|
  const SCEV *getEnd() const { return End; }
 | 
						|
  bool isSigned() const { return IsSigned; }
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const {
 | 
						|
    OS << "InductiveRangeCheck:\n";
 | 
						|
    OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
 | 
						|
    OS << "  Begin: ";
 | 
						|
    Begin->print(OS);
 | 
						|
    OS << "  Step: ";
 | 
						|
    Step->print(OS);
 | 
						|
    OS << "  End: ";
 | 
						|
    if (End)
 | 
						|
      End->print(OS);
 | 
						|
    else
 | 
						|
      OS << "(null)";
 | 
						|
    OS << "\n  CheckUse: ";
 | 
						|
    getCheckUse()->getUser()->print(OS);
 | 
						|
    OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD
 | 
						|
  void dump() {
 | 
						|
    print(dbgs());
 | 
						|
  }
 | 
						|
 | 
						|
  Use *getCheckUse() const { return CheckUse; }
 | 
						|
 | 
						|
  /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
 | 
						|
  /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
 | 
						|
 | 
						|
  class Range {
 | 
						|
    const SCEV *Begin;
 | 
						|
    const SCEV *End;
 | 
						|
 | 
						|
  public:
 | 
						|
    Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
 | 
						|
      assert(Begin->getType() == End->getType() && "ill-typed range!");
 | 
						|
    }
 | 
						|
 | 
						|
    Type *getType() const { return Begin->getType(); }
 | 
						|
    const SCEV *getBegin() const { return Begin; }
 | 
						|
    const SCEV *getEnd() const { return End; }
 | 
						|
    bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
 | 
						|
      if (Begin == End)
 | 
						|
        return true;
 | 
						|
      if (IsSigned)
 | 
						|
        return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
 | 
						|
      else
 | 
						|
        return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// This is the value the condition of the branch needs to evaluate to for the
 | 
						|
  /// branch to take the hot successor (see (1) above).
 | 
						|
  bool getPassingDirection() { return true; }
 | 
						|
 | 
						|
  /// Computes a range for the induction variable (IndVar) in which the range
 | 
						|
  /// check is redundant and can be constant-folded away.  The induction
 | 
						|
  /// variable is not required to be the canonical {0,+,1} induction variable.
 | 
						|
  Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
 | 
						|
                                            const SCEVAddRecExpr *IndVar) const;
 | 
						|
 | 
						|
  /// Parse out a set of inductive range checks from \p BI and append them to \p
 | 
						|
  /// Checks.
 | 
						|
  ///
 | 
						|
  /// NB! There may be conditions feeding into \p BI that aren't inductive range
 | 
						|
  /// checks, and hence don't end up in \p Checks.
 | 
						|
  static void
 | 
						|
  extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
 | 
						|
                               BranchProbabilityInfo &BPI,
 | 
						|
                               SmallVectorImpl<InductiveRangeCheck> &Checks);
 | 
						|
};
 | 
						|
 | 
						|
class InductiveRangeCheckElimination : public LoopPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  InductiveRangeCheckElimination() : LoopPass(ID) {
 | 
						|
    initializeInductiveRangeCheckEliminationPass(
 | 
						|
        *PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
 | 
						|
    getLoopAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char InductiveRangeCheckElimination::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce",
 | 
						|
                      "Inductive range check elimination", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce",
 | 
						|
                    "Inductive range check elimination", false, false)
 | 
						|
 | 
						|
StringRef InductiveRangeCheck::rangeCheckKindToStr(
 | 
						|
    InductiveRangeCheck::RangeCheckKind RCK) {
 | 
						|
  switch (RCK) {
 | 
						|
  case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
 | 
						|
    return "RANGE_CHECK_UNKNOWN";
 | 
						|
 | 
						|
  case InductiveRangeCheck::RANGE_CHECK_UPPER:
 | 
						|
    return "RANGE_CHECK_UPPER";
 | 
						|
 | 
						|
  case InductiveRangeCheck::RANGE_CHECK_LOWER:
 | 
						|
    return "RANGE_CHECK_LOWER";
 | 
						|
 | 
						|
  case InductiveRangeCheck::RANGE_CHECK_BOTH:
 | 
						|
    return "RANGE_CHECK_BOTH";
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown range check type!");
 | 
						|
}
 | 
						|
 | 
						|
/// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI` cannot
 | 
						|
/// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
 | 
						|
/// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value being
 | 
						|
/// range checked, and set `Length` to the upper limit `Index` is being range
 | 
						|
/// checked with if (and only if) the range check type is stronger or equal to
 | 
						|
/// RANGE_CHECK_UPPER.
 | 
						|
InductiveRangeCheck::RangeCheckKind
 | 
						|
InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
 | 
						|
                                         ScalarEvolution &SE, Value *&Index,
 | 
						|
                                         Value *&Length, bool &IsSigned) {
 | 
						|
  auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
 | 
						|
    const SCEV *S = SE.getSCEV(V);
 | 
						|
    if (isa<SCEVCouldNotCompute>(S))
 | 
						|
      return false;
 | 
						|
 | 
						|
    return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
 | 
						|
           SE.isKnownNonNegative(S);
 | 
						|
  };
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = ICI->getPredicate();
 | 
						|
  Value *LHS = ICI->getOperand(0);
 | 
						|
  Value *RHS = ICI->getOperand(1);
 | 
						|
 | 
						|
  switch (Pred) {
 | 
						|
  default:
 | 
						|
    return RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_SLE:
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ICmpInst::ICMP_SGE:
 | 
						|
    IsSigned = true;
 | 
						|
    if (match(RHS, m_ConstantInt<0>())) {
 | 
						|
      Index = LHS;
 | 
						|
      return RANGE_CHECK_LOWER;
 | 
						|
    }
 | 
						|
    return RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_SLT:
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ICmpInst::ICMP_SGT:
 | 
						|
    IsSigned = true;
 | 
						|
    if (match(RHS, m_ConstantInt<-1>())) {
 | 
						|
      Index = LHS;
 | 
						|
      return RANGE_CHECK_LOWER;
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsNonNegativeAndNotLoopVarying(LHS)) {
 | 
						|
      Index = RHS;
 | 
						|
      Length = LHS;
 | 
						|
      return RANGE_CHECK_UPPER;
 | 
						|
    }
 | 
						|
    return RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
    IsSigned = false;
 | 
						|
    if (IsNonNegativeAndNotLoopVarying(LHS)) {
 | 
						|
      Index = RHS;
 | 
						|
      Length = LHS;
 | 
						|
      return RANGE_CHECK_BOTH;
 | 
						|
    }
 | 
						|
    return RANGE_CHECK_UNKNOWN;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("default clause returns!");
 | 
						|
}
 | 
						|
 | 
						|
void InductiveRangeCheck::extractRangeChecksFromCond(
 | 
						|
    Loop *L, ScalarEvolution &SE, Use &ConditionUse,
 | 
						|
    SmallVectorImpl<InductiveRangeCheck> &Checks,
 | 
						|
    SmallPtrSetImpl<Value *> &Visited) {
 | 
						|
  Value *Condition = ConditionUse.get();
 | 
						|
  if (!Visited.insert(Condition).second)
 | 
						|
    return;
 | 
						|
 | 
						|
  // TODO: Do the same for OR, XOR, NOT etc?
 | 
						|
  if (match(Condition, m_And(m_Value(), m_Value()))) {
 | 
						|
    extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
 | 
						|
                               Checks, Visited);
 | 
						|
    extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
 | 
						|
                               Checks, Visited);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
 | 
						|
  if (!ICI)
 | 
						|
    return;
 | 
						|
 | 
						|
  Value *Length = nullptr, *Index;
 | 
						|
  bool IsSigned;
 | 
						|
  auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned);
 | 
						|
  if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
 | 
						|
    return;
 | 
						|
 | 
						|
  const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
 | 
						|
  bool IsAffineIndex =
 | 
						|
      IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
 | 
						|
 | 
						|
  if (!IsAffineIndex)
 | 
						|
    return;
 | 
						|
 | 
						|
  InductiveRangeCheck IRC;
 | 
						|
  IRC.End = Length ? SE.getSCEV(Length) : nullptr;
 | 
						|
  IRC.Begin = IndexAddRec->getStart();
 | 
						|
  IRC.Step = IndexAddRec->getStepRecurrence(SE);
 | 
						|
  IRC.CheckUse = &ConditionUse;
 | 
						|
  IRC.Kind = RCKind;
 | 
						|
  IRC.IsSigned = IsSigned;
 | 
						|
  Checks.push_back(IRC);
 | 
						|
}
 | 
						|
 | 
						|
void InductiveRangeCheck::extractRangeChecksFromBranch(
 | 
						|
    BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI,
 | 
						|
    SmallVectorImpl<InductiveRangeCheck> &Checks) {
 | 
						|
  if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
 | 
						|
    return;
 | 
						|
 | 
						|
  BranchProbability LikelyTaken(15, 16);
 | 
						|
 | 
						|
  if (!SkipProfitabilityChecks &&
 | 
						|
      BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallPtrSet<Value *, 8> Visited;
 | 
						|
  InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
 | 
						|
                                                  Checks, Visited);
 | 
						|
}
 | 
						|
 | 
						|
// Add metadata to the loop L to disable loop optimizations. Callers need to
 | 
						|
// confirm that optimizing loop L is not beneficial.
 | 
						|
static void DisableAllLoopOptsOnLoop(Loop &L) {
 | 
						|
  // We do not care about any existing loopID related metadata for L, since we
 | 
						|
  // are setting all loop metadata to false.
 | 
						|
  LLVMContext &Context = L.getHeader()->getContext();
 | 
						|
  // Reserve first location for self reference to the LoopID metadata node.
 | 
						|
  MDNode *Dummy = MDNode::get(Context, {});
 | 
						|
  MDNode *DisableUnroll = MDNode::get(
 | 
						|
      Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
 | 
						|
  Metadata *FalseVal =
 | 
						|
      ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
 | 
						|
  MDNode *DisableVectorize = MDNode::get(
 | 
						|
      Context,
 | 
						|
      {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
 | 
						|
  MDNode *DisableLICMVersioning = MDNode::get(
 | 
						|
      Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
 | 
						|
  MDNode *DisableDistribution= MDNode::get(
 | 
						|
      Context,
 | 
						|
      {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
 | 
						|
  MDNode *NewLoopID =
 | 
						|
      MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
 | 
						|
                            DisableLICMVersioning, DisableDistribution});
 | 
						|
  // Set operand 0 to refer to the loop id itself.
 | 
						|
  NewLoopID->replaceOperandWith(0, NewLoopID);
 | 
						|
  L.setLoopID(NewLoopID);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Keeps track of the structure of a loop.  This is similar to llvm::Loop,
 | 
						|
// except that it is more lightweight and can track the state of a loop through
 | 
						|
// changing and potentially invalid IR.  This structure also formalizes the
 | 
						|
// kinds of loops we can deal with -- ones that have a single latch that is also
 | 
						|
// an exiting block *and* have a canonical induction variable.
 | 
						|
struct LoopStructure {
 | 
						|
  const char *Tag = "";
 | 
						|
 | 
						|
  BasicBlock *Header = nullptr;
 | 
						|
  BasicBlock *Latch = nullptr;
 | 
						|
 | 
						|
  // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
 | 
						|
  // successor is `LatchExit', the exit block of the loop.
 | 
						|
  BranchInst *LatchBr = nullptr;
 | 
						|
  BasicBlock *LatchExit = nullptr;
 | 
						|
  unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
 | 
						|
 | 
						|
  // The loop represented by this instance of LoopStructure is semantically
 | 
						|
  // equivalent to:
 | 
						|
  //
 | 
						|
  // intN_ty inc = IndVarIncreasing ? 1 : -1;
 | 
						|
  // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
 | 
						|
  //
 | 
						|
  // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
 | 
						|
  //   ... body ...
 | 
						|
 | 
						|
  Value *IndVarBase = nullptr;
 | 
						|
  Value *IndVarStart = nullptr;
 | 
						|
  Value *IndVarStep = nullptr;
 | 
						|
  Value *LoopExitAt = nullptr;
 | 
						|
  bool IndVarIncreasing = false;
 | 
						|
  bool IsSignedPredicate = true;
 | 
						|
 | 
						|
  LoopStructure() = default;
 | 
						|
 | 
						|
  template <typename M> LoopStructure map(M Map) const {
 | 
						|
    LoopStructure Result;
 | 
						|
    Result.Tag = Tag;
 | 
						|
    Result.Header = cast<BasicBlock>(Map(Header));
 | 
						|
    Result.Latch = cast<BasicBlock>(Map(Latch));
 | 
						|
    Result.LatchBr = cast<BranchInst>(Map(LatchBr));
 | 
						|
    Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
 | 
						|
    Result.LatchBrExitIdx = LatchBrExitIdx;
 | 
						|
    Result.IndVarBase = Map(IndVarBase);
 | 
						|
    Result.IndVarStart = Map(IndVarStart);
 | 
						|
    Result.IndVarStep = Map(IndVarStep);
 | 
						|
    Result.LoopExitAt = Map(LoopExitAt);
 | 
						|
    Result.IndVarIncreasing = IndVarIncreasing;
 | 
						|
    Result.IsSignedPredicate = IsSignedPredicate;
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
 | 
						|
                                                    BranchProbabilityInfo &BPI,
 | 
						|
                                                    Loop &,
 | 
						|
                                                    const char *&);
 | 
						|
};
 | 
						|
 | 
						|
/// This class is used to constrain loops to run within a given iteration space.
 | 
						|
/// The algorithm this class implements is given a Loop and a range [Begin,
 | 
						|
/// End).  The algorithm then tries to break out a "main loop" out of the loop
 | 
						|
/// it is given in a way that the "main loop" runs with the induction variable
 | 
						|
/// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
 | 
						|
/// loops to run any remaining iterations.  The pre loop runs any iterations in
 | 
						|
/// which the induction variable is < Begin, and the post loop runs any
 | 
						|
/// iterations in which the induction variable is >= End.
 | 
						|
class LoopConstrainer {
 | 
						|
  // The representation of a clone of the original loop we started out with.
 | 
						|
  struct ClonedLoop {
 | 
						|
    // The cloned blocks
 | 
						|
    std::vector<BasicBlock *> Blocks;
 | 
						|
 | 
						|
    // `Map` maps values in the clonee into values in the cloned version
 | 
						|
    ValueToValueMapTy Map;
 | 
						|
 | 
						|
    // An instance of `LoopStructure` for the cloned loop
 | 
						|
    LoopStructure Structure;
 | 
						|
  };
 | 
						|
 | 
						|
  // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
 | 
						|
  // more details on what these fields mean.
 | 
						|
  struct RewrittenRangeInfo {
 | 
						|
    BasicBlock *PseudoExit = nullptr;
 | 
						|
    BasicBlock *ExitSelector = nullptr;
 | 
						|
    std::vector<PHINode *> PHIValuesAtPseudoExit;
 | 
						|
    PHINode *IndVarEnd = nullptr;
 | 
						|
 | 
						|
    RewrittenRangeInfo() = default;
 | 
						|
  };
 | 
						|
 | 
						|
  // Calculated subranges we restrict the iteration space of the main loop to.
 | 
						|
  // See the implementation of `calculateSubRanges' for more details on how
 | 
						|
  // these fields are computed.  `LowLimit` is None if there is no restriction
 | 
						|
  // on low end of the restricted iteration space of the main loop.  `HighLimit`
 | 
						|
  // is None if there is no restriction on high end of the restricted iteration
 | 
						|
  // space of the main loop.
 | 
						|
 | 
						|
  struct SubRanges {
 | 
						|
    Optional<const SCEV *> LowLimit;
 | 
						|
    Optional<const SCEV *> HighLimit;
 | 
						|
  };
 | 
						|
 | 
						|
  // A utility function that does a `replaceUsesOfWith' on the incoming block
 | 
						|
  // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
 | 
						|
  // incoming block list with `ReplaceBy'.
 | 
						|
  static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
 | 
						|
                              BasicBlock *ReplaceBy);
 | 
						|
 | 
						|
  // Compute a safe set of limits for the main loop to run in -- effectively the
 | 
						|
  // intersection of `Range' and the iteration space of the original loop.
 | 
						|
  // Return None if unable to compute the set of subranges.
 | 
						|
  Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
 | 
						|
 | 
						|
  // Clone `OriginalLoop' and return the result in CLResult.  The IR after
 | 
						|
  // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
 | 
						|
  // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
 | 
						|
  // but there is no such edge.
 | 
						|
  void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
 | 
						|
 | 
						|
  // Create the appropriate loop structure needed to describe a cloned copy of
 | 
						|
  // `Original`.  The clone is described by `VM`.
 | 
						|
  Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
 | 
						|
                                  ValueToValueMapTy &VM);
 | 
						|
 | 
						|
  // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
 | 
						|
  // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
 | 
						|
  // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
 | 
						|
  // `OriginalHeaderCount'.
 | 
						|
  //
 | 
						|
  // If there are iterations left to execute, control is made to jump to
 | 
						|
  // `ContinuationBlock', otherwise they take the normal loop exit.  The
 | 
						|
  // returned `RewrittenRangeInfo' object is populated as follows:
 | 
						|
  //
 | 
						|
  //  .PseudoExit is a basic block that unconditionally branches to
 | 
						|
  //      `ContinuationBlock'.
 | 
						|
  //
 | 
						|
  //  .ExitSelector is a basic block that decides, on exit from the loop,
 | 
						|
  //      whether to branch to the "true" exit or to `PseudoExit'.
 | 
						|
  //
 | 
						|
  //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
 | 
						|
  //      for each PHINode in the loop header on taking the pseudo exit.
 | 
						|
  //
 | 
						|
  // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
 | 
						|
  // preheader because it is made to branch to the loop header only
 | 
						|
  // conditionally.
 | 
						|
  RewrittenRangeInfo
 | 
						|
  changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
 | 
						|
                          Value *ExitLoopAt,
 | 
						|
                          BasicBlock *ContinuationBlock) const;
 | 
						|
 | 
						|
  // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
 | 
						|
  // function creates a new preheader for `LS' and returns it.
 | 
						|
  BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
 | 
						|
                              const char *Tag) const;
 | 
						|
 | 
						|
  // `ContinuationBlockAndPreheader' was the continuation block for some call to
 | 
						|
  // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
 | 
						|
  // This function rewrites the PHI nodes in `LS.Header' to start with the
 | 
						|
  // correct value.
 | 
						|
  void rewriteIncomingValuesForPHIs(
 | 
						|
      LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
 | 
						|
      const LoopConstrainer::RewrittenRangeInfo &RRI) const;
 | 
						|
 | 
						|
  // Even though we do not preserve any passes at this time, we at least need to
 | 
						|
  // keep the parent loop structure consistent.  The `LPPassManager' seems to
 | 
						|
  // verify this after running a loop pass.  This function adds the list of
 | 
						|
  // blocks denoted by BBs to this loops parent loop if required.
 | 
						|
  void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
 | 
						|
 | 
						|
  // Some global state.
 | 
						|
  Function &F;
 | 
						|
  LLVMContext &Ctx;
 | 
						|
  ScalarEvolution &SE;
 | 
						|
  DominatorTree &DT;
 | 
						|
  LPPassManager &LPM;
 | 
						|
  LoopInfo &LI;
 | 
						|
 | 
						|
  // Information about the original loop we started out with.
 | 
						|
  Loop &OriginalLoop;
 | 
						|
 | 
						|
  const SCEV *LatchTakenCount = nullptr;
 | 
						|
  BasicBlock *OriginalPreheader = nullptr;
 | 
						|
 | 
						|
  // The preheader of the main loop.  This may or may not be different from
 | 
						|
  // `OriginalPreheader'.
 | 
						|
  BasicBlock *MainLoopPreheader = nullptr;
 | 
						|
 | 
						|
  // The range we need to run the main loop in.
 | 
						|
  InductiveRangeCheck::Range Range;
 | 
						|
 | 
						|
  // The structure of the main loop (see comment at the beginning of this class
 | 
						|
  // for a definition)
 | 
						|
  LoopStructure MainLoopStructure;
 | 
						|
 | 
						|
public:
 | 
						|
  LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM,
 | 
						|
                  const LoopStructure &LS, ScalarEvolution &SE,
 | 
						|
                  DominatorTree &DT, InductiveRangeCheck::Range R)
 | 
						|
      : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
 | 
						|
        SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L), Range(R),
 | 
						|
        MainLoopStructure(LS) {}
 | 
						|
 | 
						|
  // Entry point for the algorithm.  Returns true on success.
 | 
						|
  bool run();
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
 | 
						|
                                      BasicBlock *ReplaceBy) {
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
    if (PN->getIncomingBlock(i) == Block)
 | 
						|
      PN->setIncomingBlock(i, ReplaceBy);
 | 
						|
}
 | 
						|
 | 
						|
static bool CanBeMax(ScalarEvolution &SE, const SCEV *S, bool Signed) {
 | 
						|
  APInt Max = Signed ?
 | 
						|
      APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth()) :
 | 
						|
      APInt::getMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
 | 
						|
  return SE.getSignedRange(S).contains(Max) &&
 | 
						|
         SE.getUnsignedRange(S).contains(Max);
 | 
						|
}
 | 
						|
 | 
						|
static bool SumCanReachMax(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2,
 | 
						|
                           bool Signed) {
 | 
						|
  // S1 < INT_MAX - S2 ===> S1 + S2 < INT_MAX.
 | 
						|
  assert(SE.isKnownNonNegative(S2) &&
 | 
						|
         "We expected the 2nd arg to be non-negative!");
 | 
						|
  const SCEV *Max = SE.getConstant(
 | 
						|
      Signed ? APInt::getSignedMaxValue(
 | 
						|
                   cast<IntegerType>(S1->getType())->getBitWidth())
 | 
						|
             : APInt::getMaxValue(
 | 
						|
                   cast<IntegerType>(S1->getType())->getBitWidth()));
 | 
						|
  const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2);
 | 
						|
  return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
 | 
						|
                              S1, CapForS1);
 | 
						|
}
 | 
						|
 | 
						|
static bool CanBeMin(ScalarEvolution &SE, const SCEV *S, bool Signed) {
 | 
						|
  APInt Min = Signed ?
 | 
						|
      APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth()) :
 | 
						|
      APInt::getMinValue(cast<IntegerType>(S->getType())->getBitWidth());
 | 
						|
  return SE.getSignedRange(S).contains(Min) &&
 | 
						|
         SE.getUnsignedRange(S).contains(Min);
 | 
						|
}
 | 
						|
 | 
						|
static bool SumCanReachMin(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2,
 | 
						|
                           bool Signed) {
 | 
						|
  // S1 > INT_MIN - S2 ===> S1 + S2 > INT_MIN.
 | 
						|
  assert(SE.isKnownNonPositive(S2) &&
 | 
						|
         "We expected the 2nd arg to be non-positive!");
 | 
						|
  const SCEV *Max = SE.getConstant(
 | 
						|
      Signed ? APInt::getSignedMinValue(
 | 
						|
                   cast<IntegerType>(S1->getType())->getBitWidth())
 | 
						|
             : APInt::getMinValue(
 | 
						|
                   cast<IntegerType>(S1->getType())->getBitWidth()));
 | 
						|
  const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2);
 | 
						|
  return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT,
 | 
						|
                              S1, CapForS1);
 | 
						|
}
 | 
						|
 | 
						|
Optional<LoopStructure>
 | 
						|
LoopStructure::parseLoopStructure(ScalarEvolution &SE,
 | 
						|
                                  BranchProbabilityInfo &BPI,
 | 
						|
                                  Loop &L, const char *&FailureReason) {
 | 
						|
  if (!L.isLoopSimplifyForm()) {
 | 
						|
    FailureReason = "loop not in LoopSimplify form";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *Latch = L.getLoopLatch();
 | 
						|
  assert(Latch && "Simplified loops only have one latch!");
 | 
						|
 | 
						|
  if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
 | 
						|
    FailureReason = "loop has already been cloned";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!L.isLoopExiting(Latch)) {
 | 
						|
    FailureReason = "no loop latch";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *Header = L.getHeader();
 | 
						|
  BasicBlock *Preheader = L.getLoopPreheader();
 | 
						|
  if (!Preheader) {
 | 
						|
    FailureReason = "no preheader";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
 | 
						|
  if (!LatchBr || LatchBr->isUnconditional()) {
 | 
						|
    FailureReason = "latch terminator not conditional branch";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
 | 
						|
 | 
						|
  BranchProbability ExitProbability =
 | 
						|
    BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
 | 
						|
 | 
						|
  if (!SkipProfitabilityChecks &&
 | 
						|
      ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
 | 
						|
    FailureReason = "short running loop, not profitable";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
 | 
						|
  if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
 | 
						|
    FailureReason = "latch terminator branch not conditional on integral icmp";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *LatchCount = SE.getExitCount(&L, Latch);
 | 
						|
  if (isa<SCEVCouldNotCompute>(LatchCount)) {
 | 
						|
    FailureReason = "could not compute latch count";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = ICI->getPredicate();
 | 
						|
  Value *LeftValue = ICI->getOperand(0);
 | 
						|
  const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
 | 
						|
  IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
 | 
						|
 | 
						|
  Value *RightValue = ICI->getOperand(1);
 | 
						|
  const SCEV *RightSCEV = SE.getSCEV(RightValue);
 | 
						|
 | 
						|
  // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
 | 
						|
  if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
 | 
						|
    if (isa<SCEVAddRecExpr>(RightSCEV)) {
 | 
						|
      std::swap(LeftSCEV, RightSCEV);
 | 
						|
      std::swap(LeftValue, RightValue);
 | 
						|
      Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
    } else {
 | 
						|
      FailureReason = "no add recurrences in the icmp";
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
 | 
						|
    if (AR->getNoWrapFlags(SCEV::FlagNSW))
 | 
						|
      return true;
 | 
						|
 | 
						|
    IntegerType *Ty = cast<IntegerType>(AR->getType());
 | 
						|
    IntegerType *WideTy =
 | 
						|
        IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
 | 
						|
 | 
						|
    const SCEVAddRecExpr *ExtendAfterOp =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
 | 
						|
    if (ExtendAfterOp) {
 | 
						|
      const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
 | 
						|
      const SCEV *ExtendedStep =
 | 
						|
          SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
 | 
						|
 | 
						|
      bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
 | 
						|
                          ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
 | 
						|
 | 
						|
      if (NoSignedWrap)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We may have proved this when computing the sign extension above.
 | 
						|
    return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
 | 
						|
  };
 | 
						|
 | 
						|
  // Here we check whether the suggested AddRec is an induction variable that
 | 
						|
  // can be handled (i.e. with known constant step), and if yes, calculate its
 | 
						|
  // step and identify whether it is increasing or decreasing.
 | 
						|
  auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing,
 | 
						|
                            ConstantInt *&StepCI) {
 | 
						|
    if (!AR->isAffine())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Currently we only work with induction variables that have been proved to
 | 
						|
    // not wrap.  This restriction can potentially be lifted in the future.
 | 
						|
 | 
						|
    if (!HasNoSignedWrap(AR))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (const SCEVConstant *StepExpr =
 | 
						|
            dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
 | 
						|
      StepCI = StepExpr->getValue();
 | 
						|
      assert(!StepCI->isZero() && "Zero step?");
 | 
						|
      IsIncreasing = !StepCI->isNegative();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // `ICI` is interpreted as taking the backedge if the *next* value of the
 | 
						|
  // induction variable satisfies some constraint.
 | 
						|
 | 
						|
  const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
 | 
						|
  bool IsIncreasing = false;
 | 
						|
  bool IsSignedPredicate = true;
 | 
						|
  ConstantInt *StepCI;
 | 
						|
  if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) {
 | 
						|
    FailureReason = "LHS in icmp not induction variable";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *StartNext = IndVarBase->getStart();
 | 
						|
  const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
 | 
						|
  const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
 | 
						|
  const SCEV *Step = SE.getSCEV(StepCI);
 | 
						|
 | 
						|
  ConstantInt *One = ConstantInt::get(IndVarTy, 1);
 | 
						|
  if (IsIncreasing) {
 | 
						|
    bool DecreasedRightValueByOne = false;
 | 
						|
    if (StepCI->isOne()) {
 | 
						|
      // Try to turn eq/ne predicates to those we can work with.
 | 
						|
      if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
 | 
						|
        // while (++i != len) {         while (++i < len) {
 | 
						|
        //   ...                 --->     ...
 | 
						|
        // }                            }
 | 
						|
        // If both parts are known non-negative, it is profitable to use
 | 
						|
        // unsigned comparison in increasing loop. This allows us to make the
 | 
						|
        // comparison check against "RightSCEV + 1" more optimistic.
 | 
						|
        if (SE.isKnownNonNegative(IndVarStart) &&
 | 
						|
            SE.isKnownNonNegative(RightSCEV))
 | 
						|
          Pred = ICmpInst::ICMP_ULT;
 | 
						|
        else
 | 
						|
          Pred = ICmpInst::ICMP_SLT;
 | 
						|
      else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
 | 
						|
               !CanBeMin(SE, RightSCEV, /* IsSignedPredicate */ true)) {
 | 
						|
        // while (true) {               while (true) {
 | 
						|
        //   if (++i == len)     --->     if (++i > len - 1)
 | 
						|
        //     break;                       break;
 | 
						|
        //   ...                          ...
 | 
						|
        // }                            }
 | 
						|
        // TODO: Insert ICMP_UGT if both are non-negative?
 | 
						|
        Pred = ICmpInst::ICMP_SGT;
 | 
						|
        RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
 | 
						|
        DecreasedRightValueByOne = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
 | 
						|
    bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
 | 
						|
    bool FoundExpectedPred =
 | 
						|
        (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
 | 
						|
 | 
						|
    if (!FoundExpectedPred) {
 | 
						|
      FailureReason = "expected icmp slt semantically, found something else";
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
 | 
						|
    IsSignedPredicate =
 | 
						|
        Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
 | 
						|
 | 
						|
    if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
 | 
						|
      FailureReason = "unsigned latch conditions are explicitly prohibited";
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
 | 
						|
    // The predicate that we need to check that the induction variable lies
 | 
						|
    // within bounds.
 | 
						|
    ICmpInst::Predicate BoundPred =
 | 
						|
        IsSignedPredicate ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
 | 
						|
 | 
						|
    if (LatchBrExitIdx == 0) {
 | 
						|
      const SCEV *StepMinusOne = SE.getMinusSCEV(Step,
 | 
						|
                                                 SE.getOne(Step->getType()));
 | 
						|
      if (SumCanReachMax(SE, RightSCEV, StepMinusOne, IsSignedPredicate)) {
 | 
						|
        // TODO: this restriction is easily removable -- we just have to
 | 
						|
        // remember that the icmp was an slt and not an sle.
 | 
						|
        FailureReason = "limit may overflow when coercing le to lt";
 | 
						|
        return None;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!SE.isLoopEntryGuardedByCond(
 | 
						|
              &L, BoundPred, IndVarStart,
 | 
						|
              SE.getAddExpr(RightSCEV, Step))) {
 | 
						|
        FailureReason = "Induction variable start not bounded by upper limit";
 | 
						|
        return None;
 | 
						|
      }
 | 
						|
 | 
						|
      // We need to increase the right value unless we have already decreased
 | 
						|
      // it virtually when we replaced EQ with SGT.
 | 
						|
      if (!DecreasedRightValueByOne) {
 | 
						|
        IRBuilder<> B(Preheader->getTerminator());
 | 
						|
        RightValue = B.CreateAdd(RightValue, One);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) {
 | 
						|
        FailureReason = "Induction variable start not bounded by upper limit";
 | 
						|
        return None;
 | 
						|
      }
 | 
						|
      assert(!DecreasedRightValueByOne &&
 | 
						|
             "Right value can be decreased only for LatchBrExitIdx == 0!");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    bool IncreasedRightValueByOne = false;
 | 
						|
    if (StepCI->isMinusOne()) {
 | 
						|
      // Try to turn eq/ne predicates to those we can work with.
 | 
						|
      if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
 | 
						|
        // while (--i != len) {         while (--i > len) {
 | 
						|
        //   ...                 --->     ...
 | 
						|
        // }                            }
 | 
						|
        // We intentionally don't turn the predicate into UGT even if we know
 | 
						|
        // that both operands are non-negative, because it will only pessimize
 | 
						|
        // our check against "RightSCEV - 1".
 | 
						|
        Pred = ICmpInst::ICMP_SGT;
 | 
						|
      else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 &&
 | 
						|
               !CanBeMax(SE, RightSCEV, /* IsSignedPredicate */ true)) {
 | 
						|
        // while (true) {               while (true) {
 | 
						|
        //   if (--i == len)     --->     if (--i < len + 1)
 | 
						|
        //     break;                       break;
 | 
						|
        //   ...                          ...
 | 
						|
        // }                            }
 | 
						|
        // TODO: Insert ICMP_ULT if both are non-negative?
 | 
						|
        Pred = ICmpInst::ICMP_SLT;
 | 
						|
        RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
 | 
						|
        IncreasedRightValueByOne = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
 | 
						|
    bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
 | 
						|
 | 
						|
    bool FoundExpectedPred =
 | 
						|
        (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
 | 
						|
 | 
						|
    if (!FoundExpectedPred) {
 | 
						|
      FailureReason = "expected icmp sgt semantically, found something else";
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
 | 
						|
    IsSignedPredicate =
 | 
						|
        Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
 | 
						|
 | 
						|
    if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
 | 
						|
      FailureReason = "unsigned latch conditions are explicitly prohibited";
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
 | 
						|
    // The predicate that we need to check that the induction variable lies
 | 
						|
    // within bounds.
 | 
						|
    ICmpInst::Predicate BoundPred =
 | 
						|
        IsSignedPredicate ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
 | 
						|
 | 
						|
    if (LatchBrExitIdx == 0) {
 | 
						|
      const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
 | 
						|
      if (SumCanReachMin(SE, RightSCEV, StepPlusOne, IsSignedPredicate)) {
 | 
						|
        // TODO: this restriction is easily removable -- we just have to
 | 
						|
        // remember that the icmp was an sgt and not an sge.
 | 
						|
        FailureReason = "limit may overflow when coercing ge to gt";
 | 
						|
        return None;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!SE.isLoopEntryGuardedByCond(
 | 
						|
              &L, BoundPred, IndVarStart,
 | 
						|
              SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) {
 | 
						|
        FailureReason = "Induction variable start not bounded by lower limit";
 | 
						|
        return None;
 | 
						|
      }
 | 
						|
 | 
						|
      // We need to decrease the right value unless we have already increased
 | 
						|
      // it virtually when we replaced EQ with SLT.
 | 
						|
      if (!IncreasedRightValueByOne) {
 | 
						|
        IRBuilder<> B(Preheader->getTerminator());
 | 
						|
        RightValue = B.CreateSub(RightValue, One);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) {
 | 
						|
        FailureReason = "Induction variable start not bounded by lower limit";
 | 
						|
        return None;
 | 
						|
      }
 | 
						|
      assert(!IncreasedRightValueByOne &&
 | 
						|
             "Right value can be increased only for LatchBrExitIdx == 0!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
 | 
						|
 | 
						|
  assert(SE.getLoopDisposition(LatchCount, &L) ==
 | 
						|
             ScalarEvolution::LoopInvariant &&
 | 
						|
         "loop variant exit count doesn't make sense!");
 | 
						|
 | 
						|
  assert(!L.contains(LatchExit) && "expected an exit block!");
 | 
						|
  const DataLayout &DL = Preheader->getModule()->getDataLayout();
 | 
						|
  Value *IndVarStartV =
 | 
						|
      SCEVExpander(SE, DL, "irce")
 | 
						|
          .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator());
 | 
						|
  IndVarStartV->setName("indvar.start");
 | 
						|
 | 
						|
  LoopStructure Result;
 | 
						|
 | 
						|
  Result.Tag = "main";
 | 
						|
  Result.Header = Header;
 | 
						|
  Result.Latch = Latch;
 | 
						|
  Result.LatchBr = LatchBr;
 | 
						|
  Result.LatchExit = LatchExit;
 | 
						|
  Result.LatchBrExitIdx = LatchBrExitIdx;
 | 
						|
  Result.IndVarStart = IndVarStartV;
 | 
						|
  Result.IndVarStep = StepCI;
 | 
						|
  Result.IndVarBase = LeftValue;
 | 
						|
  Result.IndVarIncreasing = IsIncreasing;
 | 
						|
  Result.LoopExitAt = RightValue;
 | 
						|
  Result.IsSignedPredicate = IsSignedPredicate;
 | 
						|
 | 
						|
  FailureReason = nullptr;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
Optional<LoopConstrainer::SubRanges>
 | 
						|
LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
 | 
						|
  IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
 | 
						|
 | 
						|
  if (Range.getType() != Ty)
 | 
						|
    return None;
 | 
						|
 | 
						|
  LoopConstrainer::SubRanges Result;
 | 
						|
 | 
						|
  // I think we can be more aggressive here and make this nuw / nsw if the
 | 
						|
  // addition that feeds into the icmp for the latch's terminating branch is nuw
 | 
						|
  // / nsw.  In any case, a wrapping 2's complement addition is safe.
 | 
						|
  const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
 | 
						|
  const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
 | 
						|
 | 
						|
  bool Increasing = MainLoopStructure.IndVarIncreasing;
 | 
						|
 | 
						|
  // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
 | 
						|
  // [Smallest, GreatestSeen] is the range of values the induction variable
 | 
						|
  // takes.
 | 
						|
 | 
						|
  const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
 | 
						|
 | 
						|
  const SCEV *One = SE.getOne(Ty);
 | 
						|
  if (Increasing) {
 | 
						|
    Smallest = Start;
 | 
						|
    Greatest = End;
 | 
						|
    // No overflow, because the range [Smallest, GreatestSeen] is not empty.
 | 
						|
    GreatestSeen = SE.getMinusSCEV(End, One);
 | 
						|
  } else {
 | 
						|
    // These two computations may sign-overflow.  Here is why that is okay:
 | 
						|
    //
 | 
						|
    // We know that the induction variable does not sign-overflow on any
 | 
						|
    // iteration except the last one, and it starts at `Start` and ends at
 | 
						|
    // `End`, decrementing by one every time.
 | 
						|
    //
 | 
						|
    //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
 | 
						|
    //    induction variable is decreasing we know that that the smallest value
 | 
						|
    //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
 | 
						|
    //
 | 
						|
    //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
 | 
						|
    //    that case, `Clamp` will always return `Smallest` and
 | 
						|
    //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
 | 
						|
    //    will be an empty range.  Returning an empty range is always safe.
 | 
						|
 | 
						|
    Smallest = SE.getAddExpr(End, One);
 | 
						|
    Greatest = SE.getAddExpr(Start, One);
 | 
						|
    GreatestSeen = Start;
 | 
						|
  }
 | 
						|
 | 
						|
  auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
 | 
						|
    return IsSignedPredicate
 | 
						|
               ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
 | 
						|
               : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
 | 
						|
  };
 | 
						|
 | 
						|
  // In some cases we can prove that we don't need a pre or post loop.
 | 
						|
  ICmpInst::Predicate PredLE =
 | 
						|
      IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
 | 
						|
  ICmpInst::Predicate PredLT =
 | 
						|
      IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
 | 
						|
 | 
						|
  bool ProvablyNoPreloop =
 | 
						|
      SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
 | 
						|
  if (!ProvablyNoPreloop)
 | 
						|
    Result.LowLimit = Clamp(Range.getBegin());
 | 
						|
 | 
						|
  bool ProvablyNoPostLoop =
 | 
						|
      SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
 | 
						|
  if (!ProvablyNoPostLoop)
 | 
						|
    Result.HighLimit = Clamp(Range.getEnd());
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
 | 
						|
                                const char *Tag) const {
 | 
						|
  for (BasicBlock *BB : OriginalLoop.getBlocks()) {
 | 
						|
    BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
 | 
						|
    Result.Blocks.push_back(Clone);
 | 
						|
    Result.Map[BB] = Clone;
 | 
						|
  }
 | 
						|
 | 
						|
  auto GetClonedValue = [&Result](Value *V) {
 | 
						|
    assert(V && "null values not in domain!");
 | 
						|
    auto It = Result.Map.find(V);
 | 
						|
    if (It == Result.Map.end())
 | 
						|
      return V;
 | 
						|
    return static_cast<Value *>(It->second);
 | 
						|
  };
 | 
						|
 | 
						|
  auto *ClonedLatch =
 | 
						|
      cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
 | 
						|
  ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
 | 
						|
                                            MDNode::get(Ctx, {}));
 | 
						|
 | 
						|
  Result.Structure = MainLoopStructure.map(GetClonedValue);
 | 
						|
  Result.Structure.Tag = Tag;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *ClonedBB = Result.Blocks[i];
 | 
						|
    BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
 | 
						|
 | 
						|
    assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
 | 
						|
 | 
						|
    for (Instruction &I : *ClonedBB)
 | 
						|
      RemapInstruction(&I, Result.Map,
 | 
						|
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | 
						|
 | 
						|
    // Exit blocks will now have one more predecessor and their PHI nodes need
 | 
						|
    // to be edited to reflect that.  No phi nodes need to be introduced because
 | 
						|
    // the loop is in LCSSA.
 | 
						|
 | 
						|
    for (auto *SBB : successors(OriginalBB)) {
 | 
						|
      if (OriginalLoop.contains(SBB))
 | 
						|
        continue; // not an exit block
 | 
						|
 | 
						|
      for (Instruction &I : *SBB) {
 | 
						|
        auto *PN = dyn_cast<PHINode>(&I);
 | 
						|
        if (!PN)
 | 
						|
          break;
 | 
						|
 | 
						|
        Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
 | 
						|
        PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
 | 
						|
    const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
 | 
						|
    BasicBlock *ContinuationBlock) const {
 | 
						|
  // We start with a loop with a single latch:
 | 
						|
  //
 | 
						|
  //    +--------------------+
 | 
						|
  //    |                    |
 | 
						|
  //    |     preheader      |
 | 
						|
  //    |                    |
 | 
						|
  //    +--------+-----------+
 | 
						|
  //             |      ----------------\
 | 
						|
  //             |     /                |
 | 
						|
  //    +--------v----v------+          |
 | 
						|
  //    |                    |          |
 | 
						|
  //    |      header        |          |
 | 
						|
  //    |                    |          |
 | 
						|
  //    +--------------------+          |
 | 
						|
  //                                    |
 | 
						|
  //            .....                   |
 | 
						|
  //                                    |
 | 
						|
  //    +--------------------+          |
 | 
						|
  //    |                    |          |
 | 
						|
  //    |       latch        >----------/
 | 
						|
  //    |                    |
 | 
						|
  //    +-------v------------+
 | 
						|
  //            |
 | 
						|
  //            |
 | 
						|
  //            |   +--------------------+
 | 
						|
  //            |   |                    |
 | 
						|
  //            +--->   original exit    |
 | 
						|
  //                |                    |
 | 
						|
  //                +--------------------+
 | 
						|
  //
 | 
						|
  // We change the control flow to look like
 | 
						|
  //
 | 
						|
  //
 | 
						|
  //    +--------------------+
 | 
						|
  //    |                    |
 | 
						|
  //    |     preheader      >-------------------------+
 | 
						|
  //    |                    |                         |
 | 
						|
  //    +--------v-----------+                         |
 | 
						|
  //             |    /-------------+                  |
 | 
						|
  //             |   /              |                  |
 | 
						|
  //    +--------v--v--------+      |                  |
 | 
						|
  //    |                    |      |                  |
 | 
						|
  //    |      header        |      |   +--------+     |
 | 
						|
  //    |                    |      |   |        |     |
 | 
						|
  //    +--------------------+      |   |  +-----v-----v-----------+
 | 
						|
  //                                |   |  |                       |
 | 
						|
  //                                |   |  |     .pseudo.exit      |
 | 
						|
  //                                |   |  |                       |
 | 
						|
  //                                |   |  +-----------v-----------+
 | 
						|
  //                                |   |              |
 | 
						|
  //            .....               |   |              |
 | 
						|
  //                                |   |     +--------v-------------+
 | 
						|
  //    +--------------------+      |   |     |                      |
 | 
						|
  //    |                    |      |   |     |   ContinuationBlock  |
 | 
						|
  //    |       latch        >------+   |     |                      |
 | 
						|
  //    |                    |          |     +----------------------+
 | 
						|
  //    +---------v----------+          |
 | 
						|
  //              |                     |
 | 
						|
  //              |                     |
 | 
						|
  //              |     +---------------^-----+
 | 
						|
  //              |     |                     |
 | 
						|
  //              +----->    .exit.selector   |
 | 
						|
  //                    |                     |
 | 
						|
  //                    +----------v----------+
 | 
						|
  //                               |
 | 
						|
  //     +--------------------+    |
 | 
						|
  //     |                    |    |
 | 
						|
  //     |   original exit    <----+
 | 
						|
  //     |                    |
 | 
						|
  //     +--------------------+
 | 
						|
 | 
						|
  RewrittenRangeInfo RRI;
 | 
						|
 | 
						|
  BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
 | 
						|
  RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
 | 
						|
                                        &F, BBInsertLocation);
 | 
						|
  RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
 | 
						|
                                      BBInsertLocation);
 | 
						|
 | 
						|
  BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
 | 
						|
  bool Increasing = LS.IndVarIncreasing;
 | 
						|
  bool IsSignedPredicate = LS.IsSignedPredicate;
 | 
						|
 | 
						|
  IRBuilder<> B(PreheaderJump);
 | 
						|
 | 
						|
  // EnterLoopCond - is it okay to start executing this `LS'?
 | 
						|
  Value *EnterLoopCond = nullptr;
 | 
						|
  if (Increasing)
 | 
						|
    EnterLoopCond = IsSignedPredicate
 | 
						|
                        ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
 | 
						|
                        : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt);
 | 
						|
  else
 | 
						|
    EnterLoopCond = IsSignedPredicate
 | 
						|
                        ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt)
 | 
						|
                        : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt);
 | 
						|
 | 
						|
  B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
 | 
						|
  PreheaderJump->eraseFromParent();
 | 
						|
 | 
						|
  LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
 | 
						|
  B.SetInsertPoint(LS.LatchBr);
 | 
						|
  Value *TakeBackedgeLoopCond = nullptr;
 | 
						|
  if (Increasing)
 | 
						|
    TakeBackedgeLoopCond = IsSignedPredicate
 | 
						|
                        ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt)
 | 
						|
                        : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt);
 | 
						|
  else
 | 
						|
    TakeBackedgeLoopCond = IsSignedPredicate
 | 
						|
                        ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt)
 | 
						|
                        : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt);
 | 
						|
  Value *CondForBranch = LS.LatchBrExitIdx == 1
 | 
						|
                             ? TakeBackedgeLoopCond
 | 
						|
                             : B.CreateNot(TakeBackedgeLoopCond);
 | 
						|
 | 
						|
  LS.LatchBr->setCondition(CondForBranch);
 | 
						|
 | 
						|
  B.SetInsertPoint(RRI.ExitSelector);
 | 
						|
 | 
						|
  // IterationsLeft - are there any more iterations left, given the original
 | 
						|
  // upper bound on the induction variable?  If not, we branch to the "real"
 | 
						|
  // exit.
 | 
						|
  Value *IterationsLeft = nullptr;
 | 
						|
  if (Increasing)
 | 
						|
    IterationsLeft = IsSignedPredicate
 | 
						|
                         ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt)
 | 
						|
                         : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt);
 | 
						|
  else
 | 
						|
    IterationsLeft = IsSignedPredicate
 | 
						|
                         ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt)
 | 
						|
                         : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt);
 | 
						|
  B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
 | 
						|
 | 
						|
  BranchInst *BranchToContinuation =
 | 
						|
      BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
 | 
						|
 | 
						|
  // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
 | 
						|
  // each of the PHI nodes in the loop header.  This feeds into the initial
 | 
						|
  // value of the same PHI nodes if/when we continue execution.
 | 
						|
  for (Instruction &I : *LS.Header) {
 | 
						|
    auto *PN = dyn_cast<PHINode>(&I);
 | 
						|
    if (!PN)
 | 
						|
      break;
 | 
						|
 | 
						|
    PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
 | 
						|
                                      BranchToContinuation);
 | 
						|
 | 
						|
    NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
 | 
						|
    NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
 | 
						|
                        RRI.ExitSelector);
 | 
						|
    RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
 | 
						|
  }
 | 
						|
 | 
						|
  RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end",
 | 
						|
                                  BranchToContinuation);
 | 
						|
  RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
 | 
						|
  RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector);
 | 
						|
 | 
						|
  // The latch exit now has a branch from `RRI.ExitSelector' instead of
 | 
						|
  // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
 | 
						|
  for (Instruction &I : *LS.LatchExit) {
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(&I))
 | 
						|
      replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return RRI;
 | 
						|
}
 | 
						|
 | 
						|
void LoopConstrainer::rewriteIncomingValuesForPHIs(
 | 
						|
    LoopStructure &LS, BasicBlock *ContinuationBlock,
 | 
						|
    const LoopConstrainer::RewrittenRangeInfo &RRI) const {
 | 
						|
  unsigned PHIIndex = 0;
 | 
						|
  for (Instruction &I : *LS.Header) {
 | 
						|
    auto *PN = dyn_cast<PHINode>(&I);
 | 
						|
    if (!PN)
 | 
						|
      break;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
 | 
						|
      if (PN->getIncomingBlock(i) == ContinuationBlock)
 | 
						|
        PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
 | 
						|
  }
 | 
						|
 | 
						|
  LS.IndVarStart = RRI.IndVarEnd;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
 | 
						|
                                             BasicBlock *OldPreheader,
 | 
						|
                                             const char *Tag) const {
 | 
						|
  BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
 | 
						|
  BranchInst::Create(LS.Header, Preheader);
 | 
						|
 | 
						|
  for (Instruction &I : *LS.Header) {
 | 
						|
    auto *PN = dyn_cast<PHINode>(&I);
 | 
						|
    if (!PN)
 | 
						|
      break;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
 | 
						|
      replacePHIBlock(PN, OldPreheader, Preheader);
 | 
						|
  }
 | 
						|
 | 
						|
  return Preheader;
 | 
						|
}
 | 
						|
 | 
						|
void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
 | 
						|
  Loop *ParentLoop = OriginalLoop.getParentLoop();
 | 
						|
  if (!ParentLoop)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (BasicBlock *BB : BBs)
 | 
						|
    ParentLoop->addBasicBlockToLoop(BB, LI);
 | 
						|
}
 | 
						|
 | 
						|
Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
 | 
						|
                                                 ValueToValueMapTy &VM) {
 | 
						|
  Loop &New = *LI.AllocateLoop();
 | 
						|
  if (Parent)
 | 
						|
    Parent->addChildLoop(&New);
 | 
						|
  else
 | 
						|
    LI.addTopLevelLoop(&New);
 | 
						|
  LPM.addLoop(New);
 | 
						|
 | 
						|
  // Add all of the blocks in Original to the new loop.
 | 
						|
  for (auto *BB : Original->blocks())
 | 
						|
    if (LI.getLoopFor(BB) == Original)
 | 
						|
      New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
 | 
						|
 | 
						|
  // Add all of the subloops to the new loop.
 | 
						|
  for (Loop *SubLoop : *Original)
 | 
						|
    createClonedLoopStructure(SubLoop, &New, VM);
 | 
						|
 | 
						|
  return &New;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopConstrainer::run() {
 | 
						|
  BasicBlock *Preheader = nullptr;
 | 
						|
  LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
 | 
						|
  Preheader = OriginalLoop.getLoopPreheader();
 | 
						|
  assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
 | 
						|
         "preconditions!");
 | 
						|
 | 
						|
  OriginalPreheader = Preheader;
 | 
						|
  MainLoopPreheader = Preheader;
 | 
						|
 | 
						|
  bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
 | 
						|
  Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
 | 
						|
  if (!MaybeSR.hasValue()) {
 | 
						|
    DEBUG(dbgs() << "irce: could not compute subranges\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  SubRanges SR = MaybeSR.getValue();
 | 
						|
  bool Increasing = MainLoopStructure.IndVarIncreasing;
 | 
						|
  IntegerType *IVTy =
 | 
						|
      cast<IntegerType>(MainLoopStructure.IndVarBase->getType());
 | 
						|
 | 
						|
  SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
 | 
						|
  Instruction *InsertPt = OriginalPreheader->getTerminator();
 | 
						|
 | 
						|
  // It would have been better to make `PreLoop' and `PostLoop'
 | 
						|
  // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
 | 
						|
  // constructor.
 | 
						|
  ClonedLoop PreLoop, PostLoop;
 | 
						|
  bool NeedsPreLoop =
 | 
						|
      Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
 | 
						|
  bool NeedsPostLoop =
 | 
						|
      Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
 | 
						|
 | 
						|
  Value *ExitPreLoopAt = nullptr;
 | 
						|
  Value *ExitMainLoopAt = nullptr;
 | 
						|
  const SCEVConstant *MinusOneS =
 | 
						|
      cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
 | 
						|
 | 
						|
  if (NeedsPreLoop) {
 | 
						|
    const SCEV *ExitPreLoopAtSCEV = nullptr;
 | 
						|
 | 
						|
    if (Increasing)
 | 
						|
      ExitPreLoopAtSCEV = *SR.LowLimit;
 | 
						|
    else {
 | 
						|
      if (CanBeMin(SE, *SR.HighLimit, IsSignedPredicate)) {
 | 
						|
        DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
 | 
						|
                     << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
 | 
						|
                     << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
 | 
						|
      DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
 | 
						|
                   << " preloop exit limit " << *ExitPreLoopAtSCEV
 | 
						|
                   << " at block " << InsertPt->getParent()->getName() << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
 | 
						|
    ExitPreLoopAt->setName("exit.preloop.at");
 | 
						|
  }
 | 
						|
 | 
						|
  if (NeedsPostLoop) {
 | 
						|
    const SCEV *ExitMainLoopAtSCEV = nullptr;
 | 
						|
 | 
						|
    if (Increasing)
 | 
						|
      ExitMainLoopAtSCEV = *SR.HighLimit;
 | 
						|
    else {
 | 
						|
      if (CanBeMin(SE, *SR.LowLimit, IsSignedPredicate)) {
 | 
						|
        DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
 | 
						|
                     << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
 | 
						|
                     << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
 | 
						|
      DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
 | 
						|
                   << " main loop exit limit " << *ExitMainLoopAtSCEV
 | 
						|
                   << " at block " << InsertPt->getParent()->getName() << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
 | 
						|
    ExitMainLoopAt->setName("exit.mainloop.at");
 | 
						|
  }
 | 
						|
 | 
						|
  // We clone these ahead of time so that we don't have to deal with changing
 | 
						|
  // and temporarily invalid IR as we transform the loops.
 | 
						|
  if (NeedsPreLoop)
 | 
						|
    cloneLoop(PreLoop, "preloop");
 | 
						|
  if (NeedsPostLoop)
 | 
						|
    cloneLoop(PostLoop, "postloop");
 | 
						|
 | 
						|
  RewrittenRangeInfo PreLoopRRI;
 | 
						|
 | 
						|
  if (NeedsPreLoop) {
 | 
						|
    Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
 | 
						|
                                                  PreLoop.Structure.Header);
 | 
						|
 | 
						|
    MainLoopPreheader =
 | 
						|
        createPreheader(MainLoopStructure, Preheader, "mainloop");
 | 
						|
    PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
 | 
						|
                                         ExitPreLoopAt, MainLoopPreheader);
 | 
						|
    rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
 | 
						|
                                 PreLoopRRI);
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *PostLoopPreheader = nullptr;
 | 
						|
  RewrittenRangeInfo PostLoopRRI;
 | 
						|
 | 
						|
  if (NeedsPostLoop) {
 | 
						|
    PostLoopPreheader =
 | 
						|
        createPreheader(PostLoop.Structure, Preheader, "postloop");
 | 
						|
    PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
 | 
						|
                                          ExitMainLoopAt, PostLoopPreheader);
 | 
						|
    rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
 | 
						|
                                 PostLoopRRI);
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *NewMainLoopPreheader =
 | 
						|
      MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
 | 
						|
  BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
 | 
						|
                             PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
 | 
						|
                             PostLoopRRI.ExitSelector, NewMainLoopPreheader};
 | 
						|
 | 
						|
  // Some of the above may be nullptr, filter them out before passing to
 | 
						|
  // addToParentLoopIfNeeded.
 | 
						|
  auto NewBlocksEnd =
 | 
						|
      std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
 | 
						|
 | 
						|
  addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
 | 
						|
 | 
						|
  DT.recalculate(F);
 | 
						|
 | 
						|
  // We need to first add all the pre and post loop blocks into the loop
 | 
						|
  // structures (as part of createClonedLoopStructure), and then update the
 | 
						|
  // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
 | 
						|
  // LI when LoopSimplifyForm is generated.
 | 
						|
  Loop *PreL = nullptr, *PostL = nullptr;
 | 
						|
  if (!PreLoop.Blocks.empty()) {
 | 
						|
    PreL = createClonedLoopStructure(
 | 
						|
        &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PostLoop.Blocks.empty()) {
 | 
						|
    PostL = createClonedLoopStructure(
 | 
						|
        &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map);
 | 
						|
  }
 | 
						|
 | 
						|
  // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
 | 
						|
  auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
 | 
						|
    formLCSSARecursively(*L, DT, &LI, &SE);
 | 
						|
    simplifyLoop(L, &DT, &LI, &SE, nullptr, true);
 | 
						|
    // Pre/post loops are slow paths, we do not need to perform any loop
 | 
						|
    // optimizations on them.
 | 
						|
    if (!IsOriginalLoop)
 | 
						|
      DisableAllLoopOptsOnLoop(*L);
 | 
						|
  };
 | 
						|
  if (PreL)
 | 
						|
    CanonicalizeLoop(PreL, false);
 | 
						|
  if (PostL)
 | 
						|
    CanonicalizeLoop(PostL, false);
 | 
						|
  CanonicalizeLoop(&OriginalLoop, true);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Computes and returns a range of values for the induction variable (IndVar)
 | 
						|
/// in which the range check can be safely elided.  If it cannot compute such a
 | 
						|
/// range, returns None.
 | 
						|
Optional<InductiveRangeCheck::Range>
 | 
						|
InductiveRangeCheck::computeSafeIterationSpace(
 | 
						|
    ScalarEvolution &SE, const SCEVAddRecExpr *IndVar) const {
 | 
						|
  // IndVar is of the form "A + B * I" (where "I" is the canonical induction
 | 
						|
  // variable, that may or may not exist as a real llvm::Value in the loop) and
 | 
						|
  // this inductive range check is a range check on the "C + D * I" ("C" is
 | 
						|
  // getBegin() and "D" is getStep()).  We rewrite the value being range
 | 
						|
  // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
 | 
						|
  //
 | 
						|
  // The actual inequalities we solve are of the form
 | 
						|
  //
 | 
						|
  //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
 | 
						|
  //
 | 
						|
  // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
 | 
						|
  // and subtractions are twos-complement wrapping and comparisons are signed.
 | 
						|
  //
 | 
						|
  // Proof:
 | 
						|
  //
 | 
						|
  //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
 | 
						|
  //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
 | 
						|
  //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
 | 
						|
  //   overflown.
 | 
						|
  //
 | 
						|
  //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
 | 
						|
  //   Hence 0 <= (IndVar + M) < L
 | 
						|
 | 
						|
  // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
 | 
						|
  // 127, IndVar = 126 and L = -2 in an i8 world.
 | 
						|
 | 
						|
  if (!IndVar->isAffine())
 | 
						|
    return None;
 | 
						|
 | 
						|
  const SCEV *A = IndVar->getStart();
 | 
						|
  const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
 | 
						|
  if (!B)
 | 
						|
    return None;
 | 
						|
  assert(!B->isZero() && "Recurrence with zero step?");
 | 
						|
 | 
						|
  const SCEV *C = getBegin();
 | 
						|
  const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
 | 
						|
  if (D != B)
 | 
						|
    return None;
 | 
						|
 | 
						|
  assert(!D->getValue()->isZero() && "Recurrence with zero step?");
 | 
						|
 | 
						|
  const SCEV *M = SE.getMinusSCEV(C, A);
 | 
						|
  const SCEV *Begin = SE.getNegativeSCEV(M);
 | 
						|
  const SCEV *UpperLimit = nullptr;
 | 
						|
 | 
						|
  // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
 | 
						|
  // We can potentially do much better here.
 | 
						|
  if (const SCEV *L = getEnd())
 | 
						|
    UpperLimit = L;
 | 
						|
  else {
 | 
						|
    assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
 | 
						|
    unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
 | 
						|
    UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
 | 
						|
  return InductiveRangeCheck::Range(Begin, End);
 | 
						|
}
 | 
						|
 | 
						|
static Optional<InductiveRangeCheck::Range>
 | 
						|
IntersectSignedRange(ScalarEvolution &SE,
 | 
						|
                     const Optional<InductiveRangeCheck::Range> &R1,
 | 
						|
                     const InductiveRangeCheck::Range &R2) {
 | 
						|
  if (R2.isEmpty(SE, /* IsSigned */ true))
 | 
						|
    return None;
 | 
						|
  if (!R1.hasValue())
 | 
						|
    return R2;
 | 
						|
  auto &R1Value = R1.getValue();
 | 
						|
  // We never return empty ranges from this function, and R1 is supposed to be
 | 
						|
  // a result of intersection. Thus, R1 is never empty.
 | 
						|
  assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
 | 
						|
         "We should never have empty R1!");
 | 
						|
 | 
						|
  // TODO: we could widen the smaller range and have this work; but for now we
 | 
						|
  // bail out to keep things simple.
 | 
						|
  if (R1Value.getType() != R2.getType())
 | 
						|
    return None;
 | 
						|
 | 
						|
  const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
 | 
						|
  const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
 | 
						|
 | 
						|
  // If the resulting range is empty, just return None.
 | 
						|
  auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
 | 
						|
  if (Ret.isEmpty(SE, /* IsSigned */ true))
 | 
						|
    return None;
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
static Optional<InductiveRangeCheck::Range>
 | 
						|
IntersectUnsignedRange(ScalarEvolution &SE,
 | 
						|
                       const Optional<InductiveRangeCheck::Range> &R1,
 | 
						|
                       const InductiveRangeCheck::Range &R2) {
 | 
						|
  if (R2.isEmpty(SE, /* IsSigned */ false))
 | 
						|
    return None;
 | 
						|
  if (!R1.hasValue())
 | 
						|
    return R2;
 | 
						|
  auto &R1Value = R1.getValue();
 | 
						|
  // We never return empty ranges from this function, and R1 is supposed to be
 | 
						|
  // a result of intersection. Thus, R1 is never empty.
 | 
						|
  assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
 | 
						|
         "We should never have empty R1!");
 | 
						|
 | 
						|
  // TODO: we could widen the smaller range and have this work; but for now we
 | 
						|
  // bail out to keep things simple.
 | 
						|
  if (R1Value.getType() != R2.getType())
 | 
						|
    return None;
 | 
						|
 | 
						|
  const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
 | 
						|
  const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
 | 
						|
 | 
						|
  // If the resulting range is empty, just return None.
 | 
						|
  auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
 | 
						|
  if (Ret.isEmpty(SE, /* IsSigned */ false))
 | 
						|
    return None;
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  if (skipLoop(L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (L->getBlocks().size() >= LoopSizeCutoff) {
 | 
						|
    DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  if (!Preheader) {
 | 
						|
    DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVMContext &Context = Preheader->getContext();
 | 
						|
  SmallVector<InductiveRangeCheck, 16> RangeChecks;
 | 
						|
  ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
  BranchProbabilityInfo &BPI =
 | 
						|
      getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
 | 
						|
 | 
						|
  for (auto BBI : L->getBlocks())
 | 
						|
    if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
 | 
						|
      InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
 | 
						|
                                                        RangeChecks);
 | 
						|
 | 
						|
  if (RangeChecks.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
 | 
						|
    OS << "irce: looking at loop "; L->print(OS);
 | 
						|
    OS << "irce: loop has " << RangeChecks.size()
 | 
						|
       << " inductive range checks: \n";
 | 
						|
    for (InductiveRangeCheck &IRC : RangeChecks)
 | 
						|
      IRC.print(OS);
 | 
						|
  };
 | 
						|
 | 
						|
  DEBUG(PrintRecognizedRangeChecks(dbgs()));
 | 
						|
 | 
						|
  if (PrintRangeChecks)
 | 
						|
    PrintRecognizedRangeChecks(errs());
 | 
						|
 | 
						|
  const char *FailureReason = nullptr;
 | 
						|
  Optional<LoopStructure> MaybeLoopStructure =
 | 
						|
      LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
 | 
						|
  if (!MaybeLoopStructure.hasValue()) {
 | 
						|
    DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
 | 
						|
                 << "\n";);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  LoopStructure LS = MaybeLoopStructure.getValue();
 | 
						|
  const SCEVAddRecExpr *IndVar =
 | 
						|
      cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
 | 
						|
 | 
						|
  Optional<InductiveRangeCheck::Range> SafeIterRange;
 | 
						|
  Instruction *ExprInsertPt = Preheader->getTerminator();
 | 
						|
 | 
						|
  SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
 | 
						|
  auto RangeIsNonNegative = [&](InductiveRangeCheck::Range &R) {
 | 
						|
    return SE.isKnownNonNegative(R.getBegin()) &&
 | 
						|
           SE.isKnownNonNegative(R.getEnd());
 | 
						|
  };
 | 
						|
  // Basing on the type of latch predicate, we interpret the IV iteration range
 | 
						|
  // as signed or unsigned range. We use different min/max functions (signed or
 | 
						|
  // unsigned) when intersecting this range with safe iteration ranges implied
 | 
						|
  // by range checks.
 | 
						|
  auto IntersectRange =
 | 
						|
      LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
 | 
						|
 | 
						|
  IRBuilder<> B(ExprInsertPt);
 | 
						|
  for (InductiveRangeCheck &IRC : RangeChecks) {
 | 
						|
    auto Result = IRC.computeSafeIterationSpace(SE, IndVar);
 | 
						|
    if (Result.hasValue()) {
 | 
						|
      // Intersecting a signed and an unsigned ranges may produce incorrect
 | 
						|
      // results because we can use neither signed nor unsigned min/max for
 | 
						|
      // reliably correct intersection if a range contains negative values
 | 
						|
      // which are either actually negative or big positive. Intersection is
 | 
						|
      // safe in two following cases:
 | 
						|
      // 1. Both ranges are signed/unsigned, then we use signed/unsigned min/max
 | 
						|
      //    respectively for their intersection;
 | 
						|
      // 2. IRC safe iteration space only contains values from [0, SINT_MAX].
 | 
						|
      //    The interpretation of these values is unambiguous.
 | 
						|
      // We take the type of IV iteration range as a reference (we will
 | 
						|
      // intersect it with the resulting range of all IRC's later in
 | 
						|
      // calculateSubRanges). Only ranges of IRC of the same type are considered
 | 
						|
      // for removal unless we prove that its range doesn't contain ambiguous
 | 
						|
      // values.
 | 
						|
      if (IRC.isSigned() != LS.IsSignedPredicate &&
 | 
						|
          !RangeIsNonNegative(Result.getValue()))
 | 
						|
        continue;
 | 
						|
      auto MaybeSafeIterRange =
 | 
						|
          IntersectRange(SE, SafeIterRange, Result.getValue());
 | 
						|
      if (MaybeSafeIterRange.hasValue()) {
 | 
						|
        assert(
 | 
						|
            !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
 | 
						|
            "We should never return empty ranges!");
 | 
						|
        RangeChecksToEliminate.push_back(IRC);
 | 
						|
        SafeIterRange = MaybeSafeIterRange.getValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SafeIterRange.hasValue())
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LPM,
 | 
						|
                     LS, SE, DT, SafeIterRange.getValue());
 | 
						|
  bool Changed = LC.run();
 | 
						|
 | 
						|
  if (Changed) {
 | 
						|
    auto PrintConstrainedLoopInfo = [L]() {
 | 
						|
      dbgs() << "irce: in function ";
 | 
						|
      dbgs() << L->getHeader()->getParent()->getName() << ": ";
 | 
						|
      dbgs() << "constrained ";
 | 
						|
      L->print(dbgs());
 | 
						|
    };
 | 
						|
 | 
						|
    DEBUG(PrintConstrainedLoopInfo());
 | 
						|
 | 
						|
    if (PrintChangedLoops)
 | 
						|
      PrintConstrainedLoopInfo();
 | 
						|
 | 
						|
    // Optimize away the now-redundant range checks.
 | 
						|
 | 
						|
    for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
 | 
						|
      ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
 | 
						|
                                          ? ConstantInt::getTrue(Context)
 | 
						|
                                          : ConstantInt::getFalse(Context);
 | 
						|
      IRC.getCheckUse()->set(FoldedRangeCheck);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
Pass *llvm::createInductiveRangeCheckEliminationPass() {
 | 
						|
  return new InductiveRangeCheckElimination;
 | 
						|
}
 |