forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			139 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the LatencyPriorityQueue class, which is a
 | 
						|
// SchedulingPriorityQueue that schedules using latency information to
 | 
						|
// reduce the length of the critical path through the basic block.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "scheduler"
 | 
						|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
 | 
						|
  // The isScheduleHigh flag allows nodes with wraparound dependencies that
 | 
						|
  // cannot easily be modeled as edges with latencies to be scheduled as
 | 
						|
  // soon as possible in a top-down schedule.
 | 
						|
  if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
 | 
						|
    return false;
 | 
						|
  if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
 | 
						|
    return true;
 | 
						|
 | 
						|
  unsigned LHSNum = LHS->NodeNum;
 | 
						|
  unsigned RHSNum = RHS->NodeNum;
 | 
						|
 | 
						|
  // The most important heuristic is scheduling the critical path.
 | 
						|
  unsigned LHSLatency = PQ->getLatency(LHSNum);
 | 
						|
  unsigned RHSLatency = PQ->getLatency(RHSNum);
 | 
						|
  if (LHSLatency < RHSLatency) return true;
 | 
						|
  if (LHSLatency > RHSLatency) return false;
 | 
						|
  
 | 
						|
  // After that, if two nodes have identical latencies, look to see if one will
 | 
						|
  // unblock more other nodes than the other.
 | 
						|
  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
 | 
						|
  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
 | 
						|
  if (LHSBlocked < RHSBlocked) return true;
 | 
						|
  if (LHSBlocked > RHSBlocked) return false;
 | 
						|
  
 | 
						|
  // Finally, just to provide a stable ordering, use the node number as a
 | 
						|
  // deciding factor.
 | 
						|
  return LHSNum < RHSNum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
 | 
						|
/// of SU, return it, otherwise return null.
 | 
						|
SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
 | 
						|
  SUnit *OnlyAvailablePred = 0;
 | 
						|
  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    SUnit &Pred = *I->getSUnit();
 | 
						|
    if (!Pred.isScheduled) {
 | 
						|
      // We found an available, but not scheduled, predecessor.  If it's the
 | 
						|
      // only one we have found, keep track of it... otherwise give up.
 | 
						|
      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
 | 
						|
        return 0;
 | 
						|
      OnlyAvailablePred = &Pred;
 | 
						|
    }
 | 
						|
  }
 | 
						|
      
 | 
						|
  return OnlyAvailablePred;
 | 
						|
}
 | 
						|
 | 
						|
void LatencyPriorityQueue::push(SUnit *SU) {
 | 
						|
  // Look at all of the successors of this node.  Count the number of nodes that
 | 
						|
  // this node is the sole unscheduled node for.
 | 
						|
  unsigned NumNodesBlocking = 0;
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (getSingleUnscheduledPred(I->getSUnit()) == SU)
 | 
						|
      ++NumNodesBlocking;
 | 
						|
  }
 | 
						|
  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
 | 
						|
  
 | 
						|
  Queue.push_back(SU);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ScheduledNode - As nodes are scheduled, we look to see if there are any
 | 
						|
// successor nodes that have a single unscheduled predecessor.  If so, that
 | 
						|
// single predecessor has a higher priority, since scheduling it will make
 | 
						|
// the node available.
 | 
						|
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
 | 
						|
  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    AdjustPriorityOfUnscheduledPreds(I->getSUnit());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
 | 
						|
/// scheduled.  If SU is not itself available, then there is at least one
 | 
						|
/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
 | 
						|
/// unscheduled predecessor, we want to increase its priority: it getting
 | 
						|
/// scheduled will make this node available, so it is better than some other
 | 
						|
/// node of the same priority that will not make a node available.
 | 
						|
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
 | 
						|
  if (SU->isAvailable) return;  // All preds scheduled.
 | 
						|
  
 | 
						|
  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
 | 
						|
  if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
 | 
						|
  
 | 
						|
  // Okay, we found a single predecessor that is available, but not scheduled.
 | 
						|
  // Since it is available, it must be in the priority queue.  First remove it.
 | 
						|
  remove(OnlyAvailablePred);
 | 
						|
 | 
						|
  // Reinsert the node into the priority queue, which recomputes its
 | 
						|
  // NumNodesSolelyBlocking value.
 | 
						|
  push(OnlyAvailablePred);
 | 
						|
}
 | 
						|
 | 
						|
SUnit *LatencyPriorityQueue::pop() {
 | 
						|
  if (empty()) return NULL;
 | 
						|
  std::vector<SUnit *>::iterator Best = Queue.begin();
 | 
						|
  for (std::vector<SUnit *>::iterator I = llvm::next(Queue.begin()),
 | 
						|
       E = Queue.end(); I != E; ++I)
 | 
						|
    if (Picker(*Best, *I))
 | 
						|
      Best = I;
 | 
						|
  SUnit *V = *Best;
 | 
						|
  if (Best != prior(Queue.end()))
 | 
						|
    std::swap(*Best, Queue.back());
 | 
						|
  Queue.pop_back();
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
void LatencyPriorityQueue::remove(SUnit *SU) {
 | 
						|
  assert(!Queue.empty() && "Queue is empty!");
 | 
						|
  std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
 | 
						|
  if (I != prior(Queue.end()))
 | 
						|
    std::swap(*I, Queue.back());
 | 
						|
  Queue.pop_back();
 | 
						|
}
 |