forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			701 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			701 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the MachineSSAUpdater class. It's based on SSAUpdater
 | 
						|
// class in lib/Transforms/Utils.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/MachineSSAUpdater.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/AlignOf.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// BBInfo - Per-basic block information used internally by MachineSSAUpdater.
 | 
						|
class MachineSSAUpdater::BBInfo {
 | 
						|
public:
 | 
						|
  MachineBasicBlock *BB; // Back-pointer to the corresponding block.
 | 
						|
  unsigned AvailableVal; // Value to use in this block.
 | 
						|
  BBInfo *DefBB;         // Block that defines the available value.
 | 
						|
  int BlkNum;            // Postorder number.
 | 
						|
  BBInfo *IDom;          // Immediate dominator.
 | 
						|
  unsigned NumPreds;     // Number of predecessor blocks.
 | 
						|
  BBInfo **Preds;        // Array[NumPreds] of predecessor blocks.
 | 
						|
  MachineInstr *PHITag;  // Marker for existing PHIs that match.
 | 
						|
 | 
						|
  BBInfo(MachineBasicBlock *ThisBB, unsigned V)
 | 
						|
    : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
 | 
						|
      NumPreds(0), Preds(0), PHITag(0) { }
 | 
						|
};
 | 
						|
 | 
						|
typedef DenseMap<MachineBasicBlock*, MachineSSAUpdater::BBInfo*> BBMapTy;
 | 
						|
 | 
						|
typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
 | 
						|
static AvailableValsTy &getAvailableVals(void *AV) {
 | 
						|
  return *static_cast<AvailableValsTy*>(AV);
 | 
						|
}
 | 
						|
 | 
						|
static BBMapTy *getBBMap(void *BM) {
 | 
						|
  return static_cast<BBMapTy*>(BM);
 | 
						|
}
 | 
						|
 | 
						|
MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
 | 
						|
                                     SmallVectorImpl<MachineInstr*> *NewPHI)
 | 
						|
  : AV(0), BM(0), InsertedPHIs(NewPHI) {
 | 
						|
  TII = MF.getTarget().getInstrInfo();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
}
 | 
						|
 | 
						|
MachineSSAUpdater::~MachineSSAUpdater() {
 | 
						|
  delete &getAvailableVals(AV);
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize - Reset this object to get ready for a new set of SSA
 | 
						|
/// updates.  ProtoValue is the value used to name PHI nodes.
 | 
						|
void MachineSSAUpdater::Initialize(unsigned V) {
 | 
						|
  if (AV == 0)
 | 
						|
    AV = new AvailableValsTy();
 | 
						|
  else
 | 
						|
    getAvailableVals(AV).clear();
 | 
						|
 | 
						|
  VR = V;
 | 
						|
  VRC = MRI->getRegClass(VR);
 | 
						|
}
 | 
						|
 | 
						|
/// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for
 | 
						|
/// the specified block.
 | 
						|
bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const {
 | 
						|
  return getAvailableVals(AV).count(BB);
 | 
						|
}
 | 
						|
 | 
						|
/// AddAvailableValue - Indicate that a rewritten value is available in the
 | 
						|
/// specified block with the specified value.
 | 
						|
void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) {
 | 
						|
  getAvailableVals(AV)[BB] = V;
 | 
						|
}
 | 
						|
 | 
						|
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
 | 
						|
/// live at the end of the specified block.
 | 
						|
unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) {
 | 
						|
  return GetValueAtEndOfBlockInternal(BB);
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
unsigned LookForIdenticalPHI(MachineBasicBlock *BB,
 | 
						|
          SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) {
 | 
						|
  if (BB->empty())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator I = BB->front();
 | 
						|
  if (!I->isPHI())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  AvailableValsTy AVals;
 | 
						|
  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
 | 
						|
    AVals[PredValues[i].first] = PredValues[i].second;
 | 
						|
  while (I != BB->end() && I->isPHI()) {
 | 
						|
    bool Same = true;
 | 
						|
    for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) {
 | 
						|
      unsigned SrcReg = I->getOperand(i).getReg();
 | 
						|
      MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB();
 | 
						|
      if (AVals[SrcBB] != SrcReg) {
 | 
						|
        Same = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Same)
 | 
						|
      return I->getOperand(0).getReg();
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define
 | 
						|
/// a value of the given register class at the start of the specified basic
 | 
						|
/// block. It returns the virtual register defined by the instruction.
 | 
						|
static
 | 
						|
MachineInstr *InsertNewDef(unsigned Opcode,
 | 
						|
                           MachineBasicBlock *BB, MachineBasicBlock::iterator I,
 | 
						|
                           const TargetRegisterClass *RC,
 | 
						|
                           MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
 | 
						|
  unsigned NewVR = MRI->createVirtualRegister(RC);
 | 
						|
  return BuildMI(*BB, I, DebugLoc(), TII->get(Opcode), NewVR);
 | 
						|
}
 | 
						|
 | 
						|
/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
 | 
						|
/// is live in the middle of the specified block.
 | 
						|
///
 | 
						|
/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
 | 
						|
/// important case: if there is a definition of the rewritten value after the
 | 
						|
/// 'use' in BB.  Consider code like this:
 | 
						|
///
 | 
						|
///      X1 = ...
 | 
						|
///   SomeBB:
 | 
						|
///      use(X)
 | 
						|
///      X2 = ...
 | 
						|
///      br Cond, SomeBB, OutBB
 | 
						|
///
 | 
						|
/// In this case, there are two values (X1 and X2) added to the AvailableVals
 | 
						|
/// set by the client of the rewriter, and those values are both live out of
 | 
						|
/// their respective blocks.  However, the use of X happens in the *middle* of
 | 
						|
/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
 | 
						|
/// merge the appropriate values, and this value isn't live out of the block.
 | 
						|
///
 | 
						|
unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) {
 | 
						|
  // If there is no definition of the renamed variable in this block, just use
 | 
						|
  // GetValueAtEndOfBlock to do our work.
 | 
						|
  if (!HasValueForBlock(BB))
 | 
						|
    return GetValueAtEndOfBlockInternal(BB);
 | 
						|
 | 
						|
  // If there are no predecessors, just return undef.
 | 
						|
  if (BB->pred_empty()) {
 | 
						|
    // Insert an implicit_def to represent an undef value.
 | 
						|
    MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
 | 
						|
                                        BB, BB->getFirstTerminator(),
 | 
						|
                                        VRC, MRI, TII);
 | 
						|
    return NewDef->getOperand(0).getReg();
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have the hard case.  Get the live-in values for each
 | 
						|
  // predecessor.
 | 
						|
  SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues;
 | 
						|
  unsigned SingularValue = 0;
 | 
						|
 | 
						|
  bool isFirstPred = true;
 | 
						|
  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
 | 
						|
         E = BB->pred_end(); PI != E; ++PI) {
 | 
						|
    MachineBasicBlock *PredBB = *PI;
 | 
						|
    unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB);
 | 
						|
    PredValues.push_back(std::make_pair(PredBB, PredVal));
 | 
						|
 | 
						|
    // Compute SingularValue.
 | 
						|
    if (isFirstPred) {
 | 
						|
      SingularValue = PredVal;
 | 
						|
      isFirstPred = false;
 | 
						|
    } else if (PredVal != SingularValue)
 | 
						|
      SingularValue = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if all the merged values are the same, just use it.
 | 
						|
  if (SingularValue != 0)
 | 
						|
    return SingularValue;
 | 
						|
 | 
						|
  // If an identical PHI is already in BB, just reuse it.
 | 
						|
  unsigned DupPHI = LookForIdenticalPHI(BB, PredValues);
 | 
						|
  if (DupPHI)
 | 
						|
    return DupPHI;
 | 
						|
 | 
						|
  // Otherwise, we do need a PHI: insert one now.
 | 
						|
  MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
 | 
						|
  MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB,
 | 
						|
                                           Loc, VRC, MRI, TII);
 | 
						|
 | 
						|
  // Fill in all the predecessors of the PHI.
 | 
						|
  MachineInstrBuilder MIB(InsertedPHI);
 | 
						|
  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
 | 
						|
    MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first);
 | 
						|
 | 
						|
  // See if the PHI node can be merged to a single value.  This can happen in
 | 
						|
  // loop cases when we get a PHI of itself and one other value.
 | 
						|
  if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) {
 | 
						|
    InsertedPHI->eraseFromParent();
 | 
						|
    return ConstVal;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the client wants to know about all new instructions, tell it.
 | 
						|
  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
 | 
						|
  return InsertedPHI->getOperand(0).getReg();
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI,
 | 
						|
                                         MachineOperand *U) {
 | 
						|
  for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
 | 
						|
    if (&MI->getOperand(i) == U)
 | 
						|
      return MI->getOperand(i+1).getMBB();
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("MachineOperand::getParent() failure?");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
 | 
						|
/// which use their value in the corresponding predecessor.
 | 
						|
void MachineSSAUpdater::RewriteUse(MachineOperand &U) {
 | 
						|
  MachineInstr *UseMI = U.getParent();
 | 
						|
  unsigned NewVR = 0;
 | 
						|
  if (UseMI->isPHI()) {
 | 
						|
    MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U);
 | 
						|
    NewVR = GetValueAtEndOfBlockInternal(SourceBB);
 | 
						|
  } else {
 | 
						|
    NewVR = GetValueInMiddleOfBlock(UseMI->getParent());
 | 
						|
  }
 | 
						|
 | 
						|
  U.setReg(NewVR);
 | 
						|
}
 | 
						|
 | 
						|
void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) {
 | 
						|
  MRI->replaceRegWith(OldReg, NewReg);
 | 
						|
 | 
						|
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | 
						|
  for (DenseMap<MachineBasicBlock*, unsigned>::iterator
 | 
						|
         I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I)
 | 
						|
    if (I->second == OldReg)
 | 
						|
      I->second = NewReg;
 | 
						|
}
 | 
						|
 | 
						|
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
 | 
						|
/// for the specified BB and if so, return it.  If not, construct SSA form by
 | 
						|
/// first calculating the required placement of PHIs and then inserting new
 | 
						|
/// PHIs where needed.
 | 
						|
unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
 | 
						|
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | 
						|
  if (unsigned V = AvailableVals[BB])
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Pool allocation used internally by GetValueAtEndOfBlock.
 | 
						|
  BumpPtrAllocator Allocator;
 | 
						|
  BBMapTy BBMapObj;
 | 
						|
  BM = &BBMapObj;
 | 
						|
 | 
						|
  SmallVector<BBInfo*, 100> BlockList;
 | 
						|
  BuildBlockList(BB, &BlockList, &Allocator);
 | 
						|
 | 
						|
  // Special case: bail out if BB is unreachable.
 | 
						|
  if (BlockList.size() == 0) {
 | 
						|
    BM = 0;
 | 
						|
    // Insert an implicit_def to represent an undef value.
 | 
						|
    MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
 | 
						|
                                        BB, BB->getFirstTerminator(),
 | 
						|
                                        VRC, MRI, TII);
 | 
						|
    unsigned V = NewDef->getOperand(0).getReg();
 | 
						|
    AvailableVals[BB] = V;
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  FindDominators(&BlockList);
 | 
						|
  FindPHIPlacement(&BlockList);
 | 
						|
  FindAvailableVals(&BlockList);
 | 
						|
 | 
						|
  BM = 0;
 | 
						|
  return BBMapObj[BB]->DefBB->AvailableVal;
 | 
						|
}
 | 
						|
 | 
						|
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
 | 
						|
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
 | 
						|
static void FindPredecessorBlocks(MachineSSAUpdater::BBInfo *Info,
 | 
						|
                                  SmallVectorImpl<MachineBasicBlock*> *Preds,
 | 
						|
                                  BumpPtrAllocator *Allocator) {
 | 
						|
  MachineBasicBlock *BB = Info->BB;
 | 
						|
  for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
 | 
						|
         E = BB->pred_end(); PI != E; ++PI)
 | 
						|
    Preds->push_back(*PI);
 | 
						|
 | 
						|
  Info->NumPreds = Preds->size();
 | 
						|
  Info->Preds = static_cast<MachineSSAUpdater::BBInfo**>
 | 
						|
    (Allocator->Allocate(Info->NumPreds * sizeof(MachineSSAUpdater::BBInfo*),
 | 
						|
                         AlignOf<MachineSSAUpdater::BBInfo*>::Alignment));
 | 
						|
}
 | 
						|
 | 
						|
/// BuildBlockList - Starting from the specified basic block, traverse back
 | 
						|
/// through its predecessors until reaching blocks with known values.  Create
 | 
						|
/// BBInfo structures for the blocks and append them to the block list.
 | 
						|
void MachineSSAUpdater::BuildBlockList(MachineBasicBlock *BB,
 | 
						|
                                       BlockListTy *BlockList,
 | 
						|
                                       BumpPtrAllocator *Allocator) {
 | 
						|
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | 
						|
  BBMapTy *BBMap = getBBMap(BM);
 | 
						|
  SmallVector<BBInfo*, 10> RootList;
 | 
						|
  SmallVector<BBInfo*, 64> WorkList;
 | 
						|
 | 
						|
  BBInfo *Info = new (*Allocator) BBInfo(BB, 0);
 | 
						|
  (*BBMap)[BB] = Info;
 | 
						|
  WorkList.push_back(Info);
 | 
						|
 | 
						|
  // Search backward from BB, creating BBInfos along the way and stopping when
 | 
						|
  // reaching blocks that define the value.  Record those defining blocks on
 | 
						|
  // the RootList.
 | 
						|
  SmallVector<MachineBasicBlock*, 10> Preds;
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Info = WorkList.pop_back_val();
 | 
						|
    Preds.clear();
 | 
						|
    FindPredecessorBlocks(Info, &Preds, Allocator);
 | 
						|
 | 
						|
    // Treat an unreachable predecessor as a definition with 'undef'.
 | 
						|
    if (Info->NumPreds == 0) {
 | 
						|
      // Insert an implicit_def to represent an undef value.
 | 
						|
      MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
 | 
						|
                                          Info->BB,
 | 
						|
                                          Info->BB->getFirstTerminator(),
 | 
						|
                                          VRC, MRI, TII);
 | 
						|
      Info->AvailableVal = NewDef->getOperand(0).getReg();
 | 
						|
      Info->DefBB = Info;
 | 
						|
      RootList.push_back(Info);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned p = 0; p != Info->NumPreds; ++p) {
 | 
						|
      MachineBasicBlock *Pred = Preds[p];
 | 
						|
      // Check if BBMap already has a BBInfo for the predecessor block.
 | 
						|
      BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred);
 | 
						|
      if (BBMapBucket.second) {
 | 
						|
        Info->Preds[p] = BBMapBucket.second;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Create a new BBInfo for the predecessor.
 | 
						|
      unsigned PredVal = AvailableVals.lookup(Pred);
 | 
						|
      BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal);
 | 
						|
      BBMapBucket.second = PredInfo;
 | 
						|
      Info->Preds[p] = PredInfo;
 | 
						|
 | 
						|
      if (PredInfo->AvailableVal) {
 | 
						|
        RootList.push_back(PredInfo);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      WorkList.push_back(PredInfo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know what blocks are backwards-reachable from the starting
 | 
						|
  // block, do a forward depth-first traversal to assign postorder numbers
 | 
						|
  // to those blocks.
 | 
						|
  BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0);
 | 
						|
  unsigned BlkNum = 1;
 | 
						|
 | 
						|
  // Initialize the worklist with the roots from the backward traversal.
 | 
						|
  while (!RootList.empty()) {
 | 
						|
    Info = RootList.pop_back_val();
 | 
						|
    Info->IDom = PseudoEntry;
 | 
						|
    Info->BlkNum = -1;
 | 
						|
    WorkList.push_back(Info);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Info = WorkList.back();
 | 
						|
 | 
						|
    if (Info->BlkNum == -2) {
 | 
						|
      // All the successors have been handled; assign the postorder number.
 | 
						|
      Info->BlkNum = BlkNum++;
 | 
						|
      // If not a root, put it on the BlockList.
 | 
						|
      if (!Info->AvailableVal)
 | 
						|
        BlockList->push_back(Info);
 | 
						|
      WorkList.pop_back();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Leave this entry on the worklist, but set its BlkNum to mark that its
 | 
						|
    // successors have been put on the worklist.  When it returns to the top
 | 
						|
    // the list, after handling its successors, it will be assigned a number.
 | 
						|
    Info->BlkNum = -2;
 | 
						|
 | 
						|
    // Add unvisited successors to the work list.
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = Info->BB->succ_begin(),
 | 
						|
           E = Info->BB->succ_end(); SI != E; ++SI) {
 | 
						|
      BBInfo *SuccInfo = (*BBMap)[*SI];
 | 
						|
      if (!SuccInfo || SuccInfo->BlkNum)
 | 
						|
        continue;
 | 
						|
      SuccInfo->BlkNum = -1;
 | 
						|
      WorkList.push_back(SuccInfo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  PseudoEntry->BlkNum = BlkNum;
 | 
						|
}
 | 
						|
 | 
						|
/// IntersectDominators - This is the dataflow lattice "meet" operation for
 | 
						|
/// finding dominators.  Given two basic blocks, it walks up the dominator
 | 
						|
/// tree until it finds a common dominator of both.  It uses the postorder
 | 
						|
/// number of the blocks to determine how to do that.
 | 
						|
static MachineSSAUpdater::BBInfo *
 | 
						|
IntersectDominators(MachineSSAUpdater::BBInfo *Blk1,
 | 
						|
                    MachineSSAUpdater::BBInfo *Blk2) {
 | 
						|
  while (Blk1 != Blk2) {
 | 
						|
    while (Blk1->BlkNum < Blk2->BlkNum) {
 | 
						|
      Blk1 = Blk1->IDom;
 | 
						|
      if (!Blk1)
 | 
						|
        return Blk2;
 | 
						|
    }
 | 
						|
    while (Blk2->BlkNum < Blk1->BlkNum) {
 | 
						|
      Blk2 = Blk2->IDom;
 | 
						|
      if (!Blk2)
 | 
						|
        return Blk1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Blk1;
 | 
						|
}
 | 
						|
 | 
						|
/// FindDominators - Calculate the dominator tree for the subset of the CFG
 | 
						|
/// corresponding to the basic blocks on the BlockList.  This uses the
 | 
						|
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and
 | 
						|
/// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10.
 | 
						|
/// Because the CFG subset does not include any edges leading into blocks that
 | 
						|
/// define the value, the results are not the usual dominator tree.  The CFG
 | 
						|
/// subset has a single pseudo-entry node with edges to a set of root nodes
 | 
						|
/// for blocks that define the value.  The dominators for this subset CFG are
 | 
						|
/// not the standard dominators but they are adequate for placing PHIs within
 | 
						|
/// the subset CFG.
 | 
						|
void MachineSSAUpdater::FindDominators(BlockListTy *BlockList) {
 | 
						|
  bool Changed;
 | 
						|
  do {
 | 
						|
    Changed = false;
 | 
						|
    // Iterate over the list in reverse order, i.e., forward on CFG edges.
 | 
						|
    for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
 | 
						|
           E = BlockList->rend(); I != E; ++I) {
 | 
						|
      BBInfo *Info = *I;
 | 
						|
 | 
						|
      // Start with the first predecessor.
 | 
						|
      assert(Info->NumPreds > 0 && "unreachable block");
 | 
						|
      BBInfo *NewIDom = Info->Preds[0];
 | 
						|
 | 
						|
      // Iterate through the block's other predecessors.
 | 
						|
      for (unsigned p = 1; p != Info->NumPreds; ++p) {
 | 
						|
        BBInfo *Pred = Info->Preds[p];
 | 
						|
        NewIDom = IntersectDominators(NewIDom, Pred);
 | 
						|
      }
 | 
						|
 | 
						|
      // Check if the IDom value has changed.
 | 
						|
      if (NewIDom != Info->IDom) {
 | 
						|
        Info->IDom = NewIDom;
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (Changed);
 | 
						|
}
 | 
						|
 | 
						|
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
 | 
						|
/// any blocks containing definitions of the value.  If one is found, then the
 | 
						|
/// successor of Pred is in the dominance frontier for the definition, and
 | 
						|
/// this function returns true.
 | 
						|
static bool IsDefInDomFrontier(const MachineSSAUpdater::BBInfo *Pred,
 | 
						|
                               const MachineSSAUpdater::BBInfo *IDom) {
 | 
						|
  for (; Pred != IDom; Pred = Pred->IDom) {
 | 
						|
    if (Pred->DefBB == Pred)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of
 | 
						|
/// the known definitions.  Iteratively add PHIs in the dom frontiers until
 | 
						|
/// nothing changes.  Along the way, keep track of the nearest dominating
 | 
						|
/// definitions for non-PHI blocks.
 | 
						|
void MachineSSAUpdater::FindPHIPlacement(BlockListTy *BlockList) {
 | 
						|
  bool Changed;
 | 
						|
  do {
 | 
						|
    Changed = false;
 | 
						|
    // Iterate over the list in reverse order, i.e., forward on CFG edges.
 | 
						|
    for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
 | 
						|
           E = BlockList->rend(); I != E; ++I) {
 | 
						|
      BBInfo *Info = *I;
 | 
						|
 | 
						|
      // If this block already needs a PHI, there is nothing to do here.
 | 
						|
      if (Info->DefBB == Info)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Default to use the same def as the immediate dominator.
 | 
						|
      BBInfo *NewDefBB = Info->IDom->DefBB;
 | 
						|
      for (unsigned p = 0; p != Info->NumPreds; ++p) {
 | 
						|
        if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
 | 
						|
          // Need a PHI here.
 | 
						|
          NewDefBB = Info;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Check if anything changed.
 | 
						|
      if (NewDefBB != Info->DefBB) {
 | 
						|
        Info->DefBB = NewDefBB;
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (Changed);
 | 
						|
}
 | 
						|
 | 
						|
/// FindAvailableVal - If this block requires a PHI, first check if an existing
 | 
						|
/// PHI matches the PHI placement and reaching definitions computed earlier,
 | 
						|
/// and if not, create a new PHI.  Visit all the block's predecessors to
 | 
						|
/// calculate the available value for each one and fill in the incoming values
 | 
						|
/// for a new PHI.
 | 
						|
void MachineSSAUpdater::FindAvailableVals(BlockListTy *BlockList) {
 | 
						|
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | 
						|
 | 
						|
  // Go through the worklist in forward order (i.e., backward through the CFG)
 | 
						|
  // and check if existing PHIs can be used.  If not, create empty PHIs where
 | 
						|
  // they are needed.
 | 
						|
  for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
 | 
						|
       I != E; ++I) {
 | 
						|
    BBInfo *Info = *I;
 | 
						|
    // Check if there needs to be a PHI in BB.
 | 
						|
    if (Info->DefBB != Info)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Look for an existing PHI.
 | 
						|
    FindExistingPHI(Info->BB, BlockList);
 | 
						|
    if (Info->AvailableVal)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MachineBasicBlock::iterator Loc =
 | 
						|
      Info->BB->empty() ? Info->BB->end() : Info->BB->front();
 | 
						|
    MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, Info->BB, Loc,
 | 
						|
                                             VRC, MRI, TII);
 | 
						|
    unsigned PHI = InsertedPHI->getOperand(0).getReg();
 | 
						|
    Info->AvailableVal = PHI;
 | 
						|
    AvailableVals[Info->BB] = PHI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now go back through the worklist in reverse order to fill in the arguments
 | 
						|
  // for any new PHIs added in the forward traversal.
 | 
						|
  for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
 | 
						|
         E = BlockList->rend(); I != E; ++I) {
 | 
						|
    BBInfo *Info = *I;
 | 
						|
 | 
						|
    if (Info->DefBB != Info) {
 | 
						|
      // Record the available value at join nodes to speed up subsequent
 | 
						|
      // uses of this SSAUpdater for the same value.
 | 
						|
      if (Info->NumPreds > 1)
 | 
						|
        AvailableVals[Info->BB] = Info->DefBB->AvailableVal;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if this block contains a newly added PHI.
 | 
						|
    unsigned PHI = Info->AvailableVal;
 | 
						|
    MachineInstr *InsertedPHI = MRI->getVRegDef(PHI);
 | 
						|
    if (!InsertedPHI->isPHI() || InsertedPHI->getNumOperands() > 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Iterate through the block's predecessors.
 | 
						|
    MachineInstrBuilder MIB(InsertedPHI);
 | 
						|
    for (unsigned p = 0; p != Info->NumPreds; ++p) {
 | 
						|
      BBInfo *PredInfo = Info->Preds[p];
 | 
						|
      MachineBasicBlock *Pred = PredInfo->BB;
 | 
						|
      // Skip to the nearest preceding definition.
 | 
						|
      if (PredInfo->DefBB != PredInfo)
 | 
						|
        PredInfo = PredInfo->DefBB;
 | 
						|
      MIB.addReg(PredInfo->AvailableVal).addMBB(Pred);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
 | 
						|
 | 
						|
    // If the client wants to know about all new instructions, tell it.
 | 
						|
    if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
 | 
						|
/// them match what is needed.
 | 
						|
void MachineSSAUpdater::FindExistingPHI(MachineBasicBlock *BB,
 | 
						|
                                        BlockListTy *BlockList) {
 | 
						|
  for (MachineBasicBlock::iterator BBI = BB->begin(), BBE = BB->end();
 | 
						|
       BBI != BBE && BBI->isPHI(); ++BBI) {
 | 
						|
    if (CheckIfPHIMatches(BBI)) {
 | 
						|
      RecordMatchingPHI(BBI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    // Match failed: clear all the PHITag values.
 | 
						|
    for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
 | 
						|
         I != E; ++I)
 | 
						|
      (*I)->PHITag = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
 | 
						|
/// in the BBMap.
 | 
						|
bool MachineSSAUpdater::CheckIfPHIMatches(MachineInstr *PHI) {
 | 
						|
  BBMapTy *BBMap = getBBMap(BM);
 | 
						|
  SmallVector<MachineInstr*, 20> WorkList;
 | 
						|
  WorkList.push_back(PHI);
 | 
						|
 | 
						|
  // Mark that the block containing this PHI has been visited.
 | 
						|
  (*BBMap)[PHI->getParent()]->PHITag = PHI;
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    PHI = WorkList.pop_back_val();
 | 
						|
 | 
						|
    // Iterate through the PHI's incoming values.
 | 
						|
    for (unsigned i = 1, e = PHI->getNumOperands(); i != e; i += 2) {
 | 
						|
      unsigned IncomingVal = PHI->getOperand(i).getReg();
 | 
						|
      BBInfo *PredInfo = (*BBMap)[PHI->getOperand(i+1).getMBB()];
 | 
						|
      // Skip to the nearest preceding definition.
 | 
						|
      if (PredInfo->DefBB != PredInfo)
 | 
						|
        PredInfo = PredInfo->DefBB;
 | 
						|
 | 
						|
      // Check if it matches the expected value.
 | 
						|
      if (PredInfo->AvailableVal) {
 | 
						|
        if (IncomingVal == PredInfo->AvailableVal)
 | 
						|
          continue;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check if the value is a PHI in the correct block.
 | 
						|
      MachineInstr *IncomingPHIVal = MRI->getVRegDef(IncomingVal);
 | 
						|
      if (!IncomingPHIVal->isPHI() ||
 | 
						|
          IncomingPHIVal->getParent() != PredInfo->BB)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // If this block has already been visited, check if this PHI matches.
 | 
						|
      if (PredInfo->PHITag) {
 | 
						|
        if (IncomingPHIVal == PredInfo->PHITag)
 | 
						|
          continue;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      PredInfo->PHITag = IncomingPHIVal;
 | 
						|
 | 
						|
      WorkList.push_back(IncomingPHIVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// RecordMatchingPHI - For a PHI node that matches, record it and its input
 | 
						|
/// PHIs in both the BBMap and the AvailableVals mapping.
 | 
						|
void MachineSSAUpdater::RecordMatchingPHI(MachineInstr *PHI) {
 | 
						|
  BBMapTy *BBMap = getBBMap(BM);
 | 
						|
  AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | 
						|
  SmallVector<MachineInstr*, 20> WorkList;
 | 
						|
  WorkList.push_back(PHI);
 | 
						|
 | 
						|
  // Record this PHI.
 | 
						|
  MachineBasicBlock *BB = PHI->getParent();
 | 
						|
  AvailableVals[BB] = PHI->getOperand(0).getReg();
 | 
						|
  (*BBMap)[BB]->AvailableVal = PHI->getOperand(0).getReg();
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    PHI = WorkList.pop_back_val();
 | 
						|
 | 
						|
    // Iterate through the PHI's incoming values.
 | 
						|
    for (unsigned i = 1, e = PHI->getNumOperands(); i != e; i += 2) {
 | 
						|
      unsigned IncomingVal = PHI->getOperand(i).getReg();
 | 
						|
      MachineInstr *IncomingPHIVal = MRI->getVRegDef(IncomingVal);
 | 
						|
      if (!IncomingPHIVal->isPHI()) continue;
 | 
						|
      BB = IncomingPHIVal->getParent();
 | 
						|
      BBInfo *Info = (*BBMap)[BB];
 | 
						|
      if (!Info || Info->AvailableVal)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Record the PHI and add it to the worklist.
 | 
						|
      AvailableVals[BB] = IncomingVal;
 | 
						|
      Info->AvailableVal = IncomingVal;
 | 
						|
      WorkList.push_back(IncomingPHIVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |