forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			113 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86Disassembler.h - Disassembler for x86 and x86_64 -----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
 | |
| // 64-bit X86 instruction sets.  The main decode sequence for an assembly
 | |
| // instruction in this disassembler is:
 | |
| //
 | |
| // 1. Read the prefix bytes and determine the attributes of the instruction.
 | |
| //    These attributes, recorded in enum attributeBits
 | |
| //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
 | |
| //    provides a mapping from bitmasks to contexts, which are represented by
 | |
| //    enum InstructionContext (ibid.).
 | |
| //
 | |
| // 2. Read the opcode, and determine what kind of opcode it is.  The
 | |
| //    disassembler distinguishes four kinds of opcodes, which are enumerated in
 | |
| //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
 | |
| //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
 | |
| //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
 | |
| //
 | |
| // 3. Depending on the opcode type, look in one of four ClassDecision structures
 | |
| //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
 | |
| //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
 | |
| //    a ModRMDecision (ibid.).
 | |
| //
 | |
| // 4. Some instructions, such as escape opcodes or extended opcodes, or even
 | |
| //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
 | |
| //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
 | |
| //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
 | |
| //    ModR/M byte is required and how to interpret it.
 | |
| //
 | |
| // 5. After resolving the ModRMDecision, the disassembler has a unique ID
 | |
| //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
 | |
| //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
 | |
| //    meanings of its operands.
 | |
| //
 | |
| // 6. For each operand, its encoding is an entry from OperandEncoding
 | |
| //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
 | |
| //    OperandType (ibid.).  The encoding indicates how to read it from the
 | |
| //    instruction; the type indicates how to interpret the value once it has
 | |
| //    been read.  For example, a register operand could be stored in the R/M
 | |
| //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
 | |
| //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
 | |
| //    register, for instance).  Given this information, the operands can be
 | |
| //    extracted and interpreted.
 | |
| //
 | |
| // 7. As the last step, the disassembler translates the instruction information
 | |
| //    and operands into a format understandable by the client - in this case, an
 | |
| //    MCInst for use by the MC infrastructure.
 | |
| //
 | |
| // The disassembler is broken broadly into two parts: the table emitter that
 | |
| // emits the instruction decode tables discussed above during compilation, and
 | |
| // the disassembler itself.  The table emitter is documented in more detail in
 | |
| // utils/TableGen/X86DisassemblerEmitter.h.
 | |
| //
 | |
| // X86Disassembler.h contains the public interface for the disassembler,
 | |
| //   adhering to the MCDisassembler interface.
 | |
| // X86Disassembler.cpp contains the code responsible for step 7, and for
 | |
| //   invoking the decoder to execute steps 1-6.
 | |
| // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
 | |
| //   table emitter and the disassembler.
 | |
| // X86DisassemblerDecoder.h contains the public interface of the decoder,
 | |
| //   factored out into C for possible use by other projects.
 | |
| // X86DisassemblerDecoder.c contains the source code of the decoder, which is
 | |
| //   responsible for steps 1-6.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLER_H
 | |
| #define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLER_H
 | |
| 
 | |
| #include "X86DisassemblerDecoderCommon.h"
 | |
| #include "llvm/MC/MCDisassembler.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class MCInst;
 | |
| class MCInstrInfo;
 | |
| class MCSubtargetInfo;
 | |
| class MemoryObject;
 | |
| class raw_ostream;
 | |
| 
 | |
| namespace X86Disassembler {
 | |
| 
 | |
| /// Generic disassembler for all X86 platforms. All each platform class should
 | |
| /// have to do is subclass the constructor, and provide a different
 | |
| /// disassemblerMode value.
 | |
| class X86GenericDisassembler : public MCDisassembler {
 | |
|   std::unique_ptr<const MCInstrInfo> MII;
 | |
| public:
 | |
|   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
 | |
|                          std::unique_ptr<const MCInstrInfo> MII);
 | |
| public:
 | |
|   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
 | |
|                               ArrayRef<uint8_t> Bytes, uint64_t Address,
 | |
|                               raw_ostream &vStream,
 | |
|                               raw_ostream &cStream) const override;
 | |
| 
 | |
| private:
 | |
|   DisassemblerMode              fMode;
 | |
| };
 | |
| 
 | |
| } // namespace X86Disassembler
 | |
| 
 | |
| } // namespace llvm
 | |
| 
 | |
| #endif
 |