forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			879 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			879 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the implementation of the scalar evolution expander,
 | 
						|
// which is used to generate the code corresponding to a given scalar evolution
 | 
						|
// expression.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
 | 
						|
/// which must be possible with a noop cast, doing what we can to share
 | 
						|
/// the casts.
 | 
						|
Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
 | 
						|
  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
 | 
						|
  assert((Op == Instruction::BitCast ||
 | 
						|
          Op == Instruction::PtrToInt ||
 | 
						|
          Op == Instruction::IntToPtr) &&
 | 
						|
         "InsertNoopCastOfTo cannot perform non-noop casts!");
 | 
						|
  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
 | 
						|
         "InsertNoopCastOfTo cannot change sizes!");
 | 
						|
 | 
						|
  // Short-circuit unnecessary bitcasts.
 | 
						|
  if (Op == Instruction::BitCast && V->getType() == Ty)
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
 | 
						|
  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
 | 
						|
      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
 | 
						|
    if (CastInst *CI = dyn_cast<CastInst>(V))
 | 
						|
      if ((CI->getOpcode() == Instruction::PtrToInt ||
 | 
						|
           CI->getOpcode() == Instruction::IntToPtr) &&
 | 
						|
          SE.getTypeSizeInBits(CI->getType()) ==
 | 
						|
          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
 | 
						|
        return CI->getOperand(0);
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
      if ((CE->getOpcode() == Instruction::PtrToInt ||
 | 
						|
           CE->getOpcode() == Instruction::IntToPtr) &&
 | 
						|
          SE.getTypeSizeInBits(CE->getType()) ==
 | 
						|
          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
 | 
						|
        return CE->getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getCast(Op, C, Ty);
 | 
						|
 | 
						|
  if (Argument *A = dyn_cast<Argument>(V)) {
 | 
						|
    // Check to see if there is already a cast!
 | 
						|
    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
 | 
						|
         UI != E; ++UI)
 | 
						|
      if ((*UI)->getType() == Ty)
 | 
						|
        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
 | 
						|
          if (CI->getOpcode() == Op) {
 | 
						|
            // If the cast isn't the first instruction of the function, move it.
 | 
						|
            if (BasicBlock::iterator(CI) !=
 | 
						|
                A->getParent()->getEntryBlock().begin()) {
 | 
						|
              // Recreate the cast at the beginning of the entry block.
 | 
						|
              // The old cast is left in place in case it is being used
 | 
						|
              // as an insert point.
 | 
						|
              Instruction *NewCI =
 | 
						|
                CastInst::Create(Op, V, Ty, "",
 | 
						|
                                 A->getParent()->getEntryBlock().begin());
 | 
						|
              NewCI->takeName(CI);
 | 
						|
              CI->replaceAllUsesWith(NewCI);
 | 
						|
              return NewCI;
 | 
						|
            }
 | 
						|
            return CI;
 | 
						|
          }
 | 
						|
 | 
						|
    Instruction *I = CastInst::Create(Op, V, Ty, V->getName(),
 | 
						|
                                      A->getParent()->getEntryBlock().begin());
 | 
						|
    InsertedValues.insert(I);
 | 
						|
    return I;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *I = cast<Instruction>(V);
 | 
						|
 | 
						|
  // Check to see if there is already a cast.  If there is, use it.
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    if ((*UI)->getType() == Ty)
 | 
						|
      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
 | 
						|
        if (CI->getOpcode() == Op) {
 | 
						|
          BasicBlock::iterator It = I; ++It;
 | 
						|
          if (isa<InvokeInst>(I))
 | 
						|
            It = cast<InvokeInst>(I)->getNormalDest()->begin();
 | 
						|
          while (isa<PHINode>(It)) ++It;
 | 
						|
          if (It != BasicBlock::iterator(CI)) {
 | 
						|
            // Recreate the cast at the beginning of the entry block.
 | 
						|
            // The old cast is left in place in case it is being used
 | 
						|
            // as an insert point.
 | 
						|
            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", It);
 | 
						|
            NewCI->takeName(CI);
 | 
						|
            CI->replaceAllUsesWith(NewCI);
 | 
						|
            return NewCI;
 | 
						|
          }
 | 
						|
          return CI;
 | 
						|
        }
 | 
						|
  }
 | 
						|
  BasicBlock::iterator IP = I; ++IP;
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
 | 
						|
    IP = II->getNormalDest()->begin();
 | 
						|
  while (isa<PHINode>(IP)) ++IP;
 | 
						|
  Instruction *CI = CastInst::Create(Op, V, Ty, V->getName(), IP);
 | 
						|
  InsertedValues.insert(CI);
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertBinop - Insert the specified binary operator, doing a small amount
 | 
						|
/// of work to avoid inserting an obviously redundant operation.
 | 
						|
Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
 | 
						|
                                 Value *LHS, Value *RHS) {
 | 
						|
  // Fold a binop with constant operands.
 | 
						|
  if (Constant *CLHS = dyn_cast<Constant>(LHS))
 | 
						|
    if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | 
						|
      return ConstantExpr::get(Opcode, CLHS, CRHS);
 | 
						|
 | 
						|
  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
 | 
						|
  unsigned ScanLimit = 6;
 | 
						|
  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
 | 
						|
  // Scanning starts from the last instruction before the insertion point.
 | 
						|
  BasicBlock::iterator IP = Builder.GetInsertPoint();
 | 
						|
  if (IP != BlockBegin) {
 | 
						|
    --IP;
 | 
						|
    for (; ScanLimit; --IP, --ScanLimit) {
 | 
						|
      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
 | 
						|
          IP->getOperand(1) == RHS)
 | 
						|
        return IP;
 | 
						|
      if (IP == BlockBegin) break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we haven't found this binop, insert it.
 | 
						|
  Value *BO = Builder.CreateBinOp(Opcode, LHS, RHS, "tmp");
 | 
						|
  InsertedValues.insert(BO);
 | 
						|
  return BO;
 | 
						|
}
 | 
						|
 | 
						|
/// FactorOutConstant - Test if S is divisible by Factor, using signed
 | 
						|
/// division. If so, update S with Factor divided out and return true.
 | 
						|
/// S need not be evenly divisble if a reasonable remainder can be
 | 
						|
/// computed.
 | 
						|
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
 | 
						|
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
 | 
						|
/// check to see if the divide was folded.
 | 
						|
static bool FactorOutConstant(const SCEV *&S,
 | 
						|
                              const SCEV *&Remainder,
 | 
						|
                              const SCEV *Factor,
 | 
						|
                              ScalarEvolution &SE,
 | 
						|
                              const TargetData *TD) {
 | 
						|
  // Everything is divisible by one.
 | 
						|
  if (Factor->isOne())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // x/x == 1.
 | 
						|
  if (S == Factor) {
 | 
						|
    S = SE.getIntegerSCEV(1, S->getType());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // For a Constant, check for a multiple of the given factor.
 | 
						|
  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
 | 
						|
    // 0/x == 0.
 | 
						|
    if (C->isZero())
 | 
						|
      return true;
 | 
						|
    // Check for divisibility.
 | 
						|
    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
 | 
						|
      ConstantInt *CI =
 | 
						|
        ConstantInt::get(SE.getContext(),
 | 
						|
                         C->getValue()->getValue().sdiv(
 | 
						|
                                                   FC->getValue()->getValue()));
 | 
						|
      // If the quotient is zero and the remainder is non-zero, reject
 | 
						|
      // the value at this scale. It will be considered for subsequent
 | 
						|
      // smaller scales.
 | 
						|
      if (!CI->isZero()) {
 | 
						|
        const SCEV *Div = SE.getConstant(CI);
 | 
						|
        S = Div;
 | 
						|
        Remainder =
 | 
						|
          SE.getAddExpr(Remainder,
 | 
						|
                        SE.getConstant(C->getValue()->getValue().srem(
 | 
						|
                                                  FC->getValue()->getValue())));
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In a Mul, check if there is a constant operand which is a multiple
 | 
						|
  // of the given factor.
 | 
						|
  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
 | 
						|
    if (TD) {
 | 
						|
      // With TargetData, the size is known. Check if there is a constant
 | 
						|
      // operand which is a multiple of the given factor. If so, we can
 | 
						|
      // factor it.
 | 
						|
      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
 | 
						|
      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
 | 
						|
        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
 | 
						|
          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
 | 
						|
          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
 | 
						|
                                                 MOperands.end());
 | 
						|
          NewMulOps[0] =
 | 
						|
            SE.getConstant(C->getValue()->getValue().sdiv(
 | 
						|
                                                   FC->getValue()->getValue()));
 | 
						|
          S = SE.getMulExpr(NewMulOps);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
      // Without TargetData, check if Factor can be factored out of any of the
 | 
						|
      // Mul's operands. If so, we can just remove it.
 | 
						|
      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
 | 
						|
        const SCEV *SOp = M->getOperand(i);
 | 
						|
        const SCEV *Remainder = SE.getIntegerSCEV(0, SOp->getType());
 | 
						|
        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
 | 
						|
            Remainder->isZero()) {
 | 
						|
          const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
 | 
						|
          SmallVector<const SCEV *, 4> NewMulOps(MOperands.begin(),
 | 
						|
                                                 MOperands.end());
 | 
						|
          NewMulOps[i] = SOp;
 | 
						|
          S = SE.getMulExpr(NewMulOps);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In an AddRec, check if both start and step are divisible.
 | 
						|
  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
 | 
						|
    const SCEV *Step = A->getStepRecurrence(SE);
 | 
						|
    const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
 | 
						|
    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
 | 
						|
      return false;
 | 
						|
    if (!StepRem->isZero())
 | 
						|
      return false;
 | 
						|
    const SCEV *Start = A->getStart();
 | 
						|
    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
 | 
						|
      return false;
 | 
						|
    S = SE.getAddRecExpr(Start, Step, A->getLoop());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
 | 
						|
/// is the number of SCEVAddRecExprs present, which are kept at the end of
 | 
						|
/// the list.
 | 
						|
///
 | 
						|
static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
 | 
						|
                                const Type *Ty,
 | 
						|
                                ScalarEvolution &SE) {
 | 
						|
  unsigned NumAddRecs = 0;
 | 
						|
  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
 | 
						|
    ++NumAddRecs;
 | 
						|
  // Group Ops into non-addrecs and addrecs.
 | 
						|
  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
 | 
						|
  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
 | 
						|
  // Let ScalarEvolution sort and simplify the non-addrecs list.
 | 
						|
  const SCEV *Sum = NoAddRecs.empty() ?
 | 
						|
                    SE.getIntegerSCEV(0, Ty) :
 | 
						|
                    SE.getAddExpr(NoAddRecs);
 | 
						|
  // If it returned an add, use the operands. Otherwise it simplified
 | 
						|
  // the sum into a single value, so just use that.
 | 
						|
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
 | 
						|
    Ops = Add->getOperands();
 | 
						|
  else {
 | 
						|
    Ops.clear();
 | 
						|
    if (!Sum->isZero())
 | 
						|
      Ops.push_back(Sum);
 | 
						|
  }
 | 
						|
  // Then append the addrecs.
 | 
						|
  Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
 | 
						|
}
 | 
						|
 | 
						|
/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
 | 
						|
/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
 | 
						|
/// This helps expose more opportunities for folding parts of the expressions
 | 
						|
/// into GEP indices.
 | 
						|
///
 | 
						|
static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
 | 
						|
                         const Type *Ty,
 | 
						|
                         ScalarEvolution &SE) {
 | 
						|
  // Find the addrecs.
 | 
						|
  SmallVector<const SCEV *, 8> AddRecs;
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
 | 
						|
      const SCEV *Start = A->getStart();
 | 
						|
      if (Start->isZero()) break;
 | 
						|
      const SCEV *Zero = SE.getIntegerSCEV(0, Ty);
 | 
						|
      AddRecs.push_back(SE.getAddRecExpr(Zero,
 | 
						|
                                         A->getStepRecurrence(SE),
 | 
						|
                                         A->getLoop()));
 | 
						|
      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
 | 
						|
        Ops[i] = Zero;
 | 
						|
        Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
 | 
						|
        e += Add->getNumOperands();
 | 
						|
      } else {
 | 
						|
        Ops[i] = Start;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  if (!AddRecs.empty()) {
 | 
						|
    // Add the addrecs onto the end of the list.
 | 
						|
    Ops.insert(Ops.end(), AddRecs.begin(), AddRecs.end());
 | 
						|
    // Resort the operand list, moving any constants to the front.
 | 
						|
    SimplifyAddOperands(Ops, Ty, SE);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// expandAddToGEP - Expand an addition expression with a pointer type into
 | 
						|
/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
 | 
						|
/// BasicAliasAnalysis and other passes analyze the result. See the rules
 | 
						|
/// for getelementptr vs. inttoptr in
 | 
						|
/// http://llvm.org/docs/LangRef.html#pointeraliasing
 | 
						|
/// for details.
 | 
						|
///
 | 
						|
/// Design note: The correctness of using getelmeentptr here depends on
 | 
						|
/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
 | 
						|
/// they may introduce pointer arithmetic which may not be safely converted
 | 
						|
/// into getelementptr.
 | 
						|
///
 | 
						|
/// Design note: It might seem desirable for this function to be more
 | 
						|
/// loop-aware. If some of the indices are loop-invariant while others
 | 
						|
/// aren't, it might seem desirable to emit multiple GEPs, keeping the
 | 
						|
/// loop-invariant portions of the overall computation outside the loop.
 | 
						|
/// However, there are a few reasons this is not done here. Hoisting simple
 | 
						|
/// arithmetic is a low-level optimization that often isn't very
 | 
						|
/// important until late in the optimization process. In fact, passes
 | 
						|
/// like InstructionCombining will combine GEPs, even if it means
 | 
						|
/// pushing loop-invariant computation down into loops, so even if the
 | 
						|
/// GEPs were split here, the work would quickly be undone. The
 | 
						|
/// LoopStrengthReduction pass, which is usually run quite late (and
 | 
						|
/// after the last InstructionCombining pass), takes care of hoisting
 | 
						|
/// loop-invariant portions of expressions, after considering what
 | 
						|
/// can be folded using target addressing modes.
 | 
						|
///
 | 
						|
Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
 | 
						|
                                    const SCEV *const *op_end,
 | 
						|
                                    const PointerType *PTy,
 | 
						|
                                    const Type *Ty,
 | 
						|
                                    Value *V) {
 | 
						|
  const Type *ElTy = PTy->getElementType();
 | 
						|
  SmallVector<Value *, 4> GepIndices;
 | 
						|
  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
 | 
						|
  bool AnyNonZeroIndices = false;
 | 
						|
 | 
						|
  // Split AddRecs up into parts as either of the parts may be usable
 | 
						|
  // without the other.
 | 
						|
  SplitAddRecs(Ops, Ty, SE);
 | 
						|
 | 
						|
  // Decend down the pointer's type and attempt to convert the other
 | 
						|
  // operands into GEP indices, at each level. The first index in a GEP
 | 
						|
  // indexes into the array implied by the pointer operand; the rest of
 | 
						|
  // the indices index into the element or field type selected by the
 | 
						|
  // preceding index.
 | 
						|
  for (;;) {
 | 
						|
    const SCEV *ElSize = SE.getAllocSizeExpr(ElTy);
 | 
						|
    // If the scale size is not 0, attempt to factor out a scale for
 | 
						|
    // array indexing.
 | 
						|
    SmallVector<const SCEV *, 8> ScaledOps;
 | 
						|
    if (ElTy->isSized() && !ElSize->isZero()) {
 | 
						|
      SmallVector<const SCEV *, 8> NewOps;
 | 
						|
      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
        const SCEV *Op = Ops[i];
 | 
						|
        const SCEV *Remainder = SE.getIntegerSCEV(0, Ty);
 | 
						|
        if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
 | 
						|
          // Op now has ElSize factored out.
 | 
						|
          ScaledOps.push_back(Op);
 | 
						|
          if (!Remainder->isZero())
 | 
						|
            NewOps.push_back(Remainder);
 | 
						|
          AnyNonZeroIndices = true;
 | 
						|
        } else {
 | 
						|
          // The operand was not divisible, so add it to the list of operands
 | 
						|
          // we'll scan next iteration.
 | 
						|
          NewOps.push_back(Ops[i]);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If we made any changes, update Ops.
 | 
						|
      if (!ScaledOps.empty()) {
 | 
						|
        Ops = NewOps;
 | 
						|
        SimplifyAddOperands(Ops, Ty, SE);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Record the scaled array index for this level of the type. If
 | 
						|
    // we didn't find any operands that could be factored, tentatively
 | 
						|
    // assume that element zero was selected (since the zero offset
 | 
						|
    // would obviously be folded away).
 | 
						|
    Value *Scaled = ScaledOps.empty() ?
 | 
						|
                    Constant::getNullValue(Ty) :
 | 
						|
                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
 | 
						|
    GepIndices.push_back(Scaled);
 | 
						|
 | 
						|
    // Collect struct field index operands.
 | 
						|
    while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
 | 
						|
      bool FoundFieldNo = false;
 | 
						|
      // An empty struct has no fields.
 | 
						|
      if (STy->getNumElements() == 0) break;
 | 
						|
      if (SE.TD) {
 | 
						|
        // With TargetData, field offsets are known. See if a constant offset
 | 
						|
        // falls within any of the struct fields.
 | 
						|
        if (Ops.empty()) break;
 | 
						|
        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
 | 
						|
          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
 | 
						|
            const StructLayout &SL = *SE.TD->getStructLayout(STy);
 | 
						|
            uint64_t FullOffset = C->getValue()->getZExtValue();
 | 
						|
            if (FullOffset < SL.getSizeInBytes()) {
 | 
						|
              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
 | 
						|
              GepIndices.push_back(
 | 
						|
                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
 | 
						|
              ElTy = STy->getTypeAtIndex(ElIdx);
 | 
						|
              Ops[0] =
 | 
						|
                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
 | 
						|
              AnyNonZeroIndices = true;
 | 
						|
              FoundFieldNo = true;
 | 
						|
            }
 | 
						|
          }
 | 
						|
      } else {
 | 
						|
        // Without TargetData, just check for a SCEVFieldOffsetExpr of the
 | 
						|
        // appropriate struct type.
 | 
						|
        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
          if (const SCEVFieldOffsetExpr *FO =
 | 
						|
                dyn_cast<SCEVFieldOffsetExpr>(Ops[i]))
 | 
						|
            if (FO->getStructType() == STy) {
 | 
						|
              unsigned FieldNo = FO->getFieldNo();
 | 
						|
              GepIndices.push_back(
 | 
						|
                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | 
						|
                                   FieldNo));
 | 
						|
              ElTy = STy->getTypeAtIndex(FieldNo);
 | 
						|
              Ops[i] = SE.getConstant(Ty, 0);
 | 
						|
              AnyNonZeroIndices = true;
 | 
						|
              FoundFieldNo = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
      }
 | 
						|
      // If no struct field offsets were found, tentatively assume that
 | 
						|
      // field zero was selected (since the zero offset would obviously
 | 
						|
      // be folded away).
 | 
						|
      if (!FoundFieldNo) {
 | 
						|
        ElTy = STy->getTypeAtIndex(0u);
 | 
						|
        GepIndices.push_back(
 | 
						|
          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
 | 
						|
      ElTy = ATy->getElementType();
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If none of the operands were convertable to proper GEP indices, cast
 | 
						|
  // the base to i8* and do an ugly getelementptr with that. It's still
 | 
						|
  // better than ptrtoint+arithmetic+inttoptr at least.
 | 
						|
  if (!AnyNonZeroIndices) {
 | 
						|
    // Cast the base to i8*.
 | 
						|
    V = InsertNoopCastOfTo(V,
 | 
						|
       Type::getInt8Ty(Ty->getContext())->getPointerTo(PTy->getAddressSpace()));
 | 
						|
 | 
						|
    // Expand the operands for a plain byte offset.
 | 
						|
    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
 | 
						|
 | 
						|
    // Fold a GEP with constant operands.
 | 
						|
    if (Constant *CLHS = dyn_cast<Constant>(V))
 | 
						|
      if (Constant *CRHS = dyn_cast<Constant>(Idx))
 | 
						|
        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
 | 
						|
 | 
						|
    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
 | 
						|
    unsigned ScanLimit = 6;
 | 
						|
    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
 | 
						|
    // Scanning starts from the last instruction before the insertion point.
 | 
						|
    BasicBlock::iterator IP = Builder.GetInsertPoint();
 | 
						|
    if (IP != BlockBegin) {
 | 
						|
      --IP;
 | 
						|
      for (; ScanLimit; --IP, --ScanLimit) {
 | 
						|
        if (IP->getOpcode() == Instruction::GetElementPtr &&
 | 
						|
            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
 | 
						|
          return IP;
 | 
						|
        if (IP == BlockBegin) break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Emit a GEP.
 | 
						|
    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
 | 
						|
    InsertedValues.insert(GEP);
 | 
						|
    return GEP;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
 | 
						|
  // because ScalarEvolution may have changed the address arithmetic to
 | 
						|
  // compute a value which is beyond the end of the allocated object.
 | 
						|
  Value *GEP = Builder.CreateGEP(V,
 | 
						|
                                 GepIndices.begin(),
 | 
						|
                                 GepIndices.end(),
 | 
						|
                                 "scevgep");
 | 
						|
  Ops.push_back(SE.getUnknown(GEP));
 | 
						|
  InsertedValues.insert(GEP);
 | 
						|
  return expand(SE.getAddExpr(Ops));
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
 | 
						|
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | 
						|
  Value *V = expand(S->getOperand(S->getNumOperands()-1));
 | 
						|
 | 
						|
  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
 | 
						|
  // comments on expandAddToGEP for details.
 | 
						|
  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
 | 
						|
    const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
 | 
						|
    return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1], PTy, Ty, V);
 | 
						|
  }
 | 
						|
 | 
						|
  V = InsertNoopCastOfTo(V, Ty);
 | 
						|
 | 
						|
  // Emit a bunch of add instructions
 | 
						|
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
 | 
						|
    Value *W = expandCodeFor(S->getOperand(i), Ty);
 | 
						|
    V = InsertBinop(Instruction::Add, V, W);
 | 
						|
  }
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
 | 
						|
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | 
						|
  int FirstOp = 0;  // Set if we should emit a subtract.
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
 | 
						|
    if (SC->getValue()->isAllOnesValue())
 | 
						|
      FirstOp = 1;
 | 
						|
 | 
						|
  int i = S->getNumOperands()-2;
 | 
						|
  Value *V = expandCodeFor(S->getOperand(i+1), Ty);
 | 
						|
 | 
						|
  // Emit a bunch of multiply instructions
 | 
						|
  for (; i >= FirstOp; --i) {
 | 
						|
    Value *W = expandCodeFor(S->getOperand(i), Ty);
 | 
						|
    V = InsertBinop(Instruction::Mul, V, W);
 | 
						|
  }
 | 
						|
 | 
						|
  // -1 * ...  --->  0 - ...
 | 
						|
  if (FirstOp == 1)
 | 
						|
    V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
 | 
						|
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | 
						|
 | 
						|
  Value *LHS = expandCodeFor(S->getLHS(), Ty);
 | 
						|
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
 | 
						|
    const APInt &RHS = SC->getValue()->getValue();
 | 
						|
    if (RHS.isPowerOf2())
 | 
						|
      return InsertBinop(Instruction::LShr, LHS,
 | 
						|
                         ConstantInt::get(Ty, RHS.logBase2()));
 | 
						|
  }
 | 
						|
 | 
						|
  Value *RHS = expandCodeFor(S->getRHS(), Ty);
 | 
						|
  return InsertBinop(Instruction::UDiv, LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// Move parts of Base into Rest to leave Base with the minimal
 | 
						|
/// expression that provides a pointer operand suitable for a
 | 
						|
/// GEP expansion.
 | 
						|
static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
 | 
						|
                              ScalarEvolution &SE) {
 | 
						|
  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
 | 
						|
    Base = A->getStart();
 | 
						|
    Rest = SE.getAddExpr(Rest,
 | 
						|
                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
 | 
						|
                                          A->getStepRecurrence(SE),
 | 
						|
                                          A->getLoop()));
 | 
						|
  }
 | 
						|
  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
 | 
						|
    Base = A->getOperand(A->getNumOperands()-1);
 | 
						|
    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
 | 
						|
    NewAddOps.back() = Rest;
 | 
						|
    Rest = SE.getAddExpr(NewAddOps);
 | 
						|
    ExposePointerBase(Base, Rest, SE);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
 | 
						|
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | 
						|
  const Loop *L = S->getLoop();
 | 
						|
 | 
						|
  // First check for an existing canonical IV in a suitable type.
 | 
						|
  PHINode *CanonicalIV = 0;
 | 
						|
  if (PHINode *PN = L->getCanonicalInductionVariable())
 | 
						|
    if (SE.isSCEVable(PN->getType()) &&
 | 
						|
        isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
 | 
						|
        SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
 | 
						|
      CanonicalIV = PN;
 | 
						|
 | 
						|
  // Rewrite an AddRec in terms of the canonical induction variable, if
 | 
						|
  // its type is more narrow.
 | 
						|
  if (CanonicalIV &&
 | 
						|
      SE.getTypeSizeInBits(CanonicalIV->getType()) >
 | 
						|
      SE.getTypeSizeInBits(Ty)) {
 | 
						|
    const SCEV *Start = SE.getAnyExtendExpr(S->getStart(),
 | 
						|
                                            CanonicalIV->getType());
 | 
						|
    const SCEV *Step = SE.getAnyExtendExpr(S->getStepRecurrence(SE),
 | 
						|
                                           CanonicalIV->getType());
 | 
						|
    Value *V = expand(SE.getAddRecExpr(Start, Step, S->getLoop()));
 | 
						|
    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
 | 
						|
    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
 | 
						|
    BasicBlock::iterator NewInsertPt =
 | 
						|
      next(BasicBlock::iterator(cast<Instruction>(V)));
 | 
						|
    while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
 | 
						|
    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
 | 
						|
                      NewInsertPt);
 | 
						|
    Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // {X,+,F} --> X + {0,+,F}
 | 
						|
  if (!S->getStart()->isZero()) {
 | 
						|
    const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
 | 
						|
    SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
 | 
						|
    NewOps[0] = SE.getIntegerSCEV(0, Ty);
 | 
						|
    const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
 | 
						|
 | 
						|
    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
 | 
						|
    // comments on expandAddToGEP for details.
 | 
						|
    const SCEV *Base = S->getStart();
 | 
						|
    const SCEV *RestArray[1] = { Rest };
 | 
						|
    // Dig into the expression to find the pointer base for a GEP.
 | 
						|
    ExposePointerBase(Base, RestArray[0], SE);
 | 
						|
    // If we found a pointer, expand the AddRec with a GEP.
 | 
						|
    if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
 | 
						|
      // Make sure the Base isn't something exotic, such as a multiplied
 | 
						|
      // or divided pointer value. In those cases, the result type isn't
 | 
						|
      // actually a pointer type.
 | 
						|
      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
 | 
						|
        Value *StartV = expand(Base);
 | 
						|
        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
 | 
						|
        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Just do a normal add. Pre-expand the operands to suppress folding.
 | 
						|
    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
 | 
						|
                                SE.getUnknown(expand(Rest))));
 | 
						|
  }
 | 
						|
 | 
						|
  // {0,+,1} --> Insert a canonical induction variable into the loop!
 | 
						|
  if (S->isAffine() &&
 | 
						|
      S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
 | 
						|
    // If there's a canonical IV, just use it.
 | 
						|
    if (CanonicalIV) {
 | 
						|
      assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
 | 
						|
             "IVs with types different from the canonical IV should "
 | 
						|
             "already have been handled!");
 | 
						|
      return CanonicalIV;
 | 
						|
    }
 | 
						|
 | 
						|
    // Create and insert the PHI node for the induction variable in the
 | 
						|
    // specified loop.
 | 
						|
    BasicBlock *Header = L->getHeader();
 | 
						|
    BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
 | 
						|
    InsertedValues.insert(PN);
 | 
						|
    PN->addIncoming(Constant::getNullValue(Ty), Preheader);
 | 
						|
 | 
						|
    pred_iterator HPI = pred_begin(Header);
 | 
						|
    assert(HPI != pred_end(Header) && "Loop with zero preds???");
 | 
						|
    if (!L->contains(*HPI)) ++HPI;
 | 
						|
    assert(HPI != pred_end(Header) && L->contains(*HPI) &&
 | 
						|
           "No backedge in loop?");
 | 
						|
 | 
						|
    // Insert a unit add instruction right before the terminator corresponding
 | 
						|
    // to the back-edge.
 | 
						|
    Constant *One = ConstantInt::get(Ty, 1);
 | 
						|
    Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
 | 
						|
                                                 (*HPI)->getTerminator());
 | 
						|
    InsertedValues.insert(Add);
 | 
						|
 | 
						|
    pred_iterator PI = pred_begin(Header);
 | 
						|
    if (*PI == Preheader)
 | 
						|
      ++PI;
 | 
						|
    PN->addIncoming(Add, *PI);
 | 
						|
    return PN;
 | 
						|
  }
 | 
						|
 | 
						|
  // {0,+,F} --> {0,+,1} * F
 | 
						|
  // Get the canonical induction variable I for this loop.
 | 
						|
  Value *I = CanonicalIV ?
 | 
						|
             CanonicalIV :
 | 
						|
             getOrInsertCanonicalInductionVariable(L, Ty);
 | 
						|
 | 
						|
  // If this is a simple linear addrec, emit it now as a special case.
 | 
						|
  if (S->isAffine())    // {0,+,F} --> i*F
 | 
						|
    return
 | 
						|
      expand(SE.getTruncateOrNoop(
 | 
						|
        SE.getMulExpr(SE.getUnknown(I),
 | 
						|
                      SE.getNoopOrAnyExtend(S->getOperand(1),
 | 
						|
                                            I->getType())),
 | 
						|
        Ty));
 | 
						|
 | 
						|
  // If this is a chain of recurrences, turn it into a closed form, using the
 | 
						|
  // folders, then expandCodeFor the closed form.  This allows the folders to
 | 
						|
  // simplify the expression without having to build a bunch of special code
 | 
						|
  // into this folder.
 | 
						|
  const SCEV *IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
 | 
						|
 | 
						|
  // Promote S up to the canonical IV type, if the cast is foldable.
 | 
						|
  const SCEV *NewS = S;
 | 
						|
  const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
 | 
						|
  if (isa<SCEVAddRecExpr>(Ext))
 | 
						|
    NewS = Ext;
 | 
						|
 | 
						|
  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
 | 
						|
  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
 | 
						|
 | 
						|
  // Truncate the result down to the original type, if needed.
 | 
						|
  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
 | 
						|
  return expand(T);
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
 | 
						|
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | 
						|
  Value *V = expandCodeFor(S->getOperand(),
 | 
						|
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
 | 
						|
  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
 | 
						|
  InsertedValues.insert(I);
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
 | 
						|
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | 
						|
  Value *V = expandCodeFor(S->getOperand(),
 | 
						|
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
 | 
						|
  Value *I = Builder.CreateZExt(V, Ty, "tmp");
 | 
						|
  InsertedValues.insert(I);
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
 | 
						|
  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | 
						|
  Value *V = expandCodeFor(S->getOperand(),
 | 
						|
                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
 | 
						|
  Value *I = Builder.CreateSExt(V, Ty, "tmp");
 | 
						|
  InsertedValues.insert(I);
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
 | 
						|
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
 | 
						|
  const Type *Ty = LHS->getType();
 | 
						|
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
 | 
						|
    // In the case of mixed integer and pointer types, do the
 | 
						|
    // rest of the comparisons as integer.
 | 
						|
    if (S->getOperand(i)->getType() != Ty) {
 | 
						|
      Ty = SE.getEffectiveSCEVType(Ty);
 | 
						|
      LHS = InsertNoopCastOfTo(LHS, Ty);
 | 
						|
    }
 | 
						|
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
 | 
						|
    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
 | 
						|
    InsertedValues.insert(ICmp);
 | 
						|
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
 | 
						|
    InsertedValues.insert(Sel);
 | 
						|
    LHS = Sel;
 | 
						|
  }
 | 
						|
  // In the case of mixed integer and pointer types, cast the
 | 
						|
  // final result back to the pointer type.
 | 
						|
  if (LHS->getType() != S->getType())
 | 
						|
    LHS = InsertNoopCastOfTo(LHS, S->getType());
 | 
						|
  return LHS;
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
 | 
						|
  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
 | 
						|
  const Type *Ty = LHS->getType();
 | 
						|
  for (int i = S->getNumOperands()-2; i >= 0; --i) {
 | 
						|
    // In the case of mixed integer and pointer types, do the
 | 
						|
    // rest of the comparisons as integer.
 | 
						|
    if (S->getOperand(i)->getType() != Ty) {
 | 
						|
      Ty = SE.getEffectiveSCEVType(Ty);
 | 
						|
      LHS = InsertNoopCastOfTo(LHS, Ty);
 | 
						|
    }
 | 
						|
    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
 | 
						|
    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
 | 
						|
    InsertedValues.insert(ICmp);
 | 
						|
    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
 | 
						|
    InsertedValues.insert(Sel);
 | 
						|
    LHS = Sel;
 | 
						|
  }
 | 
						|
  // In the case of mixed integer and pointer types, cast the
 | 
						|
  // final result back to the pointer type.
 | 
						|
  if (LHS->getType() != S->getType())
 | 
						|
    LHS = InsertNoopCastOfTo(LHS, S->getType());
 | 
						|
  return LHS;
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitFieldOffsetExpr(const SCEVFieldOffsetExpr *S) {
 | 
						|
  return ConstantExpr::getOffsetOf(S->getStructType(), S->getFieldNo());
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::visitAllocSizeExpr(const SCEVAllocSizeExpr *S) {
 | 
						|
  return ConstantExpr::getSizeOf(S->getAllocType());
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
 | 
						|
  // Expand the code for this SCEV.
 | 
						|
  Value *V = expand(SH);
 | 
						|
  if (Ty) {
 | 
						|
    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
 | 
						|
           "non-trivial casts should be done with the SCEVs directly!");
 | 
						|
    V = InsertNoopCastOfTo(V, Ty);
 | 
						|
  }
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Value *SCEVExpander::expand(const SCEV *S) {
 | 
						|
  // Compute an insertion point for this SCEV object. Hoist the instructions
 | 
						|
  // as far out in the loop nest as possible.
 | 
						|
  Instruction *InsertPt = Builder.GetInsertPoint();
 | 
						|
  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
 | 
						|
       L = L->getParentLoop())
 | 
						|
    if (S->isLoopInvariant(L)) {
 | 
						|
      if (!L) break;
 | 
						|
      if (BasicBlock *Preheader = L->getLoopPreheader())
 | 
						|
        InsertPt = Preheader->getTerminator();
 | 
						|
    } else {
 | 
						|
      // If the SCEV is computable at this level, insert it into the header
 | 
						|
      // after the PHIs (and after any other instructions that we've inserted
 | 
						|
      // there) so that it is guaranteed to dominate any user inside the loop.
 | 
						|
      if (L && S->hasComputableLoopEvolution(L))
 | 
						|
        InsertPt = L->getHeader()->getFirstNonPHI();
 | 
						|
      while (isInsertedInstruction(InsertPt))
 | 
						|
        InsertPt = next(BasicBlock::iterator(InsertPt));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // Check to see if we already expanded this here.
 | 
						|
  std::map<std::pair<const SCEV *, Instruction *>,
 | 
						|
           AssertingVH<Value> >::iterator I =
 | 
						|
    InsertedExpressions.find(std::make_pair(S, InsertPt));
 | 
						|
  if (I != InsertedExpressions.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
 | 
						|
  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
 | 
						|
  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
 | 
						|
 | 
						|
  // Expand the expression into instructions.
 | 
						|
  Value *V = visit(S);
 | 
						|
 | 
						|
  // Remember the expanded value for this SCEV at this location.
 | 
						|
  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
 | 
						|
 | 
						|
  Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// getOrInsertCanonicalInductionVariable - This method returns the
 | 
						|
/// canonical induction variable of the specified type for the specified
 | 
						|
/// loop (inserting one if there is none).  A canonical induction variable
 | 
						|
/// starts at zero and steps by one on each iteration.
 | 
						|
Value *
 | 
						|
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
 | 
						|
                                                    const Type *Ty) {
 | 
						|
  assert(Ty->isInteger() && "Can only insert integer induction variables!");
 | 
						|
  const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
 | 
						|
                                   SE.getIntegerSCEV(1, Ty), L);
 | 
						|
  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
 | 
						|
  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
 | 
						|
  Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
 | 
						|
  if (SaveInsertBB)
 | 
						|
    Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
 | 
						|
  return V;
 | 
						|
}
 |