forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			273 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			273 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is dual licensed under the MIT and the University of Illinois Open
 | 
						|
// Source Licenses. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// REQUIRES: long_tests
 | 
						|
 | 
						|
// <random>
 | 
						|
 | 
						|
// template<class IntType = int>
 | 
						|
// class negative_binomial_distribution
 | 
						|
 | 
						|
// template<class _URNG> result_type operator()(_URNG& g);
 | 
						|
 | 
						|
#include <random>
 | 
						|
#include <numeric>
 | 
						|
#include <vector>
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
template <class T>
 | 
						|
inline
 | 
						|
T
 | 
						|
sqr(T x)
 | 
						|
{
 | 
						|
    return x * x;
 | 
						|
}
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
    {
 | 
						|
        typedef std::negative_binomial_distribution<> D;
 | 
						|
        typedef std::minstd_rand G;
 | 
						|
        G g;
 | 
						|
        D d(5, .25);
 | 
						|
        const int N = 1000000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.min() <= v && v <= d.max());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        double mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              double(0)) / u.size();
 | 
						|
        double var = 0;
 | 
						|
        double skew = 0;
 | 
						|
        double kurtosis = 0;
 | 
						|
        for (int i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            double d = (u[i] - mean);
 | 
						|
            double d2 = sqr(d);
 | 
						|
            var += d2;
 | 
						|
            skew += d * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        double dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        double x_mean = d.k() * (1 - d.p()) / d.p();
 | 
						|
        double x_var = x_mean / d.p();
 | 
						|
        double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
 | 
						|
        double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs((skew - x_skew) / x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::negative_binomial_distribution<> D;
 | 
						|
        typedef std::mt19937 G;
 | 
						|
        G g;
 | 
						|
        D d(30, .03125);
 | 
						|
        const int N = 1000000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.min() <= v && v <= d.max());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        double mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              double(0)) / u.size();
 | 
						|
        double var = 0;
 | 
						|
        double skew = 0;
 | 
						|
        double kurtosis = 0;
 | 
						|
        for (int i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            double d = (u[i] - mean);
 | 
						|
            double d2 = sqr(d);
 | 
						|
            var += d2;
 | 
						|
            skew += d * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        double dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        double x_mean = d.k() * (1 - d.p()) / d.p();
 | 
						|
        double x_var = x_mean / d.p();
 | 
						|
        double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
 | 
						|
        double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs((skew - x_skew) / x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::negative_binomial_distribution<> D;
 | 
						|
        typedef std::mt19937 G;
 | 
						|
        G g;
 | 
						|
        D d(40, .25);
 | 
						|
        const int N = 1000000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.min() <= v && v <= d.max());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        double mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              double(0)) / u.size();
 | 
						|
        double var = 0;
 | 
						|
        double skew = 0;
 | 
						|
        double kurtosis = 0;
 | 
						|
        for (int i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            double d = (u[i] - mean);
 | 
						|
            double d2 = sqr(d);
 | 
						|
            var += d2;
 | 
						|
            skew += d * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        double dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        double x_mean = d.k() * (1 - d.p()) / d.p();
 | 
						|
        double x_var = x_mean / d.p();
 | 
						|
        double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
 | 
						|
        double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs((skew - x_skew) / x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::negative_binomial_distribution<> D;
 | 
						|
        typedef std::mt19937 G;
 | 
						|
        G g;
 | 
						|
        D d(40, 1);
 | 
						|
        const int N = 1000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.min() <= v && v <= d.max());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        double mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              double(0)) / u.size();
 | 
						|
        double var = 0;
 | 
						|
        double skew = 0;
 | 
						|
        double kurtosis = 0;
 | 
						|
        for (int i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            double d = (u[i] - mean);
 | 
						|
            double d2 = sqr(d);
 | 
						|
            var += d2;
 | 
						|
            skew += d * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        double dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        double x_mean = d.k() * (1 - d.p()) / d.p();
 | 
						|
        double x_var = x_mean / d.p();
 | 
						|
        double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
 | 
						|
        double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
 | 
						|
        assert(mean == x_mean);
 | 
						|
        assert(var == x_var);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::negative_binomial_distribution<> D;
 | 
						|
        typedef std::mt19937 G;
 | 
						|
        G g;
 | 
						|
        D d(400, 0.5);
 | 
						|
        const int N = 1000000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.min() <= v && v <= d.max());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        double mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              double(0)) / u.size();
 | 
						|
        double var = 0;
 | 
						|
        double skew = 0;
 | 
						|
        double kurtosis = 0;
 | 
						|
        for (int i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            double d = (u[i] - mean);
 | 
						|
            double d2 = sqr(d);
 | 
						|
            var += d2;
 | 
						|
            skew += d * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        double dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        double x_mean = d.k() * (1 - d.p()) / d.p();
 | 
						|
        double x_var = x_mean / d.p();
 | 
						|
        double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
 | 
						|
        double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs((skew - x_skew) / x_skew) < 0.04);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05);
 | 
						|
    }
 | 
						|
    {
 | 
						|
        typedef std::negative_binomial_distribution<> D;
 | 
						|
        typedef std::mt19937 G;
 | 
						|
        G g;
 | 
						|
        D d(1, 0.05);
 | 
						|
        const int N = 1000000;
 | 
						|
        std::vector<D::result_type> u;
 | 
						|
        for (int i = 0; i < N; ++i)
 | 
						|
        {
 | 
						|
            D::result_type v = d(g);
 | 
						|
            assert(d.min() <= v && v <= d.max());
 | 
						|
            u.push_back(v);
 | 
						|
        }
 | 
						|
        double mean = std::accumulate(u.begin(), u.end(),
 | 
						|
                                              double(0)) / u.size();
 | 
						|
        double var = 0;
 | 
						|
        double skew = 0;
 | 
						|
        double kurtosis = 0;
 | 
						|
        for (int i = 0; i < u.size(); ++i)
 | 
						|
        {
 | 
						|
            double d = (u[i] - mean);
 | 
						|
            double d2 = sqr(d);
 | 
						|
            var += d2;
 | 
						|
            skew += d * d2;
 | 
						|
            kurtosis += d2 * d2;
 | 
						|
        }
 | 
						|
        var /= u.size();
 | 
						|
        double dev = std::sqrt(var);
 | 
						|
        skew /= u.size() * dev * var;
 | 
						|
        kurtosis /= u.size() * var * var;
 | 
						|
        kurtosis -= 3;
 | 
						|
        double x_mean = d.k() * (1 - d.p()) / d.p();
 | 
						|
        double x_var = x_mean / d.p();
 | 
						|
        double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
 | 
						|
        double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
 | 
						|
        assert(std::abs((mean - x_mean) / x_mean) < 0.01);
 | 
						|
        assert(std::abs((var - x_var) / x_var) < 0.01);
 | 
						|
        assert(std::abs((skew - x_skew) / x_skew) < 0.01);
 | 
						|
        assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
 | 
						|
    }
 | 
						|
}
 |