forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			666 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			666 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the CriticalAntiDepBreaker class, which
 | 
						|
// implements register anti-dependence breaking along a blocks
 | 
						|
// critical path during post-RA scheduler.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "post-RA-sched"
 | 
						|
#include "CriticalAntiDepBreaker.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
CriticalAntiDepBreaker::
 | 
						|
CriticalAntiDepBreaker(MachineFunction& MFi) :
 | 
						|
  AntiDepBreaker(), MF(MFi),
 | 
						|
  MRI(MF.getRegInfo()),
 | 
						|
  TII(MF.getTarget().getInstrInfo()),
 | 
						|
  TRI(MF.getTarget().getRegisterInfo()),
 | 
						|
  AllocatableSet(TRI->getAllocatableSet(MF)),
 | 
						|
  Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
 | 
						|
  KillIndices(TRI->getNumRegs(), 0),
 | 
						|
  DefIndices(TRI->getNumRegs(), 0) {}
 | 
						|
 | 
						|
CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
 | 
						|
}
 | 
						|
 | 
						|
void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
 | 
						|
  const unsigned BBSize = BB->size();
 | 
						|
  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
 | 
						|
    // Clear out the register class data.
 | 
						|
    Classes[i] = static_cast<const TargetRegisterClass *>(0);
 | 
						|
 | 
						|
    // Initialize the indices to indicate that no registers are live.
 | 
						|
    KillIndices[i] = ~0u;
 | 
						|
    DefIndices[i] = BBSize;
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear "do not change" set.
 | 
						|
  KeepRegs.clear();
 | 
						|
 | 
						|
  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
 | 
						|
 | 
						|
  // Determine the live-out physregs for this block.
 | 
						|
  if (IsReturnBlock) {
 | 
						|
    // In a return block, examine the function live-out regs.
 | 
						|
    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
 | 
						|
         E = MRI.liveout_end(); I != E; ++I) {
 | 
						|
      unsigned Reg = *I;
 | 
						|
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
      KillIndices[Reg] = BB->size();
 | 
						|
      DefIndices[Reg] = ~0u;
 | 
						|
 | 
						|
      // Repeat, for all aliases.
 | 
						|
      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | 
						|
        unsigned AliasReg = *Alias;
 | 
						|
        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
        KillIndices[AliasReg] = BB->size();
 | 
						|
        DefIndices[AliasReg] = ~0u;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In a non-return block, examine the live-in regs of all successors.
 | 
						|
  // Note a return block can have successors if the return instruction is
 | 
						|
  // predicated.
 | 
						|
  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | 
						|
         SE = BB->succ_end(); SI != SE; ++SI)
 | 
						|
    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | 
						|
           E = (*SI)->livein_end(); I != E; ++I) {
 | 
						|
      unsigned Reg = *I;
 | 
						|
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
      KillIndices[Reg] = BB->size();
 | 
						|
      DefIndices[Reg] = ~0u;
 | 
						|
 | 
						|
      // Repeat, for all aliases.
 | 
						|
      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | 
						|
        unsigned AliasReg = *Alias;
 | 
						|
        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
        KillIndices[AliasReg] = BB->size();
 | 
						|
        DefIndices[AliasReg] = ~0u;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Mark live-out callee-saved registers. In a return block this is
 | 
						|
  // all callee-saved registers. In non-return this is any
 | 
						|
  // callee-saved register that is not saved in the prolog.
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  BitVector Pristine = MFI->getPristineRegs(BB);
 | 
						|
  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
 | 
						|
    unsigned Reg = *I;
 | 
						|
    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
 | 
						|
    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
    KillIndices[Reg] = BB->size();
 | 
						|
    DefIndices[Reg] = ~0u;
 | 
						|
 | 
						|
    // Repeat, for all aliases.
 | 
						|
    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | 
						|
      unsigned AliasReg = *Alias;
 | 
						|
      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
      KillIndices[AliasReg] = BB->size();
 | 
						|
      DefIndices[AliasReg] = ~0u;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CriticalAntiDepBreaker::FinishBlock() {
 | 
						|
  RegRefs.clear();
 | 
						|
  KeepRegs.clear();
 | 
						|
}
 | 
						|
 | 
						|
void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
 | 
						|
                                     unsigned InsertPosIndex) {
 | 
						|
  if (MI->isDebugValue())
 | 
						|
    return;
 | 
						|
  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
 | 
						|
 | 
						|
  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
 | 
						|
    if (KillIndices[Reg] != ~0u) {
 | 
						|
      // If Reg is currently live, then mark that it can't be renamed as
 | 
						|
      // we don't know the extent of its live-range anymore (now that it
 | 
						|
      // has been scheduled).
 | 
						|
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
      KillIndices[Reg] = Count;
 | 
						|
    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
 | 
						|
      // Any register which was defined within the previous scheduling region
 | 
						|
      // may have been rescheduled and its lifetime may overlap with registers
 | 
						|
      // in ways not reflected in our current liveness state. For each such
 | 
						|
      // register, adjust the liveness state to be conservatively correct.
 | 
						|
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
 | 
						|
      // Move the def index to the end of the previous region, to reflect
 | 
						|
      // that the def could theoretically have been scheduled at the end.
 | 
						|
      DefIndices[Reg] = InsertPosIndex;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  PrescanInstruction(MI);
 | 
						|
  ScanInstruction(MI, Count);
 | 
						|
}
 | 
						|
 | 
						|
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
 | 
						|
/// critical path.
 | 
						|
static const SDep *CriticalPathStep(const SUnit *SU) {
 | 
						|
  const SDep *Next = 0;
 | 
						|
  unsigned NextDepth = 0;
 | 
						|
  // Find the predecessor edge with the greatest depth.
 | 
						|
  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
 | 
						|
       P != PE; ++P) {
 | 
						|
    const SUnit *PredSU = P->getSUnit();
 | 
						|
    unsigned PredLatency = P->getLatency();
 | 
						|
    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
 | 
						|
    // In the case of a latency tie, prefer an anti-dependency edge over
 | 
						|
    // other types of edges.
 | 
						|
    if (NextDepth < PredTotalLatency ||
 | 
						|
        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
 | 
						|
      NextDepth = PredTotalLatency;
 | 
						|
      Next = &*P;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Next;
 | 
						|
}
 | 
						|
 | 
						|
void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
 | 
						|
  // It's not safe to change register allocation for source operands of
 | 
						|
  // that have special allocation requirements. Also assume all registers
 | 
						|
  // used in a call must not be changed (ABI).
 | 
						|
  // FIXME: The issue with predicated instruction is more complex. We are being
 | 
						|
  // conservative here because the kill markers cannot be trusted after
 | 
						|
  // if-conversion:
 | 
						|
  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
 | 
						|
  // ...
 | 
						|
  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
 | 
						|
  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
 | 
						|
  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
 | 
						|
  //
 | 
						|
  // The first R6 kill is not really a kill since it's killed by a predicated
 | 
						|
  // instruction which may not be executed. The second R6 def may or may not
 | 
						|
  // re-define R6 so it's not safe to change it since the last R6 use cannot be
 | 
						|
  // changed.
 | 
						|
  bool Special = MI->getDesc().isCall() ||
 | 
						|
    MI->getDesc().hasExtraSrcRegAllocReq() ||
 | 
						|
    TII->isPredicated(MI);
 | 
						|
 | 
						|
  // Scan the register operands for this instruction and update
 | 
						|
  // Classes and RegRefs.
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg()) continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Reg == 0) continue;
 | 
						|
    const TargetRegisterClass *NewRC = 0;
 | 
						|
 | 
						|
    if (i < MI->getDesc().getNumOperands())
 | 
						|
      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
 | 
						|
 | 
						|
    // For now, only allow the register to be changed if its register
 | 
						|
    // class is consistent across all uses.
 | 
						|
    if (!Classes[Reg] && NewRC)
 | 
						|
      Classes[Reg] = NewRC;
 | 
						|
    else if (!NewRC || Classes[Reg] != NewRC)
 | 
						|
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
 | 
						|
    // Now check for aliases.
 | 
						|
    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | 
						|
      // If an alias of the reg is used during the live range, give up.
 | 
						|
      // Note that this allows us to skip checking if AntiDepReg
 | 
						|
      // overlaps with any of the aliases, among other things.
 | 
						|
      unsigned AliasReg = *Alias;
 | 
						|
      if (Classes[AliasReg]) {
 | 
						|
        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we're still willing to consider this register, note the reference.
 | 
						|
    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
 | 
						|
      RegRefs.insert(std::make_pair(Reg, &MO));
 | 
						|
 | 
						|
    if (MO.isUse() && Special) {
 | 
						|
      if (KeepRegs.insert(Reg)) {
 | 
						|
        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | 
						|
             *Subreg; ++Subreg)
 | 
						|
          KeepRegs.insert(*Subreg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
 | 
						|
                                             unsigned Count) {
 | 
						|
  // Update liveness.
 | 
						|
  // Proceding upwards, registers that are defed but not used in this
 | 
						|
  // instruction are now dead.
 | 
						|
 | 
						|
  if (!TII->isPredicated(MI)) {
 | 
						|
    // Predicated defs are modeled as read + write, i.e. similar to two
 | 
						|
    // address updates.
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i);
 | 
						|
      if (!MO.isReg()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
      if (!MO.isDef()) continue;
 | 
						|
      // Ignore two-addr defs.
 | 
						|
      if (MI->isRegTiedToUseOperand(i)) continue;
 | 
						|
 | 
						|
      DefIndices[Reg] = Count;
 | 
						|
      KillIndices[Reg] = ~0u;
 | 
						|
      assert(((KillIndices[Reg] == ~0u) !=
 | 
						|
              (DefIndices[Reg] == ~0u)) &&
 | 
						|
             "Kill and Def maps aren't consistent for Reg!");
 | 
						|
      KeepRegs.erase(Reg);
 | 
						|
      Classes[Reg] = 0;
 | 
						|
      RegRefs.erase(Reg);
 | 
						|
      // Repeat, for all subregs.
 | 
						|
      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | 
						|
           *Subreg; ++Subreg) {
 | 
						|
        unsigned SubregReg = *Subreg;
 | 
						|
        DefIndices[SubregReg] = Count;
 | 
						|
        KillIndices[SubregReg] = ~0u;
 | 
						|
        KeepRegs.erase(SubregReg);
 | 
						|
        Classes[SubregReg] = 0;
 | 
						|
        RegRefs.erase(SubregReg);
 | 
						|
      }
 | 
						|
      // Conservatively mark super-registers as unusable.
 | 
						|
      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
 | 
						|
           *Super; ++Super) {
 | 
						|
        unsigned SuperReg = *Super;
 | 
						|
        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg()) continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Reg == 0) continue;
 | 
						|
    if (!MO.isUse()) continue;
 | 
						|
 | 
						|
    const TargetRegisterClass *NewRC = 0;
 | 
						|
    if (i < MI->getDesc().getNumOperands())
 | 
						|
      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
 | 
						|
 | 
						|
    // For now, only allow the register to be changed if its register
 | 
						|
    // class is consistent across all uses.
 | 
						|
    if (!Classes[Reg] && NewRC)
 | 
						|
      Classes[Reg] = NewRC;
 | 
						|
    else if (!NewRC || Classes[Reg] != NewRC)
 | 
						|
      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | 
						|
 | 
						|
    RegRefs.insert(std::make_pair(Reg, &MO));
 | 
						|
 | 
						|
    // It wasn't previously live but now it is, this is a kill.
 | 
						|
    if (KillIndices[Reg] == ~0u) {
 | 
						|
      KillIndices[Reg] = Count;
 | 
						|
      DefIndices[Reg] = ~0u;
 | 
						|
          assert(((KillIndices[Reg] == ~0u) !=
 | 
						|
                  (DefIndices[Reg] == ~0u)) &&
 | 
						|
               "Kill and Def maps aren't consistent for Reg!");
 | 
						|
    }
 | 
						|
    // Repeat, for all aliases.
 | 
						|
    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | 
						|
      unsigned AliasReg = *Alias;
 | 
						|
      if (KillIndices[AliasReg] == ~0u) {
 | 
						|
        KillIndices[AliasReg] = Count;
 | 
						|
        DefIndices[AliasReg] = ~0u;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Check all machine operands that reference the antidependent register and must
 | 
						|
// be replaced by NewReg. Return true if any of their parent instructions may
 | 
						|
// clobber the new register.
 | 
						|
//
 | 
						|
// Note: AntiDepReg may be referenced by a two-address instruction such that
 | 
						|
// it's use operand is tied to a def operand. We guard against the case in which
 | 
						|
// the two-address instruction also defines NewReg, as may happen with
 | 
						|
// pre/postincrement loads. In this case, both the use and def operands are in
 | 
						|
// RegRefs because the def is inserted by PrescanInstruction and not erased
 | 
						|
// during ScanInstruction. So checking for an instructions with definitions of
 | 
						|
// both NewReg and AntiDepReg covers it.
 | 
						|
bool
 | 
						|
CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
 | 
						|
                                                RegRefIter RegRefEnd,
 | 
						|
                                                unsigned NewReg)
 | 
						|
{
 | 
						|
  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
 | 
						|
    MachineOperand *RefOper = I->second;
 | 
						|
 | 
						|
    // Don't allow the instruction defining AntiDepReg to earlyclobber its
 | 
						|
    // operands, in case they may be assigned to NewReg. In this case antidep
 | 
						|
    // breaking must fail, but it's too rare to bother optimizing.
 | 
						|
    if (RefOper->isDef() && RefOper->isEarlyClobber())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Handle cases in which this instructions defines NewReg.
 | 
						|
    MachineInstr *MI = RefOper->getParent();
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &CheckOper = MI->getOperand(i);
 | 
						|
 | 
						|
      if (!CheckOper.isReg() || !CheckOper.isDef() ||
 | 
						|
          CheckOper.getReg() != NewReg)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Don't allow the instruction to define NewReg and AntiDepReg.
 | 
						|
      // When AntiDepReg is renamed it will be an illegal op.
 | 
						|
      if (RefOper->isDef())
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
 | 
						|
      // NewReg
 | 
						|
      if (CheckOper.isEarlyClobber())
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Don't allow inline asm to define NewReg at all. Who know what it's
 | 
						|
      // doing with it.
 | 
						|
      if (MI->isInlineAsm())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
 | 
						|
                                                 RegRefIter RegRefEnd,
 | 
						|
                                                 unsigned AntiDepReg,
 | 
						|
                                                 unsigned LastNewReg,
 | 
						|
                                                 const TargetRegisterClass *RC)
 | 
						|
{
 | 
						|
  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
 | 
						|
       RE = RC->allocation_order_end(MF); R != RE; ++R) {
 | 
						|
    unsigned NewReg = *R;
 | 
						|
    // Don't consider non-allocatable registers
 | 
						|
    if (!AllocatableSet.test(NewReg)) continue;
 | 
						|
    // Don't replace a register with itself.
 | 
						|
    if (NewReg == AntiDepReg) continue;
 | 
						|
    // Don't replace a register with one that was recently used to repair
 | 
						|
    // an anti-dependence with this AntiDepReg, because that would
 | 
						|
    // re-introduce that anti-dependence.
 | 
						|
    if (NewReg == LastNewReg) continue;
 | 
						|
    // If any instructions that define AntiDepReg also define the NewReg, it's
 | 
						|
    // not suitable.  For example, Instruction with multiple definitions can
 | 
						|
    // result in this condition.
 | 
						|
    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
 | 
						|
    // If NewReg is dead and NewReg's most recent def is not before
 | 
						|
    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
 | 
						|
    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
 | 
						|
           && "Kill and Def maps aren't consistent for AntiDepReg!");
 | 
						|
    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
 | 
						|
           && "Kill and Def maps aren't consistent for NewReg!");
 | 
						|
    if (KillIndices[NewReg] != ~0u ||
 | 
						|
        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
 | 
						|
        KillIndices[AntiDepReg] > DefIndices[NewReg])
 | 
						|
      continue;
 | 
						|
    return NewReg;
 | 
						|
  }
 | 
						|
 | 
						|
  // No registers are free and available!
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned CriticalAntiDepBreaker::
 | 
						|
BreakAntiDependencies(const std::vector<SUnit>& SUnits,
 | 
						|
                      MachineBasicBlock::iterator Begin,
 | 
						|
                      MachineBasicBlock::iterator End,
 | 
						|
                      unsigned InsertPosIndex,
 | 
						|
                      DbgValueVector &DbgValues) {
 | 
						|
  // The code below assumes that there is at least one instruction,
 | 
						|
  // so just duck out immediately if the block is empty.
 | 
						|
  if (SUnits.empty()) return 0;
 | 
						|
 | 
						|
  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
 | 
						|
  // This is used for updating debug information.
 | 
						|
  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
 | 
						|
 | 
						|
  // Find the node at the bottom of the critical path.
 | 
						|
  const SUnit *Max = 0;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    const SUnit *SU = &SUnits[i];
 | 
						|
    MISUnitMap[SU->getInstr()] = SU;
 | 
						|
    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
 | 
						|
      Max = SU;
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  {
 | 
						|
    DEBUG(dbgs() << "Critical path has total latency "
 | 
						|
          << (Max->getDepth() + Max->Latency) << "\n");
 | 
						|
    DEBUG(dbgs() << "Available regs:");
 | 
						|
    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
 | 
						|
      if (KillIndices[Reg] == ~0u)
 | 
						|
        DEBUG(dbgs() << " " << TRI->getName(Reg));
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << '\n');
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Track progress along the critical path through the SUnit graph as we walk
 | 
						|
  // the instructions.
 | 
						|
  const SUnit *CriticalPathSU = Max;
 | 
						|
  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
 | 
						|
 | 
						|
  // Consider this pattern:
 | 
						|
  //   A = ...
 | 
						|
  //   ... = A
 | 
						|
  //   A = ...
 | 
						|
  //   ... = A
 | 
						|
  //   A = ...
 | 
						|
  //   ... = A
 | 
						|
  //   A = ...
 | 
						|
  //   ... = A
 | 
						|
  // There are three anti-dependencies here, and without special care,
 | 
						|
  // we'd break all of them using the same register:
 | 
						|
  //   A = ...
 | 
						|
  //   ... = A
 | 
						|
  //   B = ...
 | 
						|
  //   ... = B
 | 
						|
  //   B = ...
 | 
						|
  //   ... = B
 | 
						|
  //   B = ...
 | 
						|
  //   ... = B
 | 
						|
  // because at each anti-dependence, B is the first register that
 | 
						|
  // isn't A which is free.  This re-introduces anti-dependencies
 | 
						|
  // at all but one of the original anti-dependencies that we were
 | 
						|
  // trying to break.  To avoid this, keep track of the most recent
 | 
						|
  // register that each register was replaced with, avoid
 | 
						|
  // using it to repair an anti-dependence on the same register.
 | 
						|
  // This lets us produce this:
 | 
						|
  //   A = ...
 | 
						|
  //   ... = A
 | 
						|
  //   B = ...
 | 
						|
  //   ... = B
 | 
						|
  //   C = ...
 | 
						|
  //   ... = C
 | 
						|
  //   B = ...
 | 
						|
  //   ... = B
 | 
						|
  // This still has an anti-dependence on B, but at least it isn't on the
 | 
						|
  // original critical path.
 | 
						|
  //
 | 
						|
  // TODO: If we tracked more than one register here, we could potentially
 | 
						|
  // fix that remaining critical edge too. This is a little more involved,
 | 
						|
  // because unlike the most recent register, less recent registers should
 | 
						|
  // still be considered, though only if no other registers are available.
 | 
						|
  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
 | 
						|
 | 
						|
  // Attempt to break anti-dependence edges on the critical path. Walk the
 | 
						|
  // instructions from the bottom up, tracking information about liveness
 | 
						|
  // as we go to help determine which registers are available.
 | 
						|
  unsigned Broken = 0;
 | 
						|
  unsigned Count = InsertPosIndex - 1;
 | 
						|
  for (MachineBasicBlock::iterator I = End, E = Begin;
 | 
						|
       I != E; --Count) {
 | 
						|
    MachineInstr *MI = --I;
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if this instruction has a dependence on the critical path that
 | 
						|
    // is an anti-dependence that we may be able to break. If it is, set
 | 
						|
    // AntiDepReg to the non-zero register associated with the anti-dependence.
 | 
						|
    //
 | 
						|
    // We limit our attention to the critical path as a heuristic to avoid
 | 
						|
    // breaking anti-dependence edges that aren't going to significantly
 | 
						|
    // impact the overall schedule. There are a limited number of registers
 | 
						|
    // and we want to save them for the important edges.
 | 
						|
    //
 | 
						|
    // TODO: Instructions with multiple defs could have multiple
 | 
						|
    // anti-dependencies. The current code here only knows how to break one
 | 
						|
    // edge per instruction. Note that we'd have to be able to break all of
 | 
						|
    // the anti-dependencies in an instruction in order to be effective.
 | 
						|
    unsigned AntiDepReg = 0;
 | 
						|
    if (MI == CriticalPathMI) {
 | 
						|
      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
 | 
						|
        const SUnit *NextSU = Edge->getSUnit();
 | 
						|
 | 
						|
        // Only consider anti-dependence edges.
 | 
						|
        if (Edge->getKind() == SDep::Anti) {
 | 
						|
          AntiDepReg = Edge->getReg();
 | 
						|
          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
 | 
						|
          if (!AllocatableSet.test(AntiDepReg))
 | 
						|
            // Don't break anti-dependencies on non-allocatable registers.
 | 
						|
            AntiDepReg = 0;
 | 
						|
          else if (KeepRegs.count(AntiDepReg))
 | 
						|
            // Don't break anti-dependencies if an use down below requires
 | 
						|
            // this exact register.
 | 
						|
            AntiDepReg = 0;
 | 
						|
          else {
 | 
						|
            // If the SUnit has other dependencies on the SUnit that it
 | 
						|
            // anti-depends on, don't bother breaking the anti-dependency
 | 
						|
            // since those edges would prevent such units from being
 | 
						|
            // scheduled past each other regardless.
 | 
						|
            //
 | 
						|
            // Also, if there are dependencies on other SUnits with the
 | 
						|
            // same register as the anti-dependency, don't attempt to
 | 
						|
            // break it.
 | 
						|
            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
 | 
						|
                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
 | 
						|
              if (P->getSUnit() == NextSU ?
 | 
						|
                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
 | 
						|
                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
 | 
						|
                AntiDepReg = 0;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        CriticalPathSU = NextSU;
 | 
						|
        CriticalPathMI = CriticalPathSU->getInstr();
 | 
						|
      } else {
 | 
						|
        // We've reached the end of the critical path.
 | 
						|
        CriticalPathSU = 0;
 | 
						|
        CriticalPathMI = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    PrescanInstruction(MI);
 | 
						|
 | 
						|
    // If MI's defs have a special allocation requirement, don't allow
 | 
						|
    // any def registers to be changed. Also assume all registers
 | 
						|
    // defined in a call must not be changed (ABI).
 | 
						|
    if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() ||
 | 
						|
        TII->isPredicated(MI))
 | 
						|
      // If this instruction's defs have special allocation requirement, don't
 | 
						|
      // break this anti-dependency.
 | 
						|
      AntiDepReg = 0;
 | 
						|
    else if (AntiDepReg) {
 | 
						|
      // If this instruction has a use of AntiDepReg, breaking it
 | 
						|
      // is invalid.
 | 
						|
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
        MachineOperand &MO = MI->getOperand(i);
 | 
						|
        if (!MO.isReg()) continue;
 | 
						|
        unsigned Reg = MO.getReg();
 | 
						|
        if (Reg == 0) continue;
 | 
						|
        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
 | 
						|
          AntiDepReg = 0;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Determine AntiDepReg's register class, if it is live and is
 | 
						|
    // consistently used within a single class.
 | 
						|
    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
 | 
						|
    assert((AntiDepReg == 0 || RC != NULL) &&
 | 
						|
           "Register should be live if it's causing an anti-dependence!");
 | 
						|
    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
 | 
						|
      AntiDepReg = 0;
 | 
						|
 | 
						|
    // Look for a suitable register to use to break the anti-depenence.
 | 
						|
    //
 | 
						|
    // TODO: Instead of picking the first free register, consider which might
 | 
						|
    // be the best.
 | 
						|
    if (AntiDepReg != 0) {
 | 
						|
      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
 | 
						|
                std::multimap<unsigned, MachineOperand *>::iterator>
 | 
						|
        Range = RegRefs.equal_range(AntiDepReg);
 | 
						|
      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
 | 
						|
                                                     AntiDepReg,
 | 
						|
                                                     LastNewReg[AntiDepReg],
 | 
						|
                                                     RC)) {
 | 
						|
        DEBUG(dbgs() << "Breaking anti-dependence edge on "
 | 
						|
              << TRI->getName(AntiDepReg)
 | 
						|
              << " with " << RegRefs.count(AntiDepReg) << " references"
 | 
						|
              << " using " << TRI->getName(NewReg) << "!\n");
 | 
						|
 | 
						|
        // Update the references to the old register to refer to the new
 | 
						|
        // register.
 | 
						|
        for (std::multimap<unsigned, MachineOperand *>::iterator
 | 
						|
             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
 | 
						|
          Q->second->setReg(NewReg);
 | 
						|
          // If the SU for the instruction being updated has debug information
 | 
						|
          // related to the anti-dependency register, make sure to update that
 | 
						|
          // as well.
 | 
						|
          const SUnit *SU = MISUnitMap[Q->second->getParent()];
 | 
						|
          if (!SU) continue;
 | 
						|
          for (DbgValueVector::iterator DVI = DbgValues.begin(),
 | 
						|
                 DVE = DbgValues.end(); DVI != DVE; ++DVI)
 | 
						|
            if (DVI->second == Q->second->getParent())
 | 
						|
              UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
 | 
						|
        }
 | 
						|
 | 
						|
        // We just went back in time and modified history; the
 | 
						|
        // liveness information for the anti-dependence reg is now
 | 
						|
        // inconsistent. Set the state as if it were dead.
 | 
						|
        Classes[NewReg] = Classes[AntiDepReg];
 | 
						|
        DefIndices[NewReg] = DefIndices[AntiDepReg];
 | 
						|
        KillIndices[NewReg] = KillIndices[AntiDepReg];
 | 
						|
        assert(((KillIndices[NewReg] == ~0u) !=
 | 
						|
                (DefIndices[NewReg] == ~0u)) &&
 | 
						|
             "Kill and Def maps aren't consistent for NewReg!");
 | 
						|
 | 
						|
        Classes[AntiDepReg] = 0;
 | 
						|
        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
 | 
						|
        KillIndices[AntiDepReg] = ~0u;
 | 
						|
        assert(((KillIndices[AntiDepReg] == ~0u) !=
 | 
						|
                (DefIndices[AntiDepReg] == ~0u)) &&
 | 
						|
             "Kill and Def maps aren't consistent for AntiDepReg!");
 | 
						|
 | 
						|
        RegRefs.erase(AntiDepReg);
 | 
						|
        LastNewReg[AntiDepReg] = NewReg;
 | 
						|
        ++Broken;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ScanInstruction(MI, Count);
 | 
						|
  }
 | 
						|
 | 
						|
  return Broken;
 | 
						|
}
 |