forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3310 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3310 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// MachineScheduler schedules machine instructions after phi elimination. It
 | 
						|
// preserves LiveIntervals so it can be invoked before register allocation.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/MachineScheduler.h"
 | 
						|
#include "llvm/ADT/PriorityQueue.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDFS.h"
 | 
						|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GraphWriter.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include <queue>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "misched"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
 | 
						|
                           cl::desc("Force top-down list scheduling"));
 | 
						|
cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
 | 
						|
                            cl::desc("Force bottom-up list scheduling"));
 | 
						|
cl::opt<bool>
 | 
						|
DumpCriticalPathLength("misched-dcpl", cl::Hidden,
 | 
						|
                       cl::desc("Print critical path length to stdout"));
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
 | 
						|
  cl::desc("Pop up a window to show MISched dags after they are processed"));
 | 
						|
 | 
						|
static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
 | 
						|
  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
 | 
						|
 | 
						|
static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
 | 
						|
  cl::desc("Only schedule this function"));
 | 
						|
static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
 | 
						|
  cl::desc("Only schedule this MBB#"));
 | 
						|
#else
 | 
						|
static bool ViewMISchedDAGs = false;
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
 | 
						|
  cl::desc("Enable register pressure scheduling."), cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
 | 
						|
  cl::desc("Enable cyclic critical path analysis."), cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
 | 
						|
  cl::desc("Enable load clustering."), cl::init(true));
 | 
						|
 | 
						|
// Experimental heuristics
 | 
						|
static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
 | 
						|
  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
 | 
						|
  cl::desc("Verify machine instrs before and after machine scheduling"));
 | 
						|
 | 
						|
// DAG subtrees must have at least this many nodes.
 | 
						|
static const unsigned MinSubtreeSize = 8;
 | 
						|
 | 
						|
// Pin the vtables to this file.
 | 
						|
void MachineSchedStrategy::anchor() {}
 | 
						|
void ScheduleDAGMutation::anchor() {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Machine Instruction Scheduling Pass and Registry
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
MachineSchedContext::MachineSchedContext():
 | 
						|
    MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
 | 
						|
  RegClassInfo = new RegisterClassInfo();
 | 
						|
}
 | 
						|
 | 
						|
MachineSchedContext::~MachineSchedContext() {
 | 
						|
  delete RegClassInfo;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Base class for a machine scheduler class that can run at any point.
 | 
						|
class MachineSchedulerBase : public MachineSchedContext,
 | 
						|
                             public MachineFunctionPass {
 | 
						|
public:
 | 
						|
  MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
 | 
						|
 | 
						|
  void print(raw_ostream &O, const Module* = nullptr) const override;
 | 
						|
 | 
						|
protected:
 | 
						|
  void scheduleRegions(ScheduleDAGInstrs &Scheduler);
 | 
						|
};
 | 
						|
 | 
						|
/// MachineScheduler runs after coalescing and before register allocation.
 | 
						|
class MachineScheduler : public MachineSchedulerBase {
 | 
						|
public:
 | 
						|
  MachineScheduler();
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction&) override;
 | 
						|
 | 
						|
  static char ID; // Class identification, replacement for typeinfo
 | 
						|
 | 
						|
protected:
 | 
						|
  ScheduleDAGInstrs *createMachineScheduler();
 | 
						|
};
 | 
						|
 | 
						|
/// PostMachineScheduler runs after shortly before code emission.
 | 
						|
class PostMachineScheduler : public MachineSchedulerBase {
 | 
						|
public:
 | 
						|
  PostMachineScheduler();
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction&) override;
 | 
						|
 | 
						|
  static char ID; // Class identification, replacement for typeinfo
 | 
						|
 | 
						|
protected:
 | 
						|
  ScheduleDAGInstrs *createPostMachineScheduler();
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
char MachineScheduler::ID = 0;
 | 
						|
 | 
						|
char &llvm::MachineSchedulerID = MachineScheduler::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
 | 
						|
                      "Machine Instruction Scheduler", false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | 
						|
INITIALIZE_PASS_END(MachineScheduler, "misched",
 | 
						|
                    "Machine Instruction Scheduler", false, false)
 | 
						|
 | 
						|
MachineScheduler::MachineScheduler()
 | 
						|
: MachineSchedulerBase(ID) {
 | 
						|
  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequiredID(MachineDominatorsID);
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addRequired<TargetPassConfig>();
 | 
						|
  AU.addRequired<SlotIndexes>();
 | 
						|
  AU.addPreserved<SlotIndexes>();
 | 
						|
  AU.addRequired<LiveIntervals>();
 | 
						|
  AU.addPreserved<LiveIntervals>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
char PostMachineScheduler::ID = 0;
 | 
						|
 | 
						|
char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS(PostMachineScheduler, "postmisched",
 | 
						|
                "PostRA Machine Instruction Scheduler", false, false)
 | 
						|
 | 
						|
PostMachineScheduler::PostMachineScheduler()
 | 
						|
: MachineSchedulerBase(ID) {
 | 
						|
  initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequiredID(MachineDominatorsID);
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  AU.addRequired<TargetPassConfig>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
MachinePassRegistry MachineSchedRegistry::Registry;
 | 
						|
 | 
						|
/// A dummy default scheduler factory indicates whether the scheduler
 | 
						|
/// is overridden on the command line.
 | 
						|
static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// MachineSchedOpt allows command line selection of the scheduler.
 | 
						|
static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
 | 
						|
               RegisterPassParser<MachineSchedRegistry> >
 | 
						|
MachineSchedOpt("misched",
 | 
						|
                cl::init(&useDefaultMachineSched), cl::Hidden,
 | 
						|
                cl::desc("Machine instruction scheduler to use"));
 | 
						|
 | 
						|
static MachineSchedRegistry
 | 
						|
DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
 | 
						|
                     useDefaultMachineSched);
 | 
						|
 | 
						|
/// Forward declare the standard machine scheduler. This will be used as the
 | 
						|
/// default scheduler if the target does not set a default.
 | 
						|
static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
 | 
						|
static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
 | 
						|
 | 
						|
/// Decrement this iterator until reaching the top or a non-debug instr.
 | 
						|
static MachineBasicBlock::const_iterator
 | 
						|
priorNonDebug(MachineBasicBlock::const_iterator I,
 | 
						|
              MachineBasicBlock::const_iterator Beg) {
 | 
						|
  assert(I != Beg && "reached the top of the region, cannot decrement");
 | 
						|
  while (--I != Beg) {
 | 
						|
    if (!I->isDebugValue())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Non-const version.
 | 
						|
static MachineBasicBlock::iterator
 | 
						|
priorNonDebug(MachineBasicBlock::iterator I,
 | 
						|
              MachineBasicBlock::const_iterator Beg) {
 | 
						|
  return const_cast<MachineInstr*>(
 | 
						|
    &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
 | 
						|
}
 | 
						|
 | 
						|
/// If this iterator is a debug value, increment until reaching the End or a
 | 
						|
/// non-debug instruction.
 | 
						|
static MachineBasicBlock::const_iterator
 | 
						|
nextIfDebug(MachineBasicBlock::const_iterator I,
 | 
						|
            MachineBasicBlock::const_iterator End) {
 | 
						|
  for(; I != End; ++I) {
 | 
						|
    if (!I->isDebugValue())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Non-const version.
 | 
						|
static MachineBasicBlock::iterator
 | 
						|
nextIfDebug(MachineBasicBlock::iterator I,
 | 
						|
            MachineBasicBlock::const_iterator End) {
 | 
						|
  // Cast the return value to nonconst MachineInstr, then cast to an
 | 
						|
  // instr_iterator, which does not check for null, finally return a
 | 
						|
  // bundle_iterator.
 | 
						|
  return MachineBasicBlock::instr_iterator(
 | 
						|
    const_cast<MachineInstr*>(
 | 
						|
      &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
 | 
						|
}
 | 
						|
 | 
						|
/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
 | 
						|
ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
 | 
						|
  // Select the scheduler, or set the default.
 | 
						|
  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
 | 
						|
  if (Ctor != useDefaultMachineSched)
 | 
						|
    return Ctor(this);
 | 
						|
 | 
						|
  // Get the default scheduler set by the target for this function.
 | 
						|
  ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
 | 
						|
  if (Scheduler)
 | 
						|
    return Scheduler;
 | 
						|
 | 
						|
  // Default to GenericScheduler.
 | 
						|
  return createGenericSchedLive(this);
 | 
						|
}
 | 
						|
 | 
						|
/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
 | 
						|
/// the caller. We don't have a command line option to override the postRA
 | 
						|
/// scheduler. The Target must configure it.
 | 
						|
ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
 | 
						|
  // Get the postRA scheduler set by the target for this function.
 | 
						|
  ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
 | 
						|
  if (Scheduler)
 | 
						|
    return Scheduler;
 | 
						|
 | 
						|
  // Default to GenericScheduler.
 | 
						|
  return createGenericSchedPostRA(this);
 | 
						|
}
 | 
						|
 | 
						|
/// Top-level MachineScheduler pass driver.
 | 
						|
///
 | 
						|
/// Visit blocks in function order. Divide each block into scheduling regions
 | 
						|
/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
 | 
						|
/// consistent with the DAG builder, which traverses the interior of the
 | 
						|
/// scheduling regions bottom-up.
 | 
						|
///
 | 
						|
/// This design avoids exposing scheduling boundaries to the DAG builder,
 | 
						|
/// simplifying the DAG builder's support for "special" target instructions.
 | 
						|
/// At the same time the design allows target schedulers to operate across
 | 
						|
/// scheduling boundaries, for example to bundle the boudary instructions
 | 
						|
/// without reordering them. This creates complexity, because the target
 | 
						|
/// scheduler must update the RegionBegin and RegionEnd positions cached by
 | 
						|
/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
 | 
						|
/// design would be to split blocks at scheduling boundaries, but LLVM has a
 | 
						|
/// general bias against block splitting purely for implementation simplicity.
 | 
						|
bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
 | 
						|
 | 
						|
  // Initialize the context of the pass.
 | 
						|
  MF = &mf;
 | 
						|
  MLI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
  PassConfig = &getAnalysis<TargetPassConfig>();
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  LIS = &getAnalysis<LiveIntervals>();
 | 
						|
 | 
						|
  if (VerifyScheduling) {
 | 
						|
    DEBUG(LIS->dump());
 | 
						|
    MF->verify(this, "Before machine scheduling.");
 | 
						|
  }
 | 
						|
  RegClassInfo->runOnMachineFunction(*MF);
 | 
						|
 | 
						|
  // Instantiate the selected scheduler for this target, function, and
 | 
						|
  // optimization level.
 | 
						|
  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
 | 
						|
  scheduleRegions(*Scheduler);
 | 
						|
 | 
						|
  DEBUG(LIS->dump());
 | 
						|
  if (VerifyScheduling)
 | 
						|
    MF->verify(this, "After machine scheduling.");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  if (skipOptnoneFunction(*mf.getFunction()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TargetSubtargetInfo &ST =
 | 
						|
    mf.getTarget().getSubtarget<TargetSubtargetInfo>();
 | 
						|
  if (!ST.enablePostMachineScheduler()) {
 | 
						|
    DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
 | 
						|
 | 
						|
  // Initialize the context of the pass.
 | 
						|
  MF = &mf;
 | 
						|
  PassConfig = &getAnalysis<TargetPassConfig>();
 | 
						|
 | 
						|
  if (VerifyScheduling)
 | 
						|
    MF->verify(this, "Before post machine scheduling.");
 | 
						|
 | 
						|
  // Instantiate the selected scheduler for this target, function, and
 | 
						|
  // optimization level.
 | 
						|
  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
 | 
						|
  scheduleRegions(*Scheduler);
 | 
						|
 | 
						|
  if (VerifyScheduling)
 | 
						|
    MF->verify(this, "After post machine scheduling.");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true of the given instruction should not be included in a scheduling
 | 
						|
/// region.
 | 
						|
///
 | 
						|
/// MachineScheduler does not currently support scheduling across calls. To
 | 
						|
/// handle calls, the DAG builder needs to be modified to create register
 | 
						|
/// anti/output dependencies on the registers clobbered by the call's regmask
 | 
						|
/// operand. In PreRA scheduling, the stack pointer adjustment already prevents
 | 
						|
/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
 | 
						|
/// the boundary, but there would be no benefit to postRA scheduling across
 | 
						|
/// calls this late anyway.
 | 
						|
static bool isSchedBoundary(MachineBasicBlock::iterator MI,
 | 
						|
                            MachineBasicBlock *MBB,
 | 
						|
                            MachineFunction *MF,
 | 
						|
                            const TargetInstrInfo *TII,
 | 
						|
                            bool IsPostRA) {
 | 
						|
  return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
 | 
						|
}
 | 
						|
 | 
						|
/// Main driver for both MachineScheduler and PostMachineScheduler.
 | 
						|
void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
 | 
						|
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | 
						|
  bool IsPostRA = Scheduler.isPostRA();
 | 
						|
 | 
						|
  // Visit all machine basic blocks.
 | 
						|
  //
 | 
						|
  // TODO: Visit blocks in global postorder or postorder within the bottom-up
 | 
						|
  // loop tree. Then we can optionally compute global RegPressure.
 | 
						|
  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
 | 
						|
       MBB != MBBEnd; ++MBB) {
 | 
						|
 | 
						|
    Scheduler.startBlock(MBB);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
 | 
						|
      continue;
 | 
						|
    if (SchedOnlyBlock.getNumOccurrences()
 | 
						|
        && (int)SchedOnlyBlock != MBB->getNumber())
 | 
						|
      continue;
 | 
						|
#endif
 | 
						|
 | 
						|
    // Break the block into scheduling regions [I, RegionEnd), and schedule each
 | 
						|
    // region as soon as it is discovered. RegionEnd points the scheduling
 | 
						|
    // boundary at the bottom of the region. The DAG does not include RegionEnd,
 | 
						|
    // but the region does (i.e. the next RegionEnd is above the previous
 | 
						|
    // RegionBegin). If the current block has no terminator then RegionEnd ==
 | 
						|
    // MBB->end() for the bottom region.
 | 
						|
    //
 | 
						|
    // The Scheduler may insert instructions during either schedule() or
 | 
						|
    // exitRegion(), even for empty regions. So the local iterators 'I' and
 | 
						|
    // 'RegionEnd' are invalid across these calls.
 | 
						|
    //
 | 
						|
    // MBB::size() uses instr_iterator to count. Here we need a bundle to count
 | 
						|
    // as a single instruction.
 | 
						|
    unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
 | 
						|
    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
 | 
						|
        RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
 | 
						|
 | 
						|
      // Avoid decrementing RegionEnd for blocks with no terminator.
 | 
						|
      if (RegionEnd != MBB->end() ||
 | 
						|
          isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) {
 | 
						|
        --RegionEnd;
 | 
						|
        // Count the boundary instruction.
 | 
						|
        --RemainingInstrs;
 | 
						|
      }
 | 
						|
 | 
						|
      // The next region starts above the previous region. Look backward in the
 | 
						|
      // instruction stream until we find the nearest boundary.
 | 
						|
      unsigned NumRegionInstrs = 0;
 | 
						|
      MachineBasicBlock::iterator I = RegionEnd;
 | 
						|
      for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
 | 
						|
        if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      // Notify the scheduler of the region, even if we may skip scheduling
 | 
						|
      // it. Perhaps it still needs to be bundled.
 | 
						|
      Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
 | 
						|
 | 
						|
      // Skip empty scheduling regions (0 or 1 schedulable instructions).
 | 
						|
      if (I == RegionEnd || I == std::prev(RegionEnd)) {
 | 
						|
        // Close the current region. Bundle the terminator if needed.
 | 
						|
        // This invalidates 'RegionEnd' and 'I'.
 | 
						|
        Scheduler.exitRegion();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
 | 
						|
            << "MI Scheduling **********\n");
 | 
						|
      DEBUG(dbgs() << MF->getName()
 | 
						|
            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
 | 
						|
            << "\n  From: " << *I << "    To: ";
 | 
						|
            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
 | 
						|
            else dbgs() << "End";
 | 
						|
            dbgs() << " RegionInstrs: " << NumRegionInstrs
 | 
						|
            << " Remaining: " << RemainingInstrs << "\n");
 | 
						|
      if (DumpCriticalPathLength) {
 | 
						|
        errs() << MF->getName();
 | 
						|
        errs() << ":BB# " << MBB->getNumber();
 | 
						|
        errs() << " " << MBB->getName() << " \n";
 | 
						|
      }
 | 
						|
 | 
						|
      // Schedule a region: possibly reorder instructions.
 | 
						|
      // This invalidates 'RegionEnd' and 'I'.
 | 
						|
      Scheduler.schedule();
 | 
						|
 | 
						|
      // Close the current region.
 | 
						|
      Scheduler.exitRegion();
 | 
						|
 | 
						|
      // Scheduling has invalidated the current iterator 'I'. Ask the
 | 
						|
      // scheduler for the top of it's scheduled region.
 | 
						|
      RegionEnd = Scheduler.begin();
 | 
						|
    }
 | 
						|
    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
 | 
						|
    Scheduler.finishBlock();
 | 
						|
    if (Scheduler.isPostRA()) {
 | 
						|
      // FIXME: Ideally, no further passes should rely on kill flags. However,
 | 
						|
      // thumb2 size reduction is currently an exception.
 | 
						|
      Scheduler.fixupKills(MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Scheduler.finalizeSchedule();
 | 
						|
}
 | 
						|
 | 
						|
void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
 | 
						|
  // unimplemented
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void ReadyQueue::dump() {
 | 
						|
  dbgs() << Name << ": ";
 | 
						|
  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
 | 
						|
    dbgs() << Queue[i]->NodeNum << " ";
 | 
						|
  dbgs() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ScheduleDAGMI - Basic machine instruction scheduling. This is
 | 
						|
// independent of PreRA/PostRA scheduling and involves no extra book-keeping for
 | 
						|
// virtual registers.
 | 
						|
// ===----------------------------------------------------------------------===/
 | 
						|
 | 
						|
// Provide a vtable anchor.
 | 
						|
ScheduleDAGMI::~ScheduleDAGMI() {
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
 | 
						|
  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
 | 
						|
  if (SuccSU != &ExitSU) {
 | 
						|
    // Do not use WillCreateCycle, it assumes SD scheduling.
 | 
						|
    // If Pred is reachable from Succ, then the edge creates a cycle.
 | 
						|
    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
 | 
						|
      return false;
 | 
						|
    Topo.AddPred(SuccSU, PredDep.getSUnit());
 | 
						|
  }
 | 
						|
  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
 | 
						|
  // Return true regardless of whether a new edge needed to be inserted.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
 | 
						|
/// NumPredsLeft reaches zero, release the successor node.
 | 
						|
///
 | 
						|
/// FIXME: Adjust SuccSU height based on MinLatency.
 | 
						|
void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
 | 
						|
  SUnit *SuccSU = SuccEdge->getSUnit();
 | 
						|
 | 
						|
  if (SuccEdge->isWeak()) {
 | 
						|
    --SuccSU->WeakPredsLeft;
 | 
						|
    if (SuccEdge->isCluster())
 | 
						|
      NextClusterSucc = SuccSU;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    SuccSU->dump(this);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
 | 
						|
  // CurrCycle may have advanced since then.
 | 
						|
  if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
 | 
						|
    SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
 | 
						|
 | 
						|
  --SuccSU->NumPredsLeft;
 | 
						|
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | 
						|
    SchedImpl->releaseTopNode(SuccSU);
 | 
						|
}
 | 
						|
 | 
						|
/// releaseSuccessors - Call releaseSucc on each of SU's successors.
 | 
						|
void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    releaseSucc(SU, &*I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
 | 
						|
/// NumSuccsLeft reaches zero, release the predecessor node.
 | 
						|
///
 | 
						|
/// FIXME: Adjust PredSU height based on MinLatency.
 | 
						|
void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
 | 
						|
  SUnit *PredSU = PredEdge->getSUnit();
 | 
						|
 | 
						|
  if (PredEdge->isWeak()) {
 | 
						|
    --PredSU->WeakSuccsLeft;
 | 
						|
    if (PredEdge->isCluster())
 | 
						|
      NextClusterPred = PredSU;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (PredSU->NumSuccsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    PredSU->dump(this);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
 | 
						|
  // CurrCycle may have advanced since then.
 | 
						|
  if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
 | 
						|
    PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
 | 
						|
 | 
						|
  --PredSU->NumSuccsLeft;
 | 
						|
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
 | 
						|
    SchedImpl->releaseBottomNode(PredSU);
 | 
						|
}
 | 
						|
 | 
						|
/// releasePredecessors - Call releasePred on each of SU's predecessors.
 | 
						|
void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    releasePred(SU, &*I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
 | 
						|
/// crossing a scheduling boundary. [begin, end) includes all instructions in
 | 
						|
/// the region, including the boundary itself and single-instruction regions
 | 
						|
/// that don't get scheduled.
 | 
						|
void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
 | 
						|
                                     MachineBasicBlock::iterator begin,
 | 
						|
                                     MachineBasicBlock::iterator end,
 | 
						|
                                     unsigned regioninstrs)
 | 
						|
{
 | 
						|
  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
 | 
						|
 | 
						|
  SchedImpl->initPolicy(begin, end, regioninstrs);
 | 
						|
}
 | 
						|
 | 
						|
/// This is normally called from the main scheduler loop but may also be invoked
 | 
						|
/// by the scheduling strategy to perform additional code motion.
 | 
						|
void ScheduleDAGMI::moveInstruction(
 | 
						|
  MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
 | 
						|
  // Advance RegionBegin if the first instruction moves down.
 | 
						|
  if (&*RegionBegin == MI)
 | 
						|
    ++RegionBegin;
 | 
						|
 | 
						|
  // Update the instruction stream.
 | 
						|
  BB->splice(InsertPos, BB, MI);
 | 
						|
 | 
						|
  // Update LiveIntervals
 | 
						|
  if (LIS)
 | 
						|
    LIS->handleMove(MI, /*UpdateFlags=*/true);
 | 
						|
 | 
						|
  // Recede RegionBegin if an instruction moves above the first.
 | 
						|
  if (RegionBegin == InsertPos)
 | 
						|
    RegionBegin = MI;
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGMI::checkSchedLimit() {
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
 | 
						|
    CurrentTop = CurrentBottom;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  ++NumInstrsScheduled;
 | 
						|
#endif
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Per-region scheduling driver, called back from
 | 
						|
/// MachineScheduler::runOnMachineFunction. This is a simplified driver that
 | 
						|
/// does not consider liveness or register pressure. It is useful for PostRA
 | 
						|
/// scheduling and potentially other custom schedulers.
 | 
						|
void ScheduleDAGMI::schedule() {
 | 
						|
  // Build the DAG.
 | 
						|
  buildSchedGraph(AA);
 | 
						|
 | 
						|
  Topo.InitDAGTopologicalSorting();
 | 
						|
 | 
						|
  postprocessDAG();
 | 
						|
 | 
						|
  SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | 
						|
  findRootsAndBiasEdges(TopRoots, BotRoots);
 | 
						|
 | 
						|
  // Initialize the strategy before modifying the DAG.
 | 
						|
  // This may initialize a DFSResult to be used for queue priority.
 | 
						|
  SchedImpl->initialize(this);
 | 
						|
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(this));
 | 
						|
  if (ViewMISchedDAGs) viewGraph();
 | 
						|
 | 
						|
  // Initialize ready queues now that the DAG and priority data are finalized.
 | 
						|
  initQueues(TopRoots, BotRoots);
 | 
						|
 | 
						|
  bool IsTopNode = false;
 | 
						|
  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
 | 
						|
    assert(!SU->isScheduled && "Node already scheduled");
 | 
						|
    if (!checkSchedLimit())
 | 
						|
      break;
 | 
						|
 | 
						|
    MachineInstr *MI = SU->getInstr();
 | 
						|
    if (IsTopNode) {
 | 
						|
      assert(SU->isTopReady() && "node still has unscheduled dependencies");
 | 
						|
      if (&*CurrentTop == MI)
 | 
						|
        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
 | 
						|
      else
 | 
						|
        moveInstruction(MI, CurrentTop);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
 | 
						|
      MachineBasicBlock::iterator priorII =
 | 
						|
        priorNonDebug(CurrentBottom, CurrentTop);
 | 
						|
      if (&*priorII == MI)
 | 
						|
        CurrentBottom = priorII;
 | 
						|
      else {
 | 
						|
        if (&*CurrentTop == MI)
 | 
						|
          CurrentTop = nextIfDebug(++CurrentTop, priorII);
 | 
						|
        moveInstruction(MI, CurrentBottom);
 | 
						|
        CurrentBottom = MI;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Notify the scheduling strategy before updating the DAG.
 | 
						|
    // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
 | 
						|
    // runs, it can then use the accurate ReadyCycle time to determine whether
 | 
						|
    // newly released nodes can move to the readyQ.
 | 
						|
    SchedImpl->schedNode(SU, IsTopNode);
 | 
						|
 | 
						|
    updateQueues(SU, IsTopNode);
 | 
						|
  }
 | 
						|
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | 
						|
 | 
						|
  placeDebugValues();
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
      unsigned BBNum = begin()->getParent()->getNumber();
 | 
						|
      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
 | 
						|
      dumpSchedule();
 | 
						|
      dbgs() << '\n';
 | 
						|
    });
 | 
						|
}
 | 
						|
 | 
						|
/// Apply each ScheduleDAGMutation step in order.
 | 
						|
void ScheduleDAGMI::postprocessDAG() {
 | 
						|
  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
 | 
						|
    Mutations[i]->apply(this);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGMI::
 | 
						|
findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
 | 
						|
                      SmallVectorImpl<SUnit*> &BotRoots) {
 | 
						|
  for (std::vector<SUnit>::iterator
 | 
						|
         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
 | 
						|
    SUnit *SU = &(*I);
 | 
						|
    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
 | 
						|
 | 
						|
    // Order predecessors so DFSResult follows the critical path.
 | 
						|
    SU->biasCriticalPath();
 | 
						|
 | 
						|
    // A SUnit is ready to top schedule if it has no predecessors.
 | 
						|
    if (!I->NumPredsLeft)
 | 
						|
      TopRoots.push_back(SU);
 | 
						|
    // A SUnit is ready to bottom schedule if it has no successors.
 | 
						|
    if (!I->NumSuccsLeft)
 | 
						|
      BotRoots.push_back(SU);
 | 
						|
  }
 | 
						|
  ExitSU.biasCriticalPath();
 | 
						|
}
 | 
						|
 | 
						|
/// Identify DAG roots and setup scheduler queues.
 | 
						|
void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
 | 
						|
                               ArrayRef<SUnit*> BotRoots) {
 | 
						|
  NextClusterSucc = nullptr;
 | 
						|
  NextClusterPred = nullptr;
 | 
						|
 | 
						|
  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
 | 
						|
  //
 | 
						|
  // Nodes with unreleased weak edges can still be roots.
 | 
						|
  // Release top roots in forward order.
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_iterator
 | 
						|
         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
 | 
						|
    SchedImpl->releaseTopNode(*I);
 | 
						|
  }
 | 
						|
  // Release bottom roots in reverse order so the higher priority nodes appear
 | 
						|
  // first. This is more natural and slightly more efficient.
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
 | 
						|
         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
 | 
						|
    SchedImpl->releaseBottomNode(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  releaseSuccessors(&EntrySU);
 | 
						|
  releasePredecessors(&ExitSU);
 | 
						|
 | 
						|
  SchedImpl->registerRoots();
 | 
						|
 | 
						|
  // Advance past initial DebugValues.
 | 
						|
  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
 | 
						|
  CurrentBottom = RegionEnd;
 | 
						|
}
 | 
						|
 | 
						|
/// Update scheduler queues after scheduling an instruction.
 | 
						|
void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
 | 
						|
  // Release dependent instructions for scheduling.
 | 
						|
  if (IsTopNode)
 | 
						|
    releaseSuccessors(SU);
 | 
						|
  else
 | 
						|
    releasePredecessors(SU);
 | 
						|
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
/// Reinsert any remaining debug_values, just like the PostRA scheduler.
 | 
						|
void ScheduleDAGMI::placeDebugValues() {
 | 
						|
  // If first instruction was a DBG_VALUE then put it back.
 | 
						|
  if (FirstDbgValue) {
 | 
						|
    BB->splice(RegionBegin, BB, FirstDbgValue);
 | 
						|
    RegionBegin = FirstDbgValue;
 | 
						|
  }
 | 
						|
 | 
						|
  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
 | 
						|
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
 | 
						|
    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
 | 
						|
    MachineInstr *DbgValue = P.first;
 | 
						|
    MachineBasicBlock::iterator OrigPrevMI = P.second;
 | 
						|
    if (&*RegionBegin == DbgValue)
 | 
						|
      ++RegionBegin;
 | 
						|
    BB->splice(++OrigPrevMI, BB, DbgValue);
 | 
						|
    if (OrigPrevMI == std::prev(RegionEnd))
 | 
						|
      RegionEnd = DbgValue;
 | 
						|
  }
 | 
						|
  DbgValues.clear();
 | 
						|
  FirstDbgValue = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void ScheduleDAGMI::dumpSchedule() const {
 | 
						|
  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
 | 
						|
    if (SUnit *SU = getSUnit(&(*MI)))
 | 
						|
      SU->dump(this);
 | 
						|
    else
 | 
						|
      dbgs() << "Missing SUnit\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
 | 
						|
// preservation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ScheduleDAGMILive::~ScheduleDAGMILive() {
 | 
						|
  delete DFSResult;
 | 
						|
}
 | 
						|
 | 
						|
/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
 | 
						|
/// crossing a scheduling boundary. [begin, end) includes all instructions in
 | 
						|
/// the region, including the boundary itself and single-instruction regions
 | 
						|
/// that don't get scheduled.
 | 
						|
void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
 | 
						|
                                MachineBasicBlock::iterator begin,
 | 
						|
                                MachineBasicBlock::iterator end,
 | 
						|
                                unsigned regioninstrs)
 | 
						|
{
 | 
						|
  // ScheduleDAGMI initializes SchedImpl's per-region policy.
 | 
						|
  ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
 | 
						|
 | 
						|
  // For convenience remember the end of the liveness region.
 | 
						|
  LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
 | 
						|
 | 
						|
  SUPressureDiffs.clear();
 | 
						|
 | 
						|
  ShouldTrackPressure = SchedImpl->shouldTrackPressure();
 | 
						|
}
 | 
						|
 | 
						|
// Setup the register pressure trackers for the top scheduled top and bottom
 | 
						|
// scheduled regions.
 | 
						|
void ScheduleDAGMILive::initRegPressure() {
 | 
						|
  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
 | 
						|
  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 | 
						|
 | 
						|
  // Close the RPTracker to finalize live ins.
 | 
						|
  RPTracker.closeRegion();
 | 
						|
 | 
						|
  DEBUG(RPTracker.dump());
 | 
						|
 | 
						|
  // Initialize the live ins and live outs.
 | 
						|
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
 | 
						|
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
 | 
						|
 | 
						|
  // Close one end of the tracker so we can call
 | 
						|
  // getMaxUpward/DownwardPressureDelta before advancing across any
 | 
						|
  // instructions. This converts currently live regs into live ins/outs.
 | 
						|
  TopRPTracker.closeTop();
 | 
						|
  BotRPTracker.closeBottom();
 | 
						|
 | 
						|
  BotRPTracker.initLiveThru(RPTracker);
 | 
						|
  if (!BotRPTracker.getLiveThru().empty()) {
 | 
						|
    TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
 | 
						|
    DEBUG(dbgs() << "Live Thru: ";
 | 
						|
          dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
 | 
						|
  };
 | 
						|
 | 
						|
  // For each live out vreg reduce the pressure change associated with other
 | 
						|
  // uses of the same vreg below the live-out reaching def.
 | 
						|
  updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
 | 
						|
 | 
						|
  // Account for liveness generated by the region boundary.
 | 
						|
  if (LiveRegionEnd != RegionEnd) {
 | 
						|
    SmallVector<unsigned, 8> LiveUses;
 | 
						|
    BotRPTracker.recede(&LiveUses);
 | 
						|
    updatePressureDiffs(LiveUses);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
 | 
						|
 | 
						|
  // Cache the list of excess pressure sets in this region. This will also track
 | 
						|
  // the max pressure in the scheduled code for these sets.
 | 
						|
  RegionCriticalPSets.clear();
 | 
						|
  const std::vector<unsigned> &RegionPressure =
 | 
						|
    RPTracker.getPressure().MaxSetPressure;
 | 
						|
  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
 | 
						|
    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
 | 
						|
    if (RegionPressure[i] > Limit) {
 | 
						|
      DEBUG(dbgs() << TRI->getRegPressureSetName(i)
 | 
						|
            << " Limit " << Limit
 | 
						|
            << " Actual " << RegionPressure[i] << "\n");
 | 
						|
      RegionCriticalPSets.push_back(PressureChange(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Excess PSets: ";
 | 
						|
        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
 | 
						|
          dbgs() << TRI->getRegPressureSetName(
 | 
						|
            RegionCriticalPSets[i].getPSet()) << " ";
 | 
						|
        dbgs() << "\n");
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGMILive::
 | 
						|
updateScheduledPressure(const SUnit *SU,
 | 
						|
                        const std::vector<unsigned> &NewMaxPressure) {
 | 
						|
  const PressureDiff &PDiff = getPressureDiff(SU);
 | 
						|
  unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
 | 
						|
  for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (!I->isValid())
 | 
						|
      break;
 | 
						|
    unsigned ID = I->getPSet();
 | 
						|
    while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
 | 
						|
      ++CritIdx;
 | 
						|
    if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
 | 
						|
      if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
 | 
						|
          && NewMaxPressure[ID] <= INT16_MAX)
 | 
						|
        RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
 | 
						|
    }
 | 
						|
    unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
 | 
						|
    if (NewMaxPressure[ID] >= Limit - 2) {
 | 
						|
      DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
 | 
						|
            << NewMaxPressure[ID] << " > " << Limit << "(+ "
 | 
						|
            << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update the PressureDiff array for liveness after scheduling this
 | 
						|
/// instruction.
 | 
						|
void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
 | 
						|
  for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
 | 
						|
    /// FIXME: Currently assuming single-use physregs.
 | 
						|
    unsigned Reg = LiveUses[LUIdx];
 | 
						|
    DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
 | 
						|
    if (!TRI->isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // This may be called before CurrentBottom has been initialized. However,
 | 
						|
    // BotRPTracker must have a valid position. We want the value live into the
 | 
						|
    // instruction or live out of the block, so ask for the previous
 | 
						|
    // instruction's live-out.
 | 
						|
    const LiveInterval &LI = LIS->getInterval(Reg);
 | 
						|
    VNInfo *VNI;
 | 
						|
    MachineBasicBlock::const_iterator I =
 | 
						|
      nextIfDebug(BotRPTracker.getPos(), BB->end());
 | 
						|
    if (I == BB->end())
 | 
						|
      VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
 | 
						|
    else {
 | 
						|
      LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
 | 
						|
      VNI = LRQ.valueIn();
 | 
						|
    }
 | 
						|
    // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
 | 
						|
    assert(VNI && "No live value at use.");
 | 
						|
    for (VReg2UseMap::iterator
 | 
						|
           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
 | 
						|
      SUnit *SU = UI->SU;
 | 
						|
      DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
 | 
						|
            << *SU->getInstr());
 | 
						|
      // If this use comes before the reaching def, it cannot be a last use, so
 | 
						|
      // descrease its pressure change.
 | 
						|
      if (!SU->isScheduled && SU != &ExitSU) {
 | 
						|
        LiveQueryResult LRQ
 | 
						|
          = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
 | 
						|
        if (LRQ.valueIn() == VNI)
 | 
						|
          getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// schedule - Called back from MachineScheduler::runOnMachineFunction
 | 
						|
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
 | 
						|
/// only includes instructions that have DAG nodes, not scheduling boundaries.
 | 
						|
///
 | 
						|
/// This is a skeletal driver, with all the functionality pushed into helpers,
 | 
						|
/// so that it can be easilly extended by experimental schedulers. Generally,
 | 
						|
/// implementing MachineSchedStrategy should be sufficient to implement a new
 | 
						|
/// scheduling algorithm. However, if a scheduler further subclasses
 | 
						|
/// ScheduleDAGMILive then it will want to override this virtual method in order
 | 
						|
/// to update any specialized state.
 | 
						|
void ScheduleDAGMILive::schedule() {
 | 
						|
  buildDAGWithRegPressure();
 | 
						|
 | 
						|
  Topo.InitDAGTopologicalSorting();
 | 
						|
 | 
						|
  postprocessDAG();
 | 
						|
 | 
						|
  SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | 
						|
  findRootsAndBiasEdges(TopRoots, BotRoots);
 | 
						|
 | 
						|
  // Initialize the strategy before modifying the DAG.
 | 
						|
  // This may initialize a DFSResult to be used for queue priority.
 | 
						|
  SchedImpl->initialize(this);
 | 
						|
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(this));
 | 
						|
  if (ViewMISchedDAGs) viewGraph();
 | 
						|
 | 
						|
  // Initialize ready queues now that the DAG and priority data are finalized.
 | 
						|
  initQueues(TopRoots, BotRoots);
 | 
						|
 | 
						|
  if (ShouldTrackPressure) {
 | 
						|
    assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
 | 
						|
    TopRPTracker.setPos(CurrentTop);
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsTopNode = false;
 | 
						|
  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
 | 
						|
    assert(!SU->isScheduled && "Node already scheduled");
 | 
						|
    if (!checkSchedLimit())
 | 
						|
      break;
 | 
						|
 | 
						|
    scheduleMI(SU, IsTopNode);
 | 
						|
 | 
						|
    updateQueues(SU, IsTopNode);
 | 
						|
 | 
						|
    if (DFSResult) {
 | 
						|
      unsigned SubtreeID = DFSResult->getSubtreeID(SU);
 | 
						|
      if (!ScheduledTrees.test(SubtreeID)) {
 | 
						|
        ScheduledTrees.set(SubtreeID);
 | 
						|
        DFSResult->scheduleTree(SubtreeID);
 | 
						|
        SchedImpl->scheduleTree(SubtreeID);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Notify the scheduling strategy after updating the DAG.
 | 
						|
    SchedImpl->schedNode(SU, IsTopNode);
 | 
						|
  }
 | 
						|
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | 
						|
 | 
						|
  placeDebugValues();
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
      unsigned BBNum = begin()->getParent()->getNumber();
 | 
						|
      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
 | 
						|
      dumpSchedule();
 | 
						|
      dbgs() << '\n';
 | 
						|
    });
 | 
						|
}
 | 
						|
 | 
						|
/// Build the DAG and setup three register pressure trackers.
 | 
						|
void ScheduleDAGMILive::buildDAGWithRegPressure() {
 | 
						|
  if (!ShouldTrackPressure) {
 | 
						|
    RPTracker.reset();
 | 
						|
    RegionCriticalPSets.clear();
 | 
						|
    buildSchedGraph(AA);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize the register pressure tracker used by buildSchedGraph.
 | 
						|
  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
 | 
						|
                 /*TrackUntiedDefs=*/true);
 | 
						|
 | 
						|
  // Account for liveness generate by the region boundary.
 | 
						|
  if (LiveRegionEnd != RegionEnd)
 | 
						|
    RPTracker.recede();
 | 
						|
 | 
						|
  // Build the DAG, and compute current register pressure.
 | 
						|
  buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
 | 
						|
 | 
						|
  // Initialize top/bottom trackers after computing region pressure.
 | 
						|
  initRegPressure();
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGMILive::computeDFSResult() {
 | 
						|
  if (!DFSResult)
 | 
						|
    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
 | 
						|
  DFSResult->clear();
 | 
						|
  ScheduledTrees.clear();
 | 
						|
  DFSResult->resize(SUnits.size());
 | 
						|
  DFSResult->compute(SUnits);
 | 
						|
  ScheduledTrees.resize(DFSResult->getNumSubtrees());
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the max cyclic critical path through the DAG. The scheduling DAG
 | 
						|
/// only provides the critical path for single block loops. To handle loops that
 | 
						|
/// span blocks, we could use the vreg path latencies provided by
 | 
						|
/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
 | 
						|
/// available for use in the scheduler.
 | 
						|
///
 | 
						|
/// The cyclic path estimation identifies a def-use pair that crosses the back
 | 
						|
/// edge and considers the depth and height of the nodes. For example, consider
 | 
						|
/// the following instruction sequence where each instruction has unit latency
 | 
						|
/// and defines an epomymous virtual register:
 | 
						|
///
 | 
						|
/// a->b(a,c)->c(b)->d(c)->exit
 | 
						|
///
 | 
						|
/// The cyclic critical path is a two cycles: b->c->b
 | 
						|
/// The acyclic critical path is four cycles: a->b->c->d->exit
 | 
						|
/// LiveOutHeight = height(c) = len(c->d->exit) = 2
 | 
						|
/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
 | 
						|
/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
 | 
						|
/// LiveInDepth = depth(b) = len(a->b) = 1
 | 
						|
///
 | 
						|
/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
 | 
						|
/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
 | 
						|
/// CyclicCriticalPath = min(2, 2) = 2
 | 
						|
///
 | 
						|
/// This could be relevant to PostRA scheduling, but is currently implemented
 | 
						|
/// assuming LiveIntervals.
 | 
						|
unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
 | 
						|
  // This only applies to single block loop.
 | 
						|
  if (!BB->isSuccessor(BB))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  unsigned MaxCyclicLatency = 0;
 | 
						|
  // Visit each live out vreg def to find def/use pairs that cross iterations.
 | 
						|
  ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
 | 
						|
  for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
 | 
						|
       RI != RE; ++RI) {
 | 
						|
    unsigned Reg = *RI;
 | 
						|
    if (!TRI->isVirtualRegister(Reg))
 | 
						|
        continue;
 | 
						|
    const LiveInterval &LI = LIS->getInterval(Reg);
 | 
						|
    const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
 | 
						|
    if (!DefVNI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
 | 
						|
    const SUnit *DefSU = getSUnit(DefMI);
 | 
						|
    if (!DefSU)
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned LiveOutHeight = DefSU->getHeight();
 | 
						|
    unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
 | 
						|
    // Visit all local users of the vreg def.
 | 
						|
    for (VReg2UseMap::iterator
 | 
						|
           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
 | 
						|
      if (UI->SU == &ExitSU)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Only consider uses of the phi.
 | 
						|
      LiveQueryResult LRQ =
 | 
						|
        LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
 | 
						|
      if (!LRQ.valueIn()->isPHIDef())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Assume that a path spanning two iterations is a cycle, which could
 | 
						|
      // overestimate in strange cases. This allows cyclic latency to be
 | 
						|
      // estimated as the minimum slack of the vreg's depth or height.
 | 
						|
      unsigned CyclicLatency = 0;
 | 
						|
      if (LiveOutDepth > UI->SU->getDepth())
 | 
						|
        CyclicLatency = LiveOutDepth - UI->SU->getDepth();
 | 
						|
 | 
						|
      unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
 | 
						|
      if (LiveInHeight > LiveOutHeight) {
 | 
						|
        if (LiveInHeight - LiveOutHeight < CyclicLatency)
 | 
						|
          CyclicLatency = LiveInHeight - LiveOutHeight;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        CyclicLatency = 0;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
 | 
						|
            << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
 | 
						|
      if (CyclicLatency > MaxCyclicLatency)
 | 
						|
        MaxCyclicLatency = CyclicLatency;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
 | 
						|
  return MaxCyclicLatency;
 | 
						|
}
 | 
						|
 | 
						|
/// Move an instruction and update register pressure.
 | 
						|
void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
 | 
						|
  // Move the instruction to its new location in the instruction stream.
 | 
						|
  MachineInstr *MI = SU->getInstr();
 | 
						|
 | 
						|
  if (IsTopNode) {
 | 
						|
    assert(SU->isTopReady() && "node still has unscheduled dependencies");
 | 
						|
    if (&*CurrentTop == MI)
 | 
						|
      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
 | 
						|
    else {
 | 
						|
      moveInstruction(MI, CurrentTop);
 | 
						|
      TopRPTracker.setPos(MI);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ShouldTrackPressure) {
 | 
						|
      // Update top scheduled pressure.
 | 
						|
      TopRPTracker.advance();
 | 
						|
      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
 | 
						|
      updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
 | 
						|
    MachineBasicBlock::iterator priorII =
 | 
						|
      priorNonDebug(CurrentBottom, CurrentTop);
 | 
						|
    if (&*priorII == MI)
 | 
						|
      CurrentBottom = priorII;
 | 
						|
    else {
 | 
						|
      if (&*CurrentTop == MI) {
 | 
						|
        CurrentTop = nextIfDebug(++CurrentTop, priorII);
 | 
						|
        TopRPTracker.setPos(CurrentTop);
 | 
						|
      }
 | 
						|
      moveInstruction(MI, CurrentBottom);
 | 
						|
      CurrentBottom = MI;
 | 
						|
    }
 | 
						|
    if (ShouldTrackPressure) {
 | 
						|
      // Update bottom scheduled pressure.
 | 
						|
      SmallVector<unsigned, 8> LiveUses;
 | 
						|
      BotRPTracker.recede(&LiveUses);
 | 
						|
      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
 | 
						|
      updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
 | 
						|
      updatePressureDiffs(LiveUses);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoadClusterMutation - DAG post-processing to cluster loads.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Post-process the DAG to create cluster edges between neighboring
 | 
						|
/// loads.
 | 
						|
class LoadClusterMutation : public ScheduleDAGMutation {
 | 
						|
  struct LoadInfo {
 | 
						|
    SUnit *SU;
 | 
						|
    unsigned BaseReg;
 | 
						|
    unsigned Offset;
 | 
						|
    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
 | 
						|
      : SU(su), BaseReg(reg), Offset(ofs) {}
 | 
						|
 | 
						|
    bool operator<(const LoadInfo &RHS) const {
 | 
						|
      return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
public:
 | 
						|
  LoadClusterMutation(const TargetInstrInfo *tii,
 | 
						|
                      const TargetRegisterInfo *tri)
 | 
						|
    : TII(tii), TRI(tri) {}
 | 
						|
 | 
						|
  void apply(ScheduleDAGMI *DAG) override;
 | 
						|
protected:
 | 
						|
  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
 | 
						|
};
 | 
						|
} // anonymous
 | 
						|
 | 
						|
void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
 | 
						|
                                                  ScheduleDAGMI *DAG) {
 | 
						|
  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
 | 
						|
  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
 | 
						|
    SUnit *SU = Loads[Idx];
 | 
						|
    unsigned BaseReg;
 | 
						|
    unsigned Offset;
 | 
						|
    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
 | 
						|
      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
 | 
						|
  }
 | 
						|
  if (LoadRecords.size() < 2)
 | 
						|
    return;
 | 
						|
  std::sort(LoadRecords.begin(), LoadRecords.end());
 | 
						|
  unsigned ClusterLength = 1;
 | 
						|
  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
 | 
						|
    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
 | 
						|
      ClusterLength = 1;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SUnit *SUa = LoadRecords[Idx].SU;
 | 
						|
    SUnit *SUb = LoadRecords[Idx+1].SU;
 | 
						|
    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
 | 
						|
        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
 | 
						|
 | 
						|
      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
 | 
						|
            << SUb->NodeNum << ")\n");
 | 
						|
      // Copy successor edges from SUa to SUb. Interleaving computation
 | 
						|
      // dependent on SUa can prevent load combining due to register reuse.
 | 
						|
      // Predecessor edges do not need to be copied from SUb to SUa since nearby
 | 
						|
      // loads should have effectively the same inputs.
 | 
						|
      for (SUnit::const_succ_iterator
 | 
						|
             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
 | 
						|
        if (SI->getSUnit() == SUb)
 | 
						|
          continue;
 | 
						|
        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
 | 
						|
        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
 | 
						|
      }
 | 
						|
      ++ClusterLength;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      ClusterLength = 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Callback from DAG postProcessing to create cluster edges for loads.
 | 
						|
void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
 | 
						|
  // Map DAG NodeNum to store chain ID.
 | 
						|
  DenseMap<unsigned, unsigned> StoreChainIDs;
 | 
						|
  // Map each store chain to a set of dependent loads.
 | 
						|
  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
 | 
						|
  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
 | 
						|
    SUnit *SU = &DAG->SUnits[Idx];
 | 
						|
    if (!SU->getInstr()->mayLoad())
 | 
						|
      continue;
 | 
						|
    unsigned ChainPredID = DAG->SUnits.size();
 | 
						|
    for (SUnit::const_pred_iterator
 | 
						|
           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
 | 
						|
      if (PI->isCtrl()) {
 | 
						|
        ChainPredID = PI->getSUnit()->NodeNum;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Check if this chain-like pred has been seen
 | 
						|
    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
 | 
						|
    unsigned NumChains = StoreChainDependents.size();
 | 
						|
    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
 | 
						|
      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
 | 
						|
    if (Result.second)
 | 
						|
      StoreChainDependents.resize(NumChains + 1);
 | 
						|
    StoreChainDependents[Result.first->second].push_back(SU);
 | 
						|
  }
 | 
						|
  // Iterate over the store chains.
 | 
						|
  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
 | 
						|
    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// MacroFusion - DAG post-processing to encourage fusion of macro ops.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Post-process the DAG to create cluster edges between instructions
 | 
						|
/// that may be fused by the processor into a single operation.
 | 
						|
class MacroFusion : public ScheduleDAGMutation {
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
public:
 | 
						|
  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
 | 
						|
 | 
						|
  void apply(ScheduleDAGMI *DAG) override;
 | 
						|
};
 | 
						|
} // anonymous
 | 
						|
 | 
						|
/// \brief Callback from DAG postProcessing to create cluster edges to encourage
 | 
						|
/// fused operations.
 | 
						|
void MacroFusion::apply(ScheduleDAGMI *DAG) {
 | 
						|
  // For now, assume targets can only fuse with the branch.
 | 
						|
  MachineInstr *Branch = DAG->ExitSU.getInstr();
 | 
						|
  if (!Branch)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
 | 
						|
    SUnit *SU = &DAG->SUnits[--Idx];
 | 
						|
    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Create a single weak edge from SU to ExitSU. The only effect is to cause
 | 
						|
    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
 | 
						|
    // need to copy predecessor edges from ExitSU to SU, since top-down
 | 
						|
    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
 | 
						|
    // of SU, we could create an artificial edge from the deepest root, but it
 | 
						|
    // hasn't been needed yet.
 | 
						|
    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
 | 
						|
    (void)Success;
 | 
						|
    assert(Success && "No DAG nodes should be reachable from ExitSU");
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// CopyConstrain - DAG post-processing to encourage copy elimination.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Post-process the DAG to create weak edges from all uses of a copy to
 | 
						|
/// the one use that defines the copy's source vreg, most likely an induction
 | 
						|
/// variable increment.
 | 
						|
class CopyConstrain : public ScheduleDAGMutation {
 | 
						|
  // Transient state.
 | 
						|
  SlotIndex RegionBeginIdx;
 | 
						|
  // RegionEndIdx is the slot index of the last non-debug instruction in the
 | 
						|
  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
 | 
						|
  SlotIndex RegionEndIdx;
 | 
						|
public:
 | 
						|
  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
 | 
						|
 | 
						|
  void apply(ScheduleDAGMI *DAG) override;
 | 
						|
 | 
						|
protected:
 | 
						|
  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
 | 
						|
};
 | 
						|
} // anonymous
 | 
						|
 | 
						|
/// constrainLocalCopy handles two possibilities:
 | 
						|
/// 1) Local src:
 | 
						|
/// I0:     = dst
 | 
						|
/// I1: src = ...
 | 
						|
/// I2:     = dst
 | 
						|
/// I3: dst = src (copy)
 | 
						|
/// (create pred->succ edges I0->I1, I2->I1)
 | 
						|
///
 | 
						|
/// 2) Local copy:
 | 
						|
/// I0: dst = src (copy)
 | 
						|
/// I1:     = dst
 | 
						|
/// I2: src = ...
 | 
						|
/// I3:     = dst
 | 
						|
/// (create pred->succ edges I1->I2, I3->I2)
 | 
						|
///
 | 
						|
/// Although the MachineScheduler is currently constrained to single blocks,
 | 
						|
/// this algorithm should handle extended blocks. An EBB is a set of
 | 
						|
/// contiguously numbered blocks such that the previous block in the EBB is
 | 
						|
/// always the single predecessor.
 | 
						|
void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
 | 
						|
  LiveIntervals *LIS = DAG->getLIS();
 | 
						|
  MachineInstr *Copy = CopySU->getInstr();
 | 
						|
 | 
						|
  // Check for pure vreg copies.
 | 
						|
  unsigned SrcReg = Copy->getOperand(1).getReg();
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned DstReg = Copy->getOperand(0).getReg();
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if either the dest or source is local. If it's live across a back
 | 
						|
  // edge, it's not local. Note that if both vregs are live across the back
 | 
						|
  // edge, we cannot successfully contrain the copy without cyclic scheduling.
 | 
						|
  unsigned LocalReg = DstReg;
 | 
						|
  unsigned GlobalReg = SrcReg;
 | 
						|
  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
 | 
						|
  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
 | 
						|
    LocalReg = SrcReg;
 | 
						|
    GlobalReg = DstReg;
 | 
						|
    LocalLI = &LIS->getInterval(LocalReg);
 | 
						|
    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
 | 
						|
 | 
						|
  // Find the global segment after the start of the local LI.
 | 
						|
  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
 | 
						|
  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
 | 
						|
  // local live range. We could create edges from other global uses to the local
 | 
						|
  // start, but the coalescer should have already eliminated these cases, so
 | 
						|
  // don't bother dealing with it.
 | 
						|
  if (GlobalSegment == GlobalLI->end())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If GlobalSegment is killed at the LocalLI->start, the call to find()
 | 
						|
  // returned the next global segment. But if GlobalSegment overlaps with
 | 
						|
  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
 | 
						|
  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
 | 
						|
  if (GlobalSegment->contains(LocalLI->beginIndex()))
 | 
						|
    ++GlobalSegment;
 | 
						|
 | 
						|
  if (GlobalSegment == GlobalLI->end())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
 | 
						|
  if (GlobalSegment != GlobalLI->begin()) {
 | 
						|
    // Two address defs have no hole.
 | 
						|
    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
 | 
						|
                               GlobalSegment->start)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // If the prior global segment may be defined by the same two-address
 | 
						|
    // instruction that also defines LocalLI, then can't make a hole here.
 | 
						|
    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
 | 
						|
                               LocalLI->beginIndex())) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
 | 
						|
    // it would be a disconnected component in the live range.
 | 
						|
    assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
 | 
						|
           "Disconnected LRG within the scheduling region.");
 | 
						|
  }
 | 
						|
  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
 | 
						|
  if (!GlobalDef)
 | 
						|
    return;
 | 
						|
 | 
						|
  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
 | 
						|
  if (!GlobalSU)
 | 
						|
    return;
 | 
						|
 | 
						|
  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
 | 
						|
  // constraining the uses of the last local def to precede GlobalDef.
 | 
						|
  SmallVector<SUnit*,8> LocalUses;
 | 
						|
  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
 | 
						|
  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
 | 
						|
  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
 | 
						|
  for (SUnit::const_succ_iterator
 | 
						|
         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
 | 
						|
      continue;
 | 
						|
    if (I->getSUnit() == GlobalSU)
 | 
						|
      continue;
 | 
						|
    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
 | 
						|
      return;
 | 
						|
    LocalUses.push_back(I->getSUnit());
 | 
						|
  }
 | 
						|
  // Open the top of the GlobalLI hole by constraining any earlier global uses
 | 
						|
  // to precede the start of LocalLI.
 | 
						|
  SmallVector<SUnit*,8> GlobalUses;
 | 
						|
  MachineInstr *FirstLocalDef =
 | 
						|
    LIS->getInstructionFromIndex(LocalLI->beginIndex());
 | 
						|
  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
 | 
						|
  for (SUnit::const_pred_iterator
 | 
						|
         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
 | 
						|
    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
 | 
						|
      continue;
 | 
						|
    if (I->getSUnit() == FirstLocalSU)
 | 
						|
      continue;
 | 
						|
    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
 | 
						|
      return;
 | 
						|
    GlobalUses.push_back(I->getSUnit());
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
 | 
						|
  // Add the weak edges.
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_iterator
 | 
						|
         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
 | 
						|
    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
 | 
						|
          << GlobalSU->NodeNum << ")\n");
 | 
						|
    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
 | 
						|
  }
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_iterator
 | 
						|
         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
 | 
						|
    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
 | 
						|
          << FirstLocalSU->NodeNum << ")\n");
 | 
						|
    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Callback from DAG postProcessing to create weak edges to encourage
 | 
						|
/// copy elimination.
 | 
						|
void CopyConstrain::apply(ScheduleDAGMI *DAG) {
 | 
						|
  assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
 | 
						|
 | 
						|
  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
 | 
						|
  if (FirstPos == DAG->end())
 | 
						|
    return;
 | 
						|
  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
 | 
						|
  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
 | 
						|
    &*priorNonDebug(DAG->end(), DAG->begin()));
 | 
						|
 | 
						|
  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
 | 
						|
    SUnit *SU = &DAG->SUnits[Idx];
 | 
						|
    if (!SU->getInstr()->isCopy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
 | 
						|
// and possibly other custom schedulers.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static const unsigned InvalidCycle = ~0U;
 | 
						|
 | 
						|
SchedBoundary::~SchedBoundary() { delete HazardRec; }
 | 
						|
 | 
						|
void SchedBoundary::reset() {
 | 
						|
  // A new HazardRec is created for each DAG and owned by SchedBoundary.
 | 
						|
  // Destroying and reconstructing it is very expensive though. So keep
 | 
						|
  // invalid, placeholder HazardRecs.
 | 
						|
  if (HazardRec && HazardRec->isEnabled()) {
 | 
						|
    delete HazardRec;
 | 
						|
    HazardRec = nullptr;
 | 
						|
  }
 | 
						|
  Available.clear();
 | 
						|
  Pending.clear();
 | 
						|
  CheckPending = false;
 | 
						|
  NextSUs.clear();
 | 
						|
  CurrCycle = 0;
 | 
						|
  CurrMOps = 0;
 | 
						|
  MinReadyCycle = UINT_MAX;
 | 
						|
  ExpectedLatency = 0;
 | 
						|
  DependentLatency = 0;
 | 
						|
  RetiredMOps = 0;
 | 
						|
  MaxExecutedResCount = 0;
 | 
						|
  ZoneCritResIdx = 0;
 | 
						|
  IsResourceLimited = false;
 | 
						|
  ReservedCycles.clear();
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Track the maximum number of stall cycles that could arise either from the
 | 
						|
  // latency of a DAG edge or the number of cycles that a processor resource is
 | 
						|
  // reserved (SchedBoundary::ReservedCycles).
 | 
						|
  MaxObservedStall = 0;
 | 
						|
#endif
 | 
						|
  // Reserve a zero-count for invalid CritResIdx.
 | 
						|
  ExecutedResCounts.resize(1);
 | 
						|
  assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
 | 
						|
}
 | 
						|
 | 
						|
void SchedRemainder::
 | 
						|
init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
 | 
						|
  reset();
 | 
						|
  if (!SchedModel->hasInstrSchedModel())
 | 
						|
    return;
 | 
						|
  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
 | 
						|
  for (std::vector<SUnit>::iterator
 | 
						|
         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
 | 
						|
    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
 | 
						|
    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
 | 
						|
      * SchedModel->getMicroOpFactor();
 | 
						|
    for (TargetSchedModel::ProcResIter
 | 
						|
           PI = SchedModel->getWriteProcResBegin(SC),
 | 
						|
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | 
						|
      unsigned PIdx = PI->ProcResourceIdx;
 | 
						|
      unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | 
						|
      RemainingCounts[PIdx] += (Factor * PI->Cycles);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SchedBoundary::
 | 
						|
init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
 | 
						|
  reset();
 | 
						|
  DAG = dag;
 | 
						|
  SchedModel = smodel;
 | 
						|
  Rem = rem;
 | 
						|
  if (SchedModel->hasInstrSchedModel()) {
 | 
						|
    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
 | 
						|
    ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
 | 
						|
/// these "soft stalls" differently than the hard stall cycles based on CPU
 | 
						|
/// resources and computed by checkHazard(). A fully in-order model
 | 
						|
/// (MicroOpBufferSize==0) will not make use of this since instructions are not
 | 
						|
/// available for scheduling until they are ready. However, a weaker in-order
 | 
						|
/// model may use this for heuristics. For example, if a processor has in-order
 | 
						|
/// behavior when reading certain resources, this may come into play.
 | 
						|
unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
 | 
						|
  if (!SU->isUnbuffered)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
 | 
						|
  if (ReadyCycle > CurrCycle)
 | 
						|
    return ReadyCycle - CurrCycle;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the next cycle at which the given processor resource can be
 | 
						|
/// scheduled.
 | 
						|
unsigned SchedBoundary::
 | 
						|
getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
 | 
						|
  unsigned NextUnreserved = ReservedCycles[PIdx];
 | 
						|
  // If this resource has never been used, always return cycle zero.
 | 
						|
  if (NextUnreserved == InvalidCycle)
 | 
						|
    return 0;
 | 
						|
  // For bottom-up scheduling add the cycles needed for the current operation.
 | 
						|
  if (!isTop())
 | 
						|
    NextUnreserved += Cycles;
 | 
						|
  return NextUnreserved;
 | 
						|
}
 | 
						|
 | 
						|
/// Does this SU have a hazard within the current instruction group.
 | 
						|
///
 | 
						|
/// The scheduler supports two modes of hazard recognition. The first is the
 | 
						|
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
 | 
						|
/// supports highly complicated in-order reservation tables
 | 
						|
/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
 | 
						|
///
 | 
						|
/// The second is a streamlined mechanism that checks for hazards based on
 | 
						|
/// simple counters that the scheduler itself maintains. It explicitly checks
 | 
						|
/// for instruction dispatch limitations, including the number of micro-ops that
 | 
						|
/// can dispatch per cycle.
 | 
						|
///
 | 
						|
/// TODO: Also check whether the SU must start a new group.
 | 
						|
bool SchedBoundary::checkHazard(SUnit *SU) {
 | 
						|
  if (HazardRec->isEnabled()
 | 
						|
      && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
 | 
						|
  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
 | 
						|
    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
 | 
						|
          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
 | 
						|
    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | 
						|
    for (TargetSchedModel::ProcResIter
 | 
						|
           PI = SchedModel->getWriteProcResBegin(SC),
 | 
						|
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | 
						|
      unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
 | 
						|
      if (NRCycle > CurrCycle) {
 | 
						|
#ifndef NDEBUG
 | 
						|
        MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
 | 
						|
#endif
 | 
						|
        DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
 | 
						|
              << SchedModel->getResourceName(PI->ProcResourceIdx)
 | 
						|
              << "=" << NRCycle << "c\n");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Find the unscheduled node in ReadySUs with the highest latency.
 | 
						|
unsigned SchedBoundary::
 | 
						|
findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
 | 
						|
  SUnit *LateSU = nullptr;
 | 
						|
  unsigned RemLatency = 0;
 | 
						|
  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned L = getUnscheduledLatency(*I);
 | 
						|
    if (L > RemLatency) {
 | 
						|
      RemLatency = L;
 | 
						|
      LateSU = *I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (LateSU) {
 | 
						|
    DEBUG(dbgs() << Available.getName() << " RemLatency SU("
 | 
						|
          << LateSU->NodeNum << ") " << RemLatency << "c\n");
 | 
						|
  }
 | 
						|
  return RemLatency;
 | 
						|
}
 | 
						|
 | 
						|
// Count resources in this zone and the remaining unscheduled
 | 
						|
// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
 | 
						|
// resource index, or zero if the zone is issue limited.
 | 
						|
unsigned SchedBoundary::
 | 
						|
getOtherResourceCount(unsigned &OtherCritIdx) {
 | 
						|
  OtherCritIdx = 0;
 | 
						|
  if (!SchedModel->hasInstrSchedModel())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  unsigned OtherCritCount = Rem->RemIssueCount
 | 
						|
    + (RetiredMOps * SchedModel->getMicroOpFactor());
 | 
						|
  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
 | 
						|
        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
 | 
						|
  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
 | 
						|
       PIdx != PEnd; ++PIdx) {
 | 
						|
    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
 | 
						|
    if (OtherCount > OtherCritCount) {
 | 
						|
      OtherCritCount = OtherCount;
 | 
						|
      OtherCritIdx = PIdx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (OtherCritIdx) {
 | 
						|
    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
 | 
						|
          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
 | 
						|
          << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
 | 
						|
  }
 | 
						|
  return OtherCritCount;
 | 
						|
}
 | 
						|
 | 
						|
void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
 | 
						|
  assert(SU->getInstr() && "Scheduled SUnit must have instr");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // ReadyCycle was been bumped up to the CurrCycle when this node was
 | 
						|
  // scheduled, but CurrCycle may have been eagerly advanced immediately after
 | 
						|
  // scheduling, so may now be greater than ReadyCycle.
 | 
						|
  if (ReadyCycle > CurrCycle)
 | 
						|
    MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
 | 
						|
#endif
 | 
						|
 | 
						|
  if (ReadyCycle < MinReadyCycle)
 | 
						|
    MinReadyCycle = ReadyCycle;
 | 
						|
 | 
						|
  // Check for interlocks first. For the purpose of other heuristics, an
 | 
						|
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
 | 
						|
  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
 | 
						|
  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
 | 
						|
    Pending.push(SU);
 | 
						|
  else
 | 
						|
    Available.push(SU);
 | 
						|
 | 
						|
  // Record this node as an immediate dependent of the scheduled node.
 | 
						|
  NextSUs.insert(SU);
 | 
						|
}
 | 
						|
 | 
						|
void SchedBoundary::releaseTopNode(SUnit *SU) {
 | 
						|
  if (SU->isScheduled)
 | 
						|
    return;
 | 
						|
 | 
						|
  releaseNode(SU, SU->TopReadyCycle);
 | 
						|
}
 | 
						|
 | 
						|
void SchedBoundary::releaseBottomNode(SUnit *SU) {
 | 
						|
  if (SU->isScheduled)
 | 
						|
    return;
 | 
						|
 | 
						|
  releaseNode(SU, SU->BotReadyCycle);
 | 
						|
}
 | 
						|
 | 
						|
/// Move the boundary of scheduled code by one cycle.
 | 
						|
void SchedBoundary::bumpCycle(unsigned NextCycle) {
 | 
						|
  if (SchedModel->getMicroOpBufferSize() == 0) {
 | 
						|
    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
 | 
						|
    if (MinReadyCycle > NextCycle)
 | 
						|
      NextCycle = MinReadyCycle;
 | 
						|
  }
 | 
						|
  // Update the current micro-ops, which will issue in the next cycle.
 | 
						|
  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
 | 
						|
  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
 | 
						|
 | 
						|
  // Decrement DependentLatency based on the next cycle.
 | 
						|
  if ((NextCycle - CurrCycle) > DependentLatency)
 | 
						|
    DependentLatency = 0;
 | 
						|
  else
 | 
						|
    DependentLatency -= (NextCycle - CurrCycle);
 | 
						|
 | 
						|
  if (!HazardRec->isEnabled()) {
 | 
						|
    // Bypass HazardRec virtual calls.
 | 
						|
    CurrCycle = NextCycle;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // Bypass getHazardType calls in case of long latency.
 | 
						|
    for (; CurrCycle != NextCycle; ++CurrCycle) {
 | 
						|
      if (isTop())
 | 
						|
        HazardRec->AdvanceCycle();
 | 
						|
      else
 | 
						|
        HazardRec->RecedeCycle();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CheckPending = true;
 | 
						|
  unsigned LFactor = SchedModel->getLatencyFactor();
 | 
						|
  IsResourceLimited =
 | 
						|
    (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
 | 
						|
    > (int)LFactor;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
 | 
						|
}
 | 
						|
 | 
						|
void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
 | 
						|
  ExecutedResCounts[PIdx] += Count;
 | 
						|
  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
 | 
						|
    MaxExecutedResCount = ExecutedResCounts[PIdx];
 | 
						|
}
 | 
						|
 | 
						|
/// Add the given processor resource to this scheduled zone.
 | 
						|
///
 | 
						|
/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
 | 
						|
/// during which this resource is consumed.
 | 
						|
///
 | 
						|
/// \return the next cycle at which the instruction may execute without
 | 
						|
/// oversubscribing resources.
 | 
						|
unsigned SchedBoundary::
 | 
						|
countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
 | 
						|
  unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | 
						|
  unsigned Count = Factor * Cycles;
 | 
						|
  DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
 | 
						|
        << " +" << Cycles << "x" << Factor << "u\n");
 | 
						|
 | 
						|
  // Update Executed resources counts.
 | 
						|
  incExecutedResources(PIdx, Count);
 | 
						|
  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
 | 
						|
  Rem->RemainingCounts[PIdx] -= Count;
 | 
						|
 | 
						|
  // Check if this resource exceeds the current critical resource. If so, it
 | 
						|
  // becomes the critical resource.
 | 
						|
  if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
 | 
						|
    ZoneCritResIdx = PIdx;
 | 
						|
    DEBUG(dbgs() << "  *** Critical resource "
 | 
						|
          << SchedModel->getResourceName(PIdx) << ": "
 | 
						|
          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
 | 
						|
  }
 | 
						|
  // For reserved resources, record the highest cycle using the resource.
 | 
						|
  unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
 | 
						|
  if (NextAvailable > CurrCycle) {
 | 
						|
    DEBUG(dbgs() << "  Resource conflict: "
 | 
						|
          << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
 | 
						|
          << NextAvailable << "\n");
 | 
						|
  }
 | 
						|
  return NextAvailable;
 | 
						|
}
 | 
						|
 | 
						|
/// Move the boundary of scheduled code by one SUnit.
 | 
						|
void SchedBoundary::bumpNode(SUnit *SU) {
 | 
						|
  // Update the reservation table.
 | 
						|
  if (HazardRec->isEnabled()) {
 | 
						|
    if (!isTop() && SU->isCall) {
 | 
						|
      // Calls are scheduled with their preceding instructions. For bottom-up
 | 
						|
      // scheduling, clear the pipeline state before emitting.
 | 
						|
      HazardRec->Reset();
 | 
						|
    }
 | 
						|
    HazardRec->EmitInstruction(SU);
 | 
						|
  }
 | 
						|
  // checkHazard should prevent scheduling multiple instructions per cycle that
 | 
						|
  // exceed the issue width.
 | 
						|
  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | 
						|
  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
 | 
						|
  assert(
 | 
						|
      (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
 | 
						|
      "Cannot schedule this instruction's MicroOps in the current cycle.");
 | 
						|
 | 
						|
  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
 | 
						|
  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
 | 
						|
 | 
						|
  unsigned NextCycle = CurrCycle;
 | 
						|
  switch (SchedModel->getMicroOpBufferSize()) {
 | 
						|
  case 0:
 | 
						|
    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    if (ReadyCycle > NextCycle) {
 | 
						|
      NextCycle = ReadyCycle;
 | 
						|
      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // We don't currently model the OOO reorder buffer, so consider all
 | 
						|
    // scheduled MOps to be "retired". We do loosely model in-order resource
 | 
						|
    // latency. If this instruction uses an in-order resource, account for any
 | 
						|
    // likely stall cycles.
 | 
						|
    if (SU->isUnbuffered && ReadyCycle > NextCycle)
 | 
						|
      NextCycle = ReadyCycle;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  RetiredMOps += IncMOps;
 | 
						|
 | 
						|
  // Update resource counts and critical resource.
 | 
						|
  if (SchedModel->hasInstrSchedModel()) {
 | 
						|
    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
 | 
						|
    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
 | 
						|
    Rem->RemIssueCount -= DecRemIssue;
 | 
						|
    if (ZoneCritResIdx) {
 | 
						|
      // Scale scheduled micro-ops for comparing with the critical resource.
 | 
						|
      unsigned ScaledMOps =
 | 
						|
        RetiredMOps * SchedModel->getMicroOpFactor();
 | 
						|
 | 
						|
      // If scaled micro-ops are now more than the previous critical resource by
 | 
						|
      // a full cycle, then micro-ops issue becomes critical.
 | 
						|
      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
 | 
						|
          >= (int)SchedModel->getLatencyFactor()) {
 | 
						|
        ZoneCritResIdx = 0;
 | 
						|
        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
 | 
						|
              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (TargetSchedModel::ProcResIter
 | 
						|
           PI = SchedModel->getWriteProcResBegin(SC),
 | 
						|
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | 
						|
      unsigned RCycle =
 | 
						|
        countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
 | 
						|
      if (RCycle > NextCycle)
 | 
						|
        NextCycle = RCycle;
 | 
						|
    }
 | 
						|
    if (SU->hasReservedResource) {
 | 
						|
      // For reserved resources, record the highest cycle using the resource.
 | 
						|
      // For top-down scheduling, this is the cycle in which we schedule this
 | 
						|
      // instruction plus the number of cycles the operations reserves the
 | 
						|
      // resource. For bottom-up is it simply the instruction's cycle.
 | 
						|
      for (TargetSchedModel::ProcResIter
 | 
						|
             PI = SchedModel->getWriteProcResBegin(SC),
 | 
						|
             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | 
						|
        unsigned PIdx = PI->ProcResourceIdx;
 | 
						|
        if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
 | 
						|
          if (isTop()) {
 | 
						|
            ReservedCycles[PIdx] =
 | 
						|
              std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
 | 
						|
          }
 | 
						|
          else
 | 
						|
            ReservedCycles[PIdx] = NextCycle;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Update ExpectedLatency and DependentLatency.
 | 
						|
  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
 | 
						|
  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
 | 
						|
  if (SU->getDepth() > TopLatency) {
 | 
						|
    TopLatency = SU->getDepth();
 | 
						|
    DEBUG(dbgs() << "  " << Available.getName()
 | 
						|
          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
 | 
						|
  }
 | 
						|
  if (SU->getHeight() > BotLatency) {
 | 
						|
    BotLatency = SU->getHeight();
 | 
						|
    DEBUG(dbgs() << "  " << Available.getName()
 | 
						|
          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
 | 
						|
  }
 | 
						|
  // If we stall for any reason, bump the cycle.
 | 
						|
  if (NextCycle > CurrCycle) {
 | 
						|
    bumpCycle(NextCycle);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
 | 
						|
    // resource limited. If a stall occurred, bumpCycle does this.
 | 
						|
    unsigned LFactor = SchedModel->getLatencyFactor();
 | 
						|
    IsResourceLimited =
 | 
						|
      (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
 | 
						|
      > (int)LFactor;
 | 
						|
  }
 | 
						|
  // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
 | 
						|
  // resets CurrMOps. Loop to handle instructions with more MOps than issue in
 | 
						|
  // one cycle.  Since we commonly reach the max MOps here, opportunistically
 | 
						|
  // bump the cycle to avoid uselessly checking everything in the readyQ.
 | 
						|
  CurrMOps += IncMOps;
 | 
						|
  while (CurrMOps >= SchedModel->getIssueWidth()) {
 | 
						|
    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
 | 
						|
          << " at cycle " << CurrCycle << '\n');
 | 
						|
    bumpCycle(++NextCycle);
 | 
						|
  }
 | 
						|
  DEBUG(dumpScheduledState());
 | 
						|
}
 | 
						|
 | 
						|
/// Release pending ready nodes in to the available queue. This makes them
 | 
						|
/// visible to heuristics.
 | 
						|
void SchedBoundary::releasePending() {
 | 
						|
  // If the available queue is empty, it is safe to reset MinReadyCycle.
 | 
						|
  if (Available.empty())
 | 
						|
    MinReadyCycle = UINT_MAX;
 | 
						|
 | 
						|
  // Check to see if any of the pending instructions are ready to issue.  If
 | 
						|
  // so, add them to the available queue.
 | 
						|
  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
 | 
						|
  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
 | 
						|
    SUnit *SU = *(Pending.begin()+i);
 | 
						|
    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
 | 
						|
 | 
						|
    if (ReadyCycle < MinReadyCycle)
 | 
						|
      MinReadyCycle = ReadyCycle;
 | 
						|
 | 
						|
    if (!IsBuffered && ReadyCycle > CurrCycle)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (checkHazard(SU))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Available.push(SU);
 | 
						|
    Pending.remove(Pending.begin()+i);
 | 
						|
    --i; --e;
 | 
						|
  }
 | 
						|
  DEBUG(if (!Pending.empty()) Pending.dump());
 | 
						|
  CheckPending = false;
 | 
						|
}
 | 
						|
 | 
						|
/// Remove SU from the ready set for this boundary.
 | 
						|
void SchedBoundary::removeReady(SUnit *SU) {
 | 
						|
  if (Available.isInQueue(SU))
 | 
						|
    Available.remove(Available.find(SU));
 | 
						|
  else {
 | 
						|
    assert(Pending.isInQueue(SU) && "bad ready count");
 | 
						|
    Pending.remove(Pending.find(SU));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If this queue only has one ready candidate, return it. As a side effect,
 | 
						|
/// defer any nodes that now hit a hazard, and advance the cycle until at least
 | 
						|
/// one node is ready. If multiple instructions are ready, return NULL.
 | 
						|
SUnit *SchedBoundary::pickOnlyChoice() {
 | 
						|
  if (CheckPending)
 | 
						|
    releasePending();
 | 
						|
 | 
						|
  if (CurrMOps > 0) {
 | 
						|
    // Defer any ready instrs that now have a hazard.
 | 
						|
    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
 | 
						|
      if (checkHazard(*I)) {
 | 
						|
        Pending.push(*I);
 | 
						|
        I = Available.remove(I);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0; Available.empty(); ++i) {
 | 
						|
//  FIXME: Re-enable assert once PR20057 is resolved.
 | 
						|
//    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
 | 
						|
//           "permanent hazard");
 | 
						|
    (void)i;
 | 
						|
    bumpCycle(CurrCycle + 1);
 | 
						|
    releasePending();
 | 
						|
  }
 | 
						|
  if (Available.size() == 1)
 | 
						|
    return *Available.begin();
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
// This is useful information to dump after bumpNode.
 | 
						|
// Note that the Queue contents are more useful before pickNodeFromQueue.
 | 
						|
void SchedBoundary::dumpScheduledState() {
 | 
						|
  unsigned ResFactor;
 | 
						|
  unsigned ResCount;
 | 
						|
  if (ZoneCritResIdx) {
 | 
						|
    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
 | 
						|
    ResCount = getResourceCount(ZoneCritResIdx);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    ResFactor = SchedModel->getMicroOpFactor();
 | 
						|
    ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
 | 
						|
  }
 | 
						|
  unsigned LFactor = SchedModel->getLatencyFactor();
 | 
						|
  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
 | 
						|
         << "  Retired: " << RetiredMOps;
 | 
						|
  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
 | 
						|
  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
 | 
						|
         << ResCount / ResFactor << " "
 | 
						|
         << SchedModel->getResourceName(ZoneCritResIdx)
 | 
						|
         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
 | 
						|
         << (IsResourceLimited ? "  - Resource" : "  - Latency")
 | 
						|
         << " limited.\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// GenericScheduler - Generic implementation of MachineSchedStrategy.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void GenericSchedulerBase::SchedCandidate::
 | 
						|
initResourceDelta(const ScheduleDAGMI *DAG,
 | 
						|
                  const TargetSchedModel *SchedModel) {
 | 
						|
  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
 | 
						|
    return;
 | 
						|
 | 
						|
  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | 
						|
  for (TargetSchedModel::ProcResIter
 | 
						|
         PI = SchedModel->getWriteProcResBegin(SC),
 | 
						|
         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | 
						|
    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
 | 
						|
      ResDelta.CritResources += PI->Cycles;
 | 
						|
    if (PI->ProcResourceIdx == Policy.DemandResIdx)
 | 
						|
      ResDelta.DemandedResources += PI->Cycles;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Set the CandPolicy given a scheduling zone given the current resources and
 | 
						|
/// latencies inside and outside the zone.
 | 
						|
void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
 | 
						|
                                     bool IsPostRA,
 | 
						|
                                     SchedBoundary &CurrZone,
 | 
						|
                                     SchedBoundary *OtherZone) {
 | 
						|
  // Apply preemptive heuristics based on the the total latency and resources
 | 
						|
  // inside and outside this zone. Potential stalls should be considered before
 | 
						|
  // following this policy.
 | 
						|
 | 
						|
  // Compute remaining latency. We need this both to determine whether the
 | 
						|
  // overall schedule has become latency-limited and whether the instructions
 | 
						|
  // outside this zone are resource or latency limited.
 | 
						|
  //
 | 
						|
  // The "dependent" latency is updated incrementally during scheduling as the
 | 
						|
  // max height/depth of scheduled nodes minus the cycles since it was
 | 
						|
  // scheduled:
 | 
						|
  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
 | 
						|
  //
 | 
						|
  // The "independent" latency is the max ready queue depth:
 | 
						|
  //   ILat = max N.depth for N in Available|Pending
 | 
						|
  //
 | 
						|
  // RemainingLatency is the greater of independent and dependent latency.
 | 
						|
  unsigned RemLatency = CurrZone.getDependentLatency();
 | 
						|
  RemLatency = std::max(RemLatency,
 | 
						|
                        CurrZone.findMaxLatency(CurrZone.Available.elements()));
 | 
						|
  RemLatency = std::max(RemLatency,
 | 
						|
                        CurrZone.findMaxLatency(CurrZone.Pending.elements()));
 | 
						|
 | 
						|
  // Compute the critical resource outside the zone.
 | 
						|
  unsigned OtherCritIdx = 0;
 | 
						|
  unsigned OtherCount =
 | 
						|
    OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
 | 
						|
 | 
						|
  bool OtherResLimited = false;
 | 
						|
  if (SchedModel->hasInstrSchedModel()) {
 | 
						|
    unsigned LFactor = SchedModel->getLatencyFactor();
 | 
						|
    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
 | 
						|
  }
 | 
						|
  // Schedule aggressively for latency in PostRA mode. We don't check for
 | 
						|
  // acyclic latency during PostRA, and highly out-of-order processors will
 | 
						|
  // skip PostRA scheduling.
 | 
						|
  if (!OtherResLimited) {
 | 
						|
    if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
 | 
						|
      Policy.ReduceLatency |= true;
 | 
						|
      DEBUG(dbgs() << "  " << CurrZone.Available.getName()
 | 
						|
            << " RemainingLatency " << RemLatency << " + "
 | 
						|
            << CurrZone.getCurrCycle() << "c > CritPath "
 | 
						|
            << Rem.CriticalPath << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If the same resource is limiting inside and outside the zone, do nothing.
 | 
						|
  if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
 | 
						|
    return;
 | 
						|
 | 
						|
  DEBUG(
 | 
						|
    if (CurrZone.isResourceLimited()) {
 | 
						|
      dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
 | 
						|
             << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
 | 
						|
             << "\n";
 | 
						|
    }
 | 
						|
    if (OtherResLimited)
 | 
						|
      dbgs() << "  RemainingLimit: "
 | 
						|
             << SchedModel->getResourceName(OtherCritIdx) << "\n";
 | 
						|
    if (!CurrZone.isResourceLimited() && !OtherResLimited)
 | 
						|
      dbgs() << "  Latency limited both directions.\n");
 | 
						|
 | 
						|
  if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
 | 
						|
    Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
 | 
						|
 | 
						|
  if (OtherResLimited)
 | 
						|
    Policy.DemandResIdx = OtherCritIdx;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
const char *GenericSchedulerBase::getReasonStr(
 | 
						|
  GenericSchedulerBase::CandReason Reason) {
 | 
						|
  switch (Reason) {
 | 
						|
  case NoCand:         return "NOCAND    ";
 | 
						|
  case PhysRegCopy:    return "PREG-COPY";
 | 
						|
  case RegExcess:      return "REG-EXCESS";
 | 
						|
  case RegCritical:    return "REG-CRIT  ";
 | 
						|
  case Stall:          return "STALL     ";
 | 
						|
  case Cluster:        return "CLUSTER   ";
 | 
						|
  case Weak:           return "WEAK      ";
 | 
						|
  case RegMax:         return "REG-MAX   ";
 | 
						|
  case ResourceReduce: return "RES-REDUCE";
 | 
						|
  case ResourceDemand: return "RES-DEMAND";
 | 
						|
  case TopDepthReduce: return "TOP-DEPTH ";
 | 
						|
  case TopPathReduce:  return "TOP-PATH  ";
 | 
						|
  case BotHeightReduce:return "BOT-HEIGHT";
 | 
						|
  case BotPathReduce:  return "BOT-PATH  ";
 | 
						|
  case NextDefUse:     return "DEF-USE   ";
 | 
						|
  case NodeOrder:      return "ORDER     ";
 | 
						|
  };
 | 
						|
  llvm_unreachable("Unknown reason!");
 | 
						|
}
 | 
						|
 | 
						|
void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
 | 
						|
  PressureChange P;
 | 
						|
  unsigned ResIdx = 0;
 | 
						|
  unsigned Latency = 0;
 | 
						|
  switch (Cand.Reason) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case RegExcess:
 | 
						|
    P = Cand.RPDelta.Excess;
 | 
						|
    break;
 | 
						|
  case RegCritical:
 | 
						|
    P = Cand.RPDelta.CriticalMax;
 | 
						|
    break;
 | 
						|
  case RegMax:
 | 
						|
    P = Cand.RPDelta.CurrentMax;
 | 
						|
    break;
 | 
						|
  case ResourceReduce:
 | 
						|
    ResIdx = Cand.Policy.ReduceResIdx;
 | 
						|
    break;
 | 
						|
  case ResourceDemand:
 | 
						|
    ResIdx = Cand.Policy.DemandResIdx;
 | 
						|
    break;
 | 
						|
  case TopDepthReduce:
 | 
						|
    Latency = Cand.SU->getDepth();
 | 
						|
    break;
 | 
						|
  case TopPathReduce:
 | 
						|
    Latency = Cand.SU->getHeight();
 | 
						|
    break;
 | 
						|
  case BotHeightReduce:
 | 
						|
    Latency = Cand.SU->getHeight();
 | 
						|
    break;
 | 
						|
  case BotPathReduce:
 | 
						|
    Latency = Cand.SU->getDepth();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
 | 
						|
  if (P.isValid())
 | 
						|
    dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
 | 
						|
           << ":" << P.getUnitInc() << " ";
 | 
						|
  else
 | 
						|
    dbgs() << "      ";
 | 
						|
  if (ResIdx)
 | 
						|
    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
 | 
						|
  else
 | 
						|
    dbgs() << "         ";
 | 
						|
  if (Latency)
 | 
						|
    dbgs() << " " << Latency << " cycles ";
 | 
						|
  else
 | 
						|
    dbgs() << "          ";
 | 
						|
  dbgs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// Return true if this heuristic determines order.
 | 
						|
static bool tryLess(int TryVal, int CandVal,
 | 
						|
                    GenericSchedulerBase::SchedCandidate &TryCand,
 | 
						|
                    GenericSchedulerBase::SchedCandidate &Cand,
 | 
						|
                    GenericSchedulerBase::CandReason Reason) {
 | 
						|
  if (TryVal < CandVal) {
 | 
						|
    TryCand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (TryVal > CandVal) {
 | 
						|
    if (Cand.Reason > Reason)
 | 
						|
      Cand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Cand.setRepeat(Reason);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool tryGreater(int TryVal, int CandVal,
 | 
						|
                       GenericSchedulerBase::SchedCandidate &TryCand,
 | 
						|
                       GenericSchedulerBase::SchedCandidate &Cand,
 | 
						|
                       GenericSchedulerBase::CandReason Reason) {
 | 
						|
  if (TryVal > CandVal) {
 | 
						|
    TryCand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (TryVal < CandVal) {
 | 
						|
    if (Cand.Reason > Reason)
 | 
						|
      Cand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Cand.setRepeat(Reason);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
 | 
						|
                       GenericSchedulerBase::SchedCandidate &Cand,
 | 
						|
                       SchedBoundary &Zone) {
 | 
						|
  if (Zone.isTop()) {
 | 
						|
    if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
 | 
						|
      if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | 
						|
                  TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | 
						|
                   TryCand, Cand, GenericSchedulerBase::TopPathReduce))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
 | 
						|
      if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | 
						|
                  TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | 
						|
                   TryCand, Cand, GenericSchedulerBase::BotPathReduce))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
 | 
						|
                      bool IsTop) {
 | 
						|
  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
 | 
						|
        << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
 | 
						|
}
 | 
						|
 | 
						|
void GenericScheduler::initialize(ScheduleDAGMI *dag) {
 | 
						|
  assert(dag->hasVRegLiveness() &&
 | 
						|
         "(PreRA)GenericScheduler needs vreg liveness");
 | 
						|
  DAG = static_cast<ScheduleDAGMILive*>(dag);
 | 
						|
  SchedModel = DAG->getSchedModel();
 | 
						|
  TRI = DAG->TRI;
 | 
						|
 | 
						|
  Rem.init(DAG, SchedModel);
 | 
						|
  Top.init(DAG, SchedModel, &Rem);
 | 
						|
  Bot.init(DAG, SchedModel, &Rem);
 | 
						|
 | 
						|
  // Initialize resource counts.
 | 
						|
 | 
						|
  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
 | 
						|
  // are disabled, then these HazardRecs will be disabled.
 | 
						|
  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
 | 
						|
  if (!Top.HazardRec) {
 | 
						|
    Top.HazardRec =
 | 
						|
        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
 | 
						|
            Itin, DAG);
 | 
						|
  }
 | 
						|
  if (!Bot.HazardRec) {
 | 
						|
    Bot.HazardRec =
 | 
						|
        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
 | 
						|
            Itin, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize the per-region scheduling policy.
 | 
						|
void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
 | 
						|
                                  MachineBasicBlock::iterator End,
 | 
						|
                                  unsigned NumRegionInstrs) {
 | 
						|
  const MachineFunction &MF = *Begin->getParent()->getParent();
 | 
						|
  const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
 | 
						|
 | 
						|
  // Avoid setting up the register pressure tracker for small regions to save
 | 
						|
  // compile time. As a rough heuristic, only track pressure when the number of
 | 
						|
  // schedulable instructions exceeds half the integer register file.
 | 
						|
  RegionPolicy.ShouldTrackPressure = true;
 | 
						|
  for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
 | 
						|
    MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
 | 
						|
    if (TLI->isTypeLegal(LegalIntVT)) {
 | 
						|
      unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
 | 
						|
        TLI->getRegClassFor(LegalIntVT));
 | 
						|
      RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For generic targets, we default to bottom-up, because it's simpler and more
 | 
						|
  // compile-time optimizations have been implemented in that direction.
 | 
						|
  RegionPolicy.OnlyBottomUp = true;
 | 
						|
 | 
						|
  // Allow the subtarget to override default policy.
 | 
						|
  MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
 | 
						|
                                        NumRegionInstrs);
 | 
						|
 | 
						|
  // After subtarget overrides, apply command line options.
 | 
						|
  if (!EnableRegPressure)
 | 
						|
    RegionPolicy.ShouldTrackPressure = false;
 | 
						|
 | 
						|
  // Check -misched-topdown/bottomup can force or unforce scheduling direction.
 | 
						|
  // e.g. -misched-bottomup=false allows scheduling in both directions.
 | 
						|
  assert((!ForceTopDown || !ForceBottomUp) &&
 | 
						|
         "-misched-topdown incompatible with -misched-bottomup");
 | 
						|
  if (ForceBottomUp.getNumOccurrences() > 0) {
 | 
						|
    RegionPolicy.OnlyBottomUp = ForceBottomUp;
 | 
						|
    if (RegionPolicy.OnlyBottomUp)
 | 
						|
      RegionPolicy.OnlyTopDown = false;
 | 
						|
  }
 | 
						|
  if (ForceTopDown.getNumOccurrences() > 0) {
 | 
						|
    RegionPolicy.OnlyTopDown = ForceTopDown;
 | 
						|
    if (RegionPolicy.OnlyTopDown)
 | 
						|
      RegionPolicy.OnlyBottomUp = false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
 | 
						|
/// critical path by more cycles than it takes to drain the instruction buffer.
 | 
						|
/// We estimate an upper bounds on in-flight instructions as:
 | 
						|
///
 | 
						|
/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
 | 
						|
/// InFlightIterations = AcyclicPath / CyclesPerIteration
 | 
						|
/// InFlightResources = InFlightIterations * LoopResources
 | 
						|
///
 | 
						|
/// TODO: Check execution resources in addition to IssueCount.
 | 
						|
void GenericScheduler::checkAcyclicLatency() {
 | 
						|
  if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Scaled number of cycles per loop iteration.
 | 
						|
  unsigned IterCount =
 | 
						|
    std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
 | 
						|
             Rem.RemIssueCount);
 | 
						|
  // Scaled acyclic critical path.
 | 
						|
  unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
 | 
						|
  // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
 | 
						|
  unsigned InFlightCount =
 | 
						|
    (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
 | 
						|
  unsigned BufferLimit =
 | 
						|
    SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
 | 
						|
 | 
						|
  Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "IssueCycles="
 | 
						|
        << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
 | 
						|
        << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
 | 
						|
        << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
 | 
						|
        << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
 | 
						|
        << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
 | 
						|
        if (Rem.IsAcyclicLatencyLimited)
 | 
						|
          dbgs() << "  ACYCLIC LATENCY LIMIT\n");
 | 
						|
}
 | 
						|
 | 
						|
void GenericScheduler::registerRoots() {
 | 
						|
  Rem.CriticalPath = DAG->ExitSU.getDepth();
 | 
						|
 | 
						|
  // Some roots may not feed into ExitSU. Check all of them in case.
 | 
						|
  for (std::vector<SUnit*>::const_iterator
 | 
						|
         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
 | 
						|
    if ((*I)->getDepth() > Rem.CriticalPath)
 | 
						|
      Rem.CriticalPath = (*I)->getDepth();
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
 | 
						|
  if (DumpCriticalPathLength) {
 | 
						|
    errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
 | 
						|
  }
 | 
						|
 | 
						|
  if (EnableCyclicPath) {
 | 
						|
    Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
 | 
						|
    checkAcyclicLatency();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool tryPressure(const PressureChange &TryP,
 | 
						|
                        const PressureChange &CandP,
 | 
						|
                        GenericSchedulerBase::SchedCandidate &TryCand,
 | 
						|
                        GenericSchedulerBase::SchedCandidate &Cand,
 | 
						|
                        GenericSchedulerBase::CandReason Reason) {
 | 
						|
  int TryRank = TryP.getPSetOrMax();
 | 
						|
  int CandRank = CandP.getPSetOrMax();
 | 
						|
  // If both candidates affect the same set, go with the smallest increase.
 | 
						|
  if (TryRank == CandRank) {
 | 
						|
    return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
 | 
						|
                   Reason);
 | 
						|
  }
 | 
						|
  // If one candidate decreases and the other increases, go with it.
 | 
						|
  // Invalid candidates have UnitInc==0.
 | 
						|
  if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
 | 
						|
                 Reason)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // If the candidates are decreasing pressure, reverse priority.
 | 
						|
  if (TryP.getUnitInc() < 0)
 | 
						|
    std::swap(TryRank, CandRank);
 | 
						|
  return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
 | 
						|
  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
 | 
						|
}
 | 
						|
 | 
						|
/// Minimize physical register live ranges. Regalloc wants them adjacent to
 | 
						|
/// their physreg def/use.
 | 
						|
///
 | 
						|
/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
 | 
						|
/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
 | 
						|
/// with the operation that produces or consumes the physreg. We'll do this when
 | 
						|
/// regalloc has support for parallel copies.
 | 
						|
static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
 | 
						|
  const MachineInstr *MI = SU->getInstr();
 | 
						|
  if (!MI->isCopy())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  unsigned ScheduledOper = isTop ? 1 : 0;
 | 
						|
  unsigned UnscheduledOper = isTop ? 0 : 1;
 | 
						|
  // If we have already scheduled the physreg produce/consumer, immediately
 | 
						|
  // schedule the copy.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(
 | 
						|
        MI->getOperand(ScheduledOper).getReg()))
 | 
						|
    return 1;
 | 
						|
  // If the physreg is at the boundary, defer it. Otherwise schedule it
 | 
						|
  // immediately to free the dependent. We can hoist the copy later.
 | 
						|
  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(
 | 
						|
        MI->getOperand(UnscheduledOper).getReg()))
 | 
						|
    return AtBoundary ? -1 : 1;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Apply a set of heursitics to a new candidate. Heuristics are currently
 | 
						|
/// hierarchical. This may be more efficient than a graduated cost model because
 | 
						|
/// we don't need to evaluate all aspects of the model for each node in the
 | 
						|
/// queue. But it's really done to make the heuristics easier to debug and
 | 
						|
/// statistically analyze.
 | 
						|
///
 | 
						|
/// \param Cand provides the policy and current best candidate.
 | 
						|
/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
 | 
						|
/// \param Zone describes the scheduled zone that we are extending.
 | 
						|
/// \param RPTracker describes reg pressure within the scheduled zone.
 | 
						|
/// \param TempTracker is a scratch pressure tracker to reuse in queries.
 | 
						|
void GenericScheduler::tryCandidate(SchedCandidate &Cand,
 | 
						|
                                    SchedCandidate &TryCand,
 | 
						|
                                    SchedBoundary &Zone,
 | 
						|
                                    const RegPressureTracker &RPTracker,
 | 
						|
                                    RegPressureTracker &TempTracker) {
 | 
						|
 | 
						|
  if (DAG->isTrackingPressure()) {
 | 
						|
    // Always initialize TryCand's RPDelta.
 | 
						|
    if (Zone.isTop()) {
 | 
						|
      TempTracker.getMaxDownwardPressureDelta(
 | 
						|
        TryCand.SU->getInstr(),
 | 
						|
        TryCand.RPDelta,
 | 
						|
        DAG->getRegionCriticalPSets(),
 | 
						|
        DAG->getRegPressure().MaxSetPressure);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      if (VerifyScheduling) {
 | 
						|
        TempTracker.getMaxUpwardPressureDelta(
 | 
						|
          TryCand.SU->getInstr(),
 | 
						|
          &DAG->getPressureDiff(TryCand.SU),
 | 
						|
          TryCand.RPDelta,
 | 
						|
          DAG->getRegionCriticalPSets(),
 | 
						|
          DAG->getRegPressure().MaxSetPressure);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        RPTracker.getUpwardPressureDelta(
 | 
						|
          TryCand.SU->getInstr(),
 | 
						|
          DAG->getPressureDiff(TryCand.SU),
 | 
						|
          TryCand.RPDelta,
 | 
						|
          DAG->getRegionCriticalPSets(),
 | 
						|
          DAG->getRegPressure().MaxSetPressure);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(if (TryCand.RPDelta.Excess.isValid())
 | 
						|
          dbgs() << "  SU(" << TryCand.SU->NodeNum << ") "
 | 
						|
                 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
 | 
						|
                 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
 | 
						|
 | 
						|
  // Initialize the candidate if needed.
 | 
						|
  if (!Cand.isValid()) {
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
 | 
						|
                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
 | 
						|
                 TryCand, Cand, PhysRegCopy))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Avoid exceeding the target's limit. If signed PSetID is negative, it is
 | 
						|
  // invalid; convert it to INT_MAX to give it lowest priority.
 | 
						|
  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
 | 
						|
                                               Cand.RPDelta.Excess,
 | 
						|
                                               TryCand, Cand, RegExcess))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Avoid increasing the max critical pressure in the scheduled region.
 | 
						|
  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
 | 
						|
                                               Cand.RPDelta.CriticalMax,
 | 
						|
                                               TryCand, Cand, RegCritical))
 | 
						|
    return;
 | 
						|
 | 
						|
  // For loops that are acyclic path limited, aggressively schedule for latency.
 | 
						|
  // This can result in very long dependence chains scheduled in sequence, so
 | 
						|
  // once every cycle (when CurrMOps == 0), switch to normal heuristics.
 | 
						|
  if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
 | 
						|
      && tryLatency(TryCand, Cand, Zone))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Prioritize instructions that read unbuffered resources by stall cycles.
 | 
						|
  if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
 | 
						|
              Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Keep clustered nodes together to encourage downstream peephole
 | 
						|
  // optimizations which may reduce resource requirements.
 | 
						|
  //
 | 
						|
  // This is a best effort to set things up for a post-RA pass. Optimizations
 | 
						|
  // like generating loads of multiple registers should ideally be done within
 | 
						|
  // the scheduler pass by combining the loads during DAG postprocessing.
 | 
						|
  const SUnit *NextClusterSU =
 | 
						|
    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
 | 
						|
  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
 | 
						|
                 TryCand, Cand, Cluster))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Weak edges are for clustering and other constraints.
 | 
						|
  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
 | 
						|
              getWeakLeft(Cand.SU, Zone.isTop()),
 | 
						|
              TryCand, Cand, Weak)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Avoid increasing the max pressure of the entire region.
 | 
						|
  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
 | 
						|
                                               Cand.RPDelta.CurrentMax,
 | 
						|
                                               TryCand, Cand, RegMax))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Avoid critical resource consumption and balance the schedule.
 | 
						|
  TryCand.initResourceDelta(DAG, SchedModel);
 | 
						|
  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
 | 
						|
              TryCand, Cand, ResourceReduce))
 | 
						|
    return;
 | 
						|
  if (tryGreater(TryCand.ResDelta.DemandedResources,
 | 
						|
                 Cand.ResDelta.DemandedResources,
 | 
						|
                 TryCand, Cand, ResourceDemand))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Avoid serializing long latency dependence chains.
 | 
						|
  // For acyclic path limited loops, latency was already checked above.
 | 
						|
  if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
 | 
						|
      && tryLatency(TryCand, Cand, Zone)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Prefer immediate defs/users of the last scheduled instruction. This is a
 | 
						|
  // local pressure avoidance strategy that also makes the machine code
 | 
						|
  // readable.
 | 
						|
  if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
 | 
						|
                 TryCand, Cand, NextDefUse))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Fall through to original instruction order.
 | 
						|
  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
 | 
						|
      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best candidate from the queue.
 | 
						|
///
 | 
						|
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
 | 
						|
/// DAG building. To adjust for the current scheduling location we need to
 | 
						|
/// maintain the number of vreg uses remaining to be top-scheduled.
 | 
						|
void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
 | 
						|
                                         const RegPressureTracker &RPTracker,
 | 
						|
                                         SchedCandidate &Cand) {
 | 
						|
  ReadyQueue &Q = Zone.Available;
 | 
						|
 | 
						|
  DEBUG(Q.dump());
 | 
						|
 | 
						|
  // getMaxPressureDelta temporarily modifies the tracker.
 | 
						|
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
 | 
						|
 | 
						|
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
 | 
						|
 | 
						|
    SchedCandidate TryCand(Cand.Policy);
 | 
						|
    TryCand.SU = *I;
 | 
						|
    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
 | 
						|
    if (TryCand.Reason != NoCand) {
 | 
						|
      // Initialize resource delta if needed in case future heuristics query it.
 | 
						|
      if (TryCand.ResDelta == SchedResourceDelta())
 | 
						|
        TryCand.initResourceDelta(DAG, SchedModel);
 | 
						|
      Cand.setBest(TryCand);
 | 
						|
      DEBUG(traceCandidate(Cand));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best candidate node from either the top or bottom queue.
 | 
						|
SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
 | 
						|
  // Schedule as far as possible in the direction of no choice. This is most
 | 
						|
  // efficient, but also provides the best heuristics for CriticalPSets.
 | 
						|
  if (SUnit *SU = Bot.pickOnlyChoice()) {
 | 
						|
    IsTopNode = false;
 | 
						|
    DEBUG(dbgs() << "Pick Bot NOCAND\n");
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
  if (SUnit *SU = Top.pickOnlyChoice()) {
 | 
						|
    IsTopNode = true;
 | 
						|
    DEBUG(dbgs() << "Pick Top NOCAND\n");
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
  CandPolicy NoPolicy;
 | 
						|
  SchedCandidate BotCand(NoPolicy);
 | 
						|
  SchedCandidate TopCand(NoPolicy);
 | 
						|
  // Set the bottom-up policy based on the state of the current bottom zone and
 | 
						|
  // the instructions outside the zone, including the top zone.
 | 
						|
  setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
 | 
						|
  // Set the top-down policy based on the state of the current top zone and
 | 
						|
  // the instructions outside the zone, including the bottom zone.
 | 
						|
  setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
 | 
						|
 | 
						|
  // Prefer bottom scheduling when heuristics are silent.
 | 
						|
  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
 | 
						|
  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 | 
						|
 | 
						|
  // If either Q has a single candidate that provides the least increase in
 | 
						|
  // Excess pressure, we can immediately schedule from that Q.
 | 
						|
  //
 | 
						|
  // RegionCriticalPSets summarizes the pressure within the scheduled region and
 | 
						|
  // affects picking from either Q. If scheduling in one direction must
 | 
						|
  // increase pressure for one of the excess PSets, then schedule in that
 | 
						|
  // direction first to provide more freedom in the other direction.
 | 
						|
  if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
 | 
						|
      || (BotCand.Reason == RegCritical
 | 
						|
          && !BotCand.isRepeat(RegCritical)))
 | 
						|
  {
 | 
						|
    IsTopNode = false;
 | 
						|
    tracePick(BotCand, IsTopNode);
 | 
						|
    return BotCand.SU;
 | 
						|
  }
 | 
						|
  // Check if the top Q has a better candidate.
 | 
						|
  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
 | 
						|
  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 | 
						|
 | 
						|
  // Choose the queue with the most important (lowest enum) reason.
 | 
						|
  if (TopCand.Reason < BotCand.Reason) {
 | 
						|
    IsTopNode = true;
 | 
						|
    tracePick(TopCand, IsTopNode);
 | 
						|
    return TopCand.SU;
 | 
						|
  }
 | 
						|
  // Otherwise prefer the bottom candidate, in node order if all else failed.
 | 
						|
  IsTopNode = false;
 | 
						|
  tracePick(BotCand, IsTopNode);
 | 
						|
  return BotCand.SU;
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
 | 
						|
SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
 | 
						|
  if (DAG->top() == DAG->bottom()) {
 | 
						|
    assert(Top.Available.empty() && Top.Pending.empty() &&
 | 
						|
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  SUnit *SU;
 | 
						|
  do {
 | 
						|
    if (RegionPolicy.OnlyTopDown) {
 | 
						|
      SU = Top.pickOnlyChoice();
 | 
						|
      if (!SU) {
 | 
						|
        CandPolicy NoPolicy;
 | 
						|
        SchedCandidate TopCand(NoPolicy);
 | 
						|
        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
 | 
						|
        assert(TopCand.Reason != NoCand && "failed to find a candidate");
 | 
						|
        tracePick(TopCand, true);
 | 
						|
        SU = TopCand.SU;
 | 
						|
      }
 | 
						|
      IsTopNode = true;
 | 
						|
    }
 | 
						|
    else if (RegionPolicy.OnlyBottomUp) {
 | 
						|
      SU = Bot.pickOnlyChoice();
 | 
						|
      if (!SU) {
 | 
						|
        CandPolicy NoPolicy;
 | 
						|
        SchedCandidate BotCand(NoPolicy);
 | 
						|
        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
 | 
						|
        assert(BotCand.Reason != NoCand && "failed to find a candidate");
 | 
						|
        tracePick(BotCand, false);
 | 
						|
        SU = BotCand.SU;
 | 
						|
      }
 | 
						|
      IsTopNode = false;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      SU = pickNodeBidirectional(IsTopNode);
 | 
						|
    }
 | 
						|
  } while (SU->isScheduled);
 | 
						|
 | 
						|
  if (SU->isTopReady())
 | 
						|
    Top.removeReady(SU);
 | 
						|
  if (SU->isBottomReady())
 | 
						|
    Bot.removeReady(SU);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
 | 
						|
  return SU;
 | 
						|
}
 | 
						|
 | 
						|
void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
 | 
						|
 | 
						|
  MachineBasicBlock::iterator InsertPos = SU->getInstr();
 | 
						|
  if (!isTop)
 | 
						|
    ++InsertPos;
 | 
						|
  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
 | 
						|
 | 
						|
  // Find already scheduled copies with a single physreg dependence and move
 | 
						|
  // them just above the scheduled instruction.
 | 
						|
  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
 | 
						|
      continue;
 | 
						|
    SUnit *DepSU = I->getSUnit();
 | 
						|
    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
 | 
						|
      continue;
 | 
						|
    MachineInstr *Copy = DepSU->getInstr();
 | 
						|
    if (!Copy->isCopy())
 | 
						|
      continue;
 | 
						|
    DEBUG(dbgs() << "  Rescheduling physreg copy ";
 | 
						|
          I->getSUnit()->dump(DAG));
 | 
						|
    DAG->moveInstruction(Copy, InsertPos);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update the scheduler's state after scheduling a node. This is the same node
 | 
						|
/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
 | 
						|
/// update it's state based on the current cycle before MachineSchedStrategy
 | 
						|
/// does.
 | 
						|
///
 | 
						|
/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
 | 
						|
/// them here. See comments in biasPhysRegCopy.
 | 
						|
void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
 | 
						|
  if (IsTopNode) {
 | 
						|
    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
 | 
						|
    Top.bumpNode(SU);
 | 
						|
    if (SU->hasPhysRegUses)
 | 
						|
      reschedulePhysRegCopies(SU, true);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
 | 
						|
    Bot.bumpNode(SU);
 | 
						|
    if (SU->hasPhysRegDefs)
 | 
						|
      reschedulePhysRegCopies(SU, false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create the standard converging machine scheduler. This will be used as the
 | 
						|
/// default scheduler if the target does not set a default.
 | 
						|
static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
 | 
						|
  ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
 | 
						|
  // Register DAG post-processors.
 | 
						|
  //
 | 
						|
  // FIXME: extend the mutation API to allow earlier mutations to instantiate
 | 
						|
  // data and pass it to later mutations. Have a single mutation that gathers
 | 
						|
  // the interesting nodes in one pass.
 | 
						|
  DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
 | 
						|
  if (EnableLoadCluster && DAG->TII->enableClusterLoads())
 | 
						|
    DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
 | 
						|
  if (EnableMacroFusion)
 | 
						|
    DAG->addMutation(make_unique<MacroFusion>(DAG->TII));
 | 
						|
  return DAG;
 | 
						|
}
 | 
						|
 | 
						|
static MachineSchedRegistry
 | 
						|
GenericSchedRegistry("converge", "Standard converging scheduler.",
 | 
						|
                     createGenericSchedLive);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
 | 
						|
  DAG = Dag;
 | 
						|
  SchedModel = DAG->getSchedModel();
 | 
						|
  TRI = DAG->TRI;
 | 
						|
 | 
						|
  Rem.init(DAG, SchedModel);
 | 
						|
  Top.init(DAG, SchedModel, &Rem);
 | 
						|
  BotRoots.clear();
 | 
						|
 | 
						|
  // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
 | 
						|
  // or are disabled, then these HazardRecs will be disabled.
 | 
						|
  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
 | 
						|
  if (!Top.HazardRec) {
 | 
						|
    Top.HazardRec =
 | 
						|
        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
 | 
						|
            Itin, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void PostGenericScheduler::registerRoots() {
 | 
						|
  Rem.CriticalPath = DAG->ExitSU.getDepth();
 | 
						|
 | 
						|
  // Some roots may not feed into ExitSU. Check all of them in case.
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_iterator
 | 
						|
         I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
 | 
						|
    if ((*I)->getDepth() > Rem.CriticalPath)
 | 
						|
      Rem.CriticalPath = (*I)->getDepth();
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
 | 
						|
  if (DumpCriticalPathLength) {
 | 
						|
    errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Apply a set of heursitics to a new candidate for PostRA scheduling.
 | 
						|
///
 | 
						|
/// \param Cand provides the policy and current best candidate.
 | 
						|
/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
 | 
						|
void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
 | 
						|
                                        SchedCandidate &TryCand) {
 | 
						|
 | 
						|
  // Initialize the candidate if needed.
 | 
						|
  if (!Cand.isValid()) {
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Prioritize instructions that read unbuffered resources by stall cycles.
 | 
						|
  if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
 | 
						|
              Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Avoid critical resource consumption and balance the schedule.
 | 
						|
  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
 | 
						|
              TryCand, Cand, ResourceReduce))
 | 
						|
    return;
 | 
						|
  if (tryGreater(TryCand.ResDelta.DemandedResources,
 | 
						|
                 Cand.ResDelta.DemandedResources,
 | 
						|
                 TryCand, Cand, ResourceDemand))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Avoid serializing long latency dependence chains.
 | 
						|
  if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Fall through to original instruction order.
 | 
						|
  if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
}
 | 
						|
 | 
						|
void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
 | 
						|
  ReadyQueue &Q = Top.Available;
 | 
						|
 | 
						|
  DEBUG(Q.dump());
 | 
						|
 | 
						|
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
 | 
						|
    SchedCandidate TryCand(Cand.Policy);
 | 
						|
    TryCand.SU = *I;
 | 
						|
    TryCand.initResourceDelta(DAG, SchedModel);
 | 
						|
    tryCandidate(Cand, TryCand);
 | 
						|
    if (TryCand.Reason != NoCand) {
 | 
						|
      Cand.setBest(TryCand);
 | 
						|
      DEBUG(traceCandidate(Cand));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the next node to schedule.
 | 
						|
SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
 | 
						|
  if (DAG->top() == DAG->bottom()) {
 | 
						|
    assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  SUnit *SU;
 | 
						|
  do {
 | 
						|
    SU = Top.pickOnlyChoice();
 | 
						|
    if (!SU) {
 | 
						|
      CandPolicy NoPolicy;
 | 
						|
      SchedCandidate TopCand(NoPolicy);
 | 
						|
      // Set the top-down policy based on the state of the current top zone and
 | 
						|
      // the instructions outside the zone, including the bottom zone.
 | 
						|
      setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
 | 
						|
      pickNodeFromQueue(TopCand);
 | 
						|
      assert(TopCand.Reason != NoCand && "failed to find a candidate");
 | 
						|
      tracePick(TopCand, true);
 | 
						|
      SU = TopCand.SU;
 | 
						|
    }
 | 
						|
  } while (SU->isScheduled);
 | 
						|
 | 
						|
  IsTopNode = true;
 | 
						|
  Top.removeReady(SU);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
 | 
						|
  return SU;
 | 
						|
}
 | 
						|
 | 
						|
/// Called after ScheduleDAGMI has scheduled an instruction and updated
 | 
						|
/// scheduled/remaining flags in the DAG nodes.
 | 
						|
void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
 | 
						|
  SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
 | 
						|
  Top.bumpNode(SU);
 | 
						|
}
 | 
						|
 | 
						|
/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
 | 
						|
static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
 | 
						|
  return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ILP Scheduler. Currently for experimental analysis of heuristics.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Order nodes by the ILP metric.
 | 
						|
struct ILPOrder {
 | 
						|
  const SchedDFSResult *DFSResult;
 | 
						|
  const BitVector *ScheduledTrees;
 | 
						|
  bool MaximizeILP;
 | 
						|
 | 
						|
  ILPOrder(bool MaxILP)
 | 
						|
    : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
 | 
						|
 | 
						|
  /// \brief Apply a less-than relation on node priority.
 | 
						|
  ///
 | 
						|
  /// (Return true if A comes after B in the Q.)
 | 
						|
  bool operator()(const SUnit *A, const SUnit *B) const {
 | 
						|
    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
 | 
						|
    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
 | 
						|
    if (SchedTreeA != SchedTreeB) {
 | 
						|
      // Unscheduled trees have lower priority.
 | 
						|
      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
 | 
						|
        return ScheduledTrees->test(SchedTreeB);
 | 
						|
 | 
						|
      // Trees with shallower connections have have lower priority.
 | 
						|
      if (DFSResult->getSubtreeLevel(SchedTreeA)
 | 
						|
          != DFSResult->getSubtreeLevel(SchedTreeB)) {
 | 
						|
        return DFSResult->getSubtreeLevel(SchedTreeA)
 | 
						|
          < DFSResult->getSubtreeLevel(SchedTreeB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (MaximizeILP)
 | 
						|
      return DFSResult->getILP(A) < DFSResult->getILP(B);
 | 
						|
    else
 | 
						|
      return DFSResult->getILP(A) > DFSResult->getILP(B);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Schedule based on the ILP metric.
 | 
						|
class ILPScheduler : public MachineSchedStrategy {
 | 
						|
  ScheduleDAGMILive *DAG;
 | 
						|
  ILPOrder Cmp;
 | 
						|
 | 
						|
  std::vector<SUnit*> ReadyQ;
 | 
						|
public:
 | 
						|
  ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
 | 
						|
 | 
						|
  void initialize(ScheduleDAGMI *dag) override {
 | 
						|
    assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
 | 
						|
    DAG = static_cast<ScheduleDAGMILive*>(dag);
 | 
						|
    DAG->computeDFSResult();
 | 
						|
    Cmp.DFSResult = DAG->getDFSResult();
 | 
						|
    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
 | 
						|
    ReadyQ.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  void registerRoots() override {
 | 
						|
    // Restore the heap in ReadyQ with the updated DFS results.
 | 
						|
    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Implement MachineSchedStrategy interface.
 | 
						|
  /// -----------------------------------------
 | 
						|
 | 
						|
  /// Callback to select the highest priority node from the ready Q.
 | 
						|
  SUnit *pickNode(bool &IsTopNode) override {
 | 
						|
    if (ReadyQ.empty()) return nullptr;
 | 
						|
    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | 
						|
    SUnit *SU = ReadyQ.back();
 | 
						|
    ReadyQ.pop_back();
 | 
						|
    IsTopNode = false;
 | 
						|
    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
 | 
						|
          << " ILP: " << DAG->getDFSResult()->getILP(SU)
 | 
						|
          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
 | 
						|
          << DAG->getDFSResult()->getSubtreeLevel(
 | 
						|
            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
 | 
						|
          << "Scheduling " << *SU->getInstr());
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Scheduler callback to notify that a new subtree is scheduled.
 | 
						|
  void scheduleTree(unsigned SubtreeID) override {
 | 
						|
    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
 | 
						|
  /// DFSResults, and resort the priority Q.
 | 
						|
  void schedNode(SUnit *SU, bool IsTopNode) override {
 | 
						|
    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
 | 
						|
  }
 | 
						|
 | 
						|
  void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
 | 
						|
 | 
						|
  void releaseBottomNode(SUnit *SU) override {
 | 
						|
    ReadyQ.push_back(SU);
 | 
						|
    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
 | 
						|
  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
 | 
						|
}
 | 
						|
static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
 | 
						|
  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
 | 
						|
}
 | 
						|
static MachineSchedRegistry ILPMaxRegistry(
 | 
						|
  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
 | 
						|
static MachineSchedRegistry ILPMinRegistry(
 | 
						|
  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Machine Instruction Shuffler for Correctness Testing
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
namespace {
 | 
						|
/// Apply a less-than relation on the node order, which corresponds to the
 | 
						|
/// instruction order prior to scheduling. IsReverse implements greater-than.
 | 
						|
template<bool IsReverse>
 | 
						|
struct SUnitOrder {
 | 
						|
  bool operator()(SUnit *A, SUnit *B) const {
 | 
						|
    if (IsReverse)
 | 
						|
      return A->NodeNum > B->NodeNum;
 | 
						|
    else
 | 
						|
      return A->NodeNum < B->NodeNum;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Reorder instructions as much as possible.
 | 
						|
class InstructionShuffler : public MachineSchedStrategy {
 | 
						|
  bool IsAlternating;
 | 
						|
  bool IsTopDown;
 | 
						|
 | 
						|
  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
 | 
						|
  // gives nodes with a higher number higher priority causing the latest
 | 
						|
  // instructions to be scheduled first.
 | 
						|
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
 | 
						|
    TopQ;
 | 
						|
  // When scheduling bottom-up, use greater-than as the queue priority.
 | 
						|
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
 | 
						|
    BottomQ;
 | 
						|
public:
 | 
						|
  InstructionShuffler(bool alternate, bool topdown)
 | 
						|
    : IsAlternating(alternate), IsTopDown(topdown) {}
 | 
						|
 | 
						|
  void initialize(ScheduleDAGMI*) override {
 | 
						|
    TopQ.clear();
 | 
						|
    BottomQ.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Implement MachineSchedStrategy interface.
 | 
						|
  /// -----------------------------------------
 | 
						|
 | 
						|
  SUnit *pickNode(bool &IsTopNode) override {
 | 
						|
    SUnit *SU;
 | 
						|
    if (IsTopDown) {
 | 
						|
      do {
 | 
						|
        if (TopQ.empty()) return nullptr;
 | 
						|
        SU = TopQ.top();
 | 
						|
        TopQ.pop();
 | 
						|
      } while (SU->isScheduled);
 | 
						|
      IsTopNode = true;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      do {
 | 
						|
        if (BottomQ.empty()) return nullptr;
 | 
						|
        SU = BottomQ.top();
 | 
						|
        BottomQ.pop();
 | 
						|
      } while (SU->isScheduled);
 | 
						|
      IsTopNode = false;
 | 
						|
    }
 | 
						|
    if (IsAlternating)
 | 
						|
      IsTopDown = !IsTopDown;
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
 | 
						|
  void schedNode(SUnit *SU, bool IsTopNode) override {}
 | 
						|
 | 
						|
  void releaseTopNode(SUnit *SU) override {
 | 
						|
    TopQ.push(SU);
 | 
						|
  }
 | 
						|
  void releaseBottomNode(SUnit *SU) override {
 | 
						|
    BottomQ.push(SU);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
 | 
						|
  bool Alternate = !ForceTopDown && !ForceBottomUp;
 | 
						|
  bool TopDown = !ForceBottomUp;
 | 
						|
  assert((TopDown || !ForceTopDown) &&
 | 
						|
         "-misched-topdown incompatible with -misched-bottomup");
 | 
						|
  return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
 | 
						|
}
 | 
						|
static MachineSchedRegistry ShufflerRegistry(
 | 
						|
  "shuffle", "Shuffle machine instructions alternating directions",
 | 
						|
  createInstructionShuffler);
 | 
						|
#endif // !NDEBUG
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// GraphWriter support for ScheduleDAGMILive.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
template<> struct GraphTraits<
 | 
						|
  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
 | 
						|
 | 
						|
template<>
 | 
						|
struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
 | 
						|
 | 
						|
  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
 | 
						|
 | 
						|
  static std::string getGraphName(const ScheduleDAG *G) {
 | 
						|
    return G->MF.getName();
 | 
						|
  }
 | 
						|
 | 
						|
  static bool renderGraphFromBottomUp() {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  static bool isNodeHidden(const SUnit *Node) {
 | 
						|
    return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
 | 
						|
  }
 | 
						|
 | 
						|
  static bool hasNodeAddressLabel(const SUnit *Node,
 | 
						|
                                  const ScheduleDAG *Graph) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// If you want to override the dot attributes printed for a particular
 | 
						|
  /// edge, override this method.
 | 
						|
  static std::string getEdgeAttributes(const SUnit *Node,
 | 
						|
                                       SUnitIterator EI,
 | 
						|
                                       const ScheduleDAG *Graph) {
 | 
						|
    if (EI.isArtificialDep())
 | 
						|
      return "color=cyan,style=dashed";
 | 
						|
    if (EI.isCtrlDep())
 | 
						|
      return "color=blue,style=dashed";
 | 
						|
    return "";
 | 
						|
  }
 | 
						|
 | 
						|
  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
 | 
						|
    std::string Str;
 | 
						|
    raw_string_ostream SS(Str);
 | 
						|
    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
 | 
						|
    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
 | 
						|
      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
 | 
						|
    SS << "SU:" << SU->NodeNum;
 | 
						|
    if (DFS)
 | 
						|
      SS << " I:" << DFS->getNumInstrs(SU);
 | 
						|
    return SS.str();
 | 
						|
  }
 | 
						|
  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
 | 
						|
    return G->getGraphNodeLabel(SU);
 | 
						|
  }
 | 
						|
 | 
						|
  static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
 | 
						|
    std::string Str("shape=Mrecord");
 | 
						|
    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
 | 
						|
    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
 | 
						|
      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
 | 
						|
    if (DFS) {
 | 
						|
      Str += ",style=filled,fillcolor=\"#";
 | 
						|
      Str += DOT::getColorString(DFS->getSubtreeID(N));
 | 
						|
      Str += '"';
 | 
						|
    }
 | 
						|
    return Str;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace llvm
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
 | 
						|
/// rendered using 'dot'.
 | 
						|
///
 | 
						|
void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  ViewGraph(this, Name, false, Title);
 | 
						|
#else
 | 
						|
  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
 | 
						|
         << "systems with Graphviz or gv!\n";
 | 
						|
#endif  // NDEBUG
 | 
						|
}
 | 
						|
 | 
						|
/// Out-of-line implementation with no arguments is handy for gdb.
 | 
						|
void ScheduleDAGMI::viewGraph() {
 | 
						|
  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
 | 
						|
}
 |