forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			7375 lines
		
	
	
		
			283 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			7375 lines
		
	
	
		
			283 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the interfaces that ARM uses to lower LLVM code into a
 | 
						|
// selection DAG.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "arm-isel"
 | 
						|
#include "ARM.h"
 | 
						|
#include "ARMAddressingModes.h"
 | 
						|
#include "ARMCallingConv.h"
 | 
						|
#include "ARMConstantPoolValue.h"
 | 
						|
#include "ARMISelLowering.h"
 | 
						|
#include "ARMMachineFunctionInfo.h"
 | 
						|
#include "ARMPerfectShuffle.h"
 | 
						|
#include "ARMRegisterInfo.h"
 | 
						|
#include "ARMSubtarget.h"
 | 
						|
#include "ARMTargetMachine.h"
 | 
						|
#include "ARMTargetObjectFile.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalValue.h"
 | 
						|
#include "llvm/Instruction.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						|
#include "llvm/CodeGen/IntrinsicLowering.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/MC/MCSectionMachO.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/ADT/VectorExtras.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <sstream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumTailCalls, "Number of tail calls");
 | 
						|
STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
 | 
						|
 | 
						|
// This option should go away when tail calls fully work.
 | 
						|
static cl::opt<bool>
 | 
						|
EnableARMTailCalls("arm-tail-calls", cl::Hidden,
 | 
						|
  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
 | 
						|
  cl::init(false));
 | 
						|
 | 
						|
cl::opt<bool>
 | 
						|
EnableARMLongCalls("arm-long-calls", cl::Hidden,
 | 
						|
  cl::desc("Generate calls via indirect call instructions"),
 | 
						|
  cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
ARMInterworking("arm-interworking", cl::Hidden,
 | 
						|
  cl::desc("Enable / disable ARM interworking (for debugging only)"),
 | 
						|
  cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
UseDivMod("arm-divmod-libcall", cl::Hidden,
 | 
						|
  cl::desc("Use __{u}divmod libcalls for div / rem pairs"),
 | 
						|
  cl::init(false));
 | 
						|
 | 
						|
void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
 | 
						|
                                       EVT PromotedBitwiseVT) {
 | 
						|
  if (VT != PromotedLdStVT) {
 | 
						|
    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
 | 
						|
    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
 | 
						|
                       PromotedLdStVT.getSimpleVT());
 | 
						|
 | 
						|
    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
 | 
						|
    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
 | 
						|
                       PromotedLdStVT.getSimpleVT());
 | 
						|
  }
 | 
						|
 | 
						|
  EVT ElemTy = VT.getVectorElementType();
 | 
						|
  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
 | 
						|
    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
 | 
						|
  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
 | 
						|
  if (ElemTy != MVT::i32) {
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
 | 
						|
  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
 | 
						|
  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
 | 
						|
  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
 | 
						|
  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
 | 
						|
  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
 | 
						|
  if (VT.isInteger()) {
 | 
						|
    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
 | 
						|
    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
 | 
						|
    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
 | 
						|
    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
 | 
						|
    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | 
						|
         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
 | 
						|
      setTruncStoreAction(VT.getSimpleVT(),
 | 
						|
                          (MVT::SimpleValueType)InnerVT, Expand);
 | 
						|
  }
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
 | 
						|
 | 
						|
  // Promote all bit-wise operations.
 | 
						|
  if (VT.isInteger() && VT != PromotedBitwiseVT) {
 | 
						|
    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
 | 
						|
    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
 | 
						|
                       PromotedBitwiseVT.getSimpleVT());
 | 
						|
    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
 | 
						|
    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
 | 
						|
                       PromotedBitwiseVT.getSimpleVT());
 | 
						|
    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
 | 
						|
    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
 | 
						|
                       PromotedBitwiseVT.getSimpleVT());
 | 
						|
  }
 | 
						|
 | 
						|
  // Neon does not support vector divide/remainder operations.
 | 
						|
  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
 | 
						|
  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
 | 
						|
  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
 | 
						|
  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
 | 
						|
  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
 | 
						|
  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
 | 
						|
}
 | 
						|
 | 
						|
void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
 | 
						|
  addRegisterClass(VT, ARM::DPRRegisterClass);
 | 
						|
  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
 | 
						|
}
 | 
						|
 | 
						|
void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
 | 
						|
  addRegisterClass(VT, ARM::QPRRegisterClass);
 | 
						|
  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
 | 
						|
}
 | 
						|
 | 
						|
static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
 | 
						|
  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
 | 
						|
    return new TargetLoweringObjectFileMachO();
 | 
						|
 | 
						|
  return new ARMElfTargetObjectFile();
 | 
						|
}
 | 
						|
 | 
						|
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
 | 
						|
    : TargetLowering(TM, createTLOF(TM)) {
 | 
						|
  Subtarget = &TM.getSubtarget<ARMSubtarget>();
 | 
						|
  RegInfo = TM.getRegisterInfo();
 | 
						|
  Itins = TM.getInstrItineraryData();
 | 
						|
 | 
						|
  if (Subtarget->isTargetDarwin()) {
 | 
						|
    // Uses VFP for Thumb libfuncs if available.
 | 
						|
    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
 | 
						|
      // Single-precision floating-point arithmetic.
 | 
						|
      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
 | 
						|
      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
 | 
						|
      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
 | 
						|
      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
 | 
						|
 | 
						|
      // Double-precision floating-point arithmetic.
 | 
						|
      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
 | 
						|
      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
 | 
						|
      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
 | 
						|
      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
 | 
						|
 | 
						|
      // Single-precision comparisons.
 | 
						|
      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
 | 
						|
      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
 | 
						|
      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
 | 
						|
      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
 | 
						|
      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
 | 
						|
      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
 | 
						|
      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
 | 
						|
      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
 | 
						|
 | 
						|
      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
 | 
						|
 | 
						|
      // Double-precision comparisons.
 | 
						|
      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
 | 
						|
      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
 | 
						|
      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
 | 
						|
      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
 | 
						|
      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
 | 
						|
      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
 | 
						|
      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
 | 
						|
      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
 | 
						|
 | 
						|
      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
 | 
						|
      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
 | 
						|
 | 
						|
      // Floating-point to integer conversions.
 | 
						|
      // i64 conversions are done via library routines even when generating VFP
 | 
						|
      // instructions, so use the same ones.
 | 
						|
      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
 | 
						|
      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
 | 
						|
      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
 | 
						|
      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
 | 
						|
 | 
						|
      // Conversions between floating types.
 | 
						|
      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
 | 
						|
      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
 | 
						|
 | 
						|
      // Integer to floating-point conversions.
 | 
						|
      // i64 conversions are done via library routines even when generating VFP
 | 
						|
      // instructions, so use the same ones.
 | 
						|
      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
 | 
						|
      // e.g., __floatunsidf vs. __floatunssidfvfp.
 | 
						|
      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
 | 
						|
      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
 | 
						|
      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
 | 
						|
      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // These libcalls are not available in 32-bit.
 | 
						|
  setLibcallName(RTLIB::SHL_I128, 0);
 | 
						|
  setLibcallName(RTLIB::SRL_I128, 0);
 | 
						|
  setLibcallName(RTLIB::SRA_I128, 0);
 | 
						|
 | 
						|
  if (Subtarget->isAAPCS_ABI()) {
 | 
						|
    // Double-precision floating-point arithmetic helper functions
 | 
						|
    // RTABI chapter 4.1.2, Table 2
 | 
						|
    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
 | 
						|
    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
 | 
						|
    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
 | 
						|
    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
 | 
						|
    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
 | 
						|
 | 
						|
    // Double-precision floating-point comparison helper functions
 | 
						|
    // RTABI chapter 4.1.2, Table 3
 | 
						|
    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
 | 
						|
    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
 | 
						|
    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
 | 
						|
    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
 | 
						|
    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
 | 
						|
    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
 | 
						|
    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
 | 
						|
    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
 | 
						|
    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
 | 
						|
    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
 | 
						|
    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
 | 
						|
 | 
						|
    // Single-precision floating-point arithmetic helper functions
 | 
						|
    // RTABI chapter 4.1.2, Table 4
 | 
						|
    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
 | 
						|
    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
 | 
						|
    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
 | 
						|
    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
 | 
						|
    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
 | 
						|
 | 
						|
    // Single-precision floating-point comparison helper functions
 | 
						|
    // RTABI chapter 4.1.2, Table 5
 | 
						|
    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
 | 
						|
    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
 | 
						|
    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
 | 
						|
    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
 | 
						|
    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
 | 
						|
    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
 | 
						|
    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
 | 
						|
    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
 | 
						|
    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
 | 
						|
    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
 | 
						|
    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
 | 
						|
    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
 | 
						|
 | 
						|
    // Floating-point to integer conversions.
 | 
						|
    // RTABI chapter 4.1.2, Table 6
 | 
						|
    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
 | 
						|
    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
 | 
						|
    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
 | 
						|
    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
 | 
						|
    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
 | 
						|
    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
 | 
						|
    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
 | 
						|
    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
 | 
						|
    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
 | 
						|
 | 
						|
    // Conversions between floating types.
 | 
						|
    // RTABI chapter 4.1.2, Table 7
 | 
						|
    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
 | 
						|
    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
 | 
						|
    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
 | 
						|
 | 
						|
    // Integer to floating-point conversions.
 | 
						|
    // RTABI chapter 4.1.2, Table 8
 | 
						|
    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
 | 
						|
    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
 | 
						|
    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
 | 
						|
    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
 | 
						|
    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
 | 
						|
    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
 | 
						|
    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
 | 
						|
    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
 | 
						|
    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
 | 
						|
 | 
						|
    // Long long helper functions
 | 
						|
    // RTABI chapter 4.2, Table 9
 | 
						|
    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
 | 
						|
    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
 | 
						|
    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
 | 
						|
    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
 | 
						|
    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
 | 
						|
    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
 | 
						|
    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
 | 
						|
 | 
						|
    // Integer division functions
 | 
						|
    // RTABI chapter 4.3.1
 | 
						|
    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
 | 
						|
    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
 | 
						|
    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
 | 
						|
    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
 | 
						|
    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
 | 
						|
    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
 | 
						|
    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
 | 
						|
    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (UseDivMod) {
 | 
						|
    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
 | 
						|
    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget->isThumb1Only())
 | 
						|
    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
 | 
						|
  else
 | 
						|
    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
 | 
						|
  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
 | 
						|
    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
 | 
						|
    if (!Subtarget->isFPOnlySP())
 | 
						|
      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
 | 
						|
 | 
						|
    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget->hasNEON()) {
 | 
						|
    addDRTypeForNEON(MVT::v2f32);
 | 
						|
    addDRTypeForNEON(MVT::v8i8);
 | 
						|
    addDRTypeForNEON(MVT::v4i16);
 | 
						|
    addDRTypeForNEON(MVT::v2i32);
 | 
						|
    addDRTypeForNEON(MVT::v1i64);
 | 
						|
 | 
						|
    addQRTypeForNEON(MVT::v4f32);
 | 
						|
    addQRTypeForNEON(MVT::v2f64);
 | 
						|
    addQRTypeForNEON(MVT::v16i8);
 | 
						|
    addQRTypeForNEON(MVT::v8i16);
 | 
						|
    addQRTypeForNEON(MVT::v4i32);
 | 
						|
    addQRTypeForNEON(MVT::v2i64);
 | 
						|
 | 
						|
    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
 | 
						|
    // neither Neon nor VFP support any arithmetic operations on it.
 | 
						|
    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
 | 
						|
 | 
						|
    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
 | 
						|
 | 
						|
    // Neon does not support some operations on v1i64 and v2i64 types.
 | 
						|
    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
 | 
						|
    // Custom handling for some quad-vector types to detect VMULL.
 | 
						|
    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
 | 
						|
    // Custom handling for some vector types to avoid expensive expansions
 | 
						|
    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
 | 
						|
    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
 | 
						|
    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
 | 
						|
    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
 | 
						|
    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
 | 
						|
    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
 | 
						|
    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
 | 
						|
    // a destination type that is wider than the source.
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
 | 
						|
 | 
						|
    setTargetDAGCombine(ISD::INTRINSIC_VOID);
 | 
						|
    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
 | 
						|
    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | 
						|
    setTargetDAGCombine(ISD::SHL);
 | 
						|
    setTargetDAGCombine(ISD::SRL);
 | 
						|
    setTargetDAGCombine(ISD::SRA);
 | 
						|
    setTargetDAGCombine(ISD::SIGN_EXTEND);
 | 
						|
    setTargetDAGCombine(ISD::ZERO_EXTEND);
 | 
						|
    setTargetDAGCombine(ISD::ANY_EXTEND);
 | 
						|
    setTargetDAGCombine(ISD::SELECT_CC);
 | 
						|
    setTargetDAGCombine(ISD::BUILD_VECTOR);
 | 
						|
    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
 | 
						|
    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
 | 
						|
    setTargetDAGCombine(ISD::STORE);
 | 
						|
  }
 | 
						|
 | 
						|
  computeRegisterProperties();
 | 
						|
 | 
						|
  // ARM does not have f32 extending load.
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
 | 
						|
 | 
						|
  // ARM does not have i1 sign extending load.
 | 
						|
  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | 
						|
 | 
						|
  // ARM supports all 4 flavors of integer indexed load / store.
 | 
						|
  if (!Subtarget->isThumb1Only()) {
 | 
						|
    for (unsigned im = (unsigned)ISD::PRE_INC;
 | 
						|
         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
 | 
						|
      setIndexedLoadAction(im,  MVT::i1,  Legal);
 | 
						|
      setIndexedLoadAction(im,  MVT::i8,  Legal);
 | 
						|
      setIndexedLoadAction(im,  MVT::i16, Legal);
 | 
						|
      setIndexedLoadAction(im,  MVT::i32, Legal);
 | 
						|
      setIndexedStoreAction(im, MVT::i1,  Legal);
 | 
						|
      setIndexedStoreAction(im, MVT::i8,  Legal);
 | 
						|
      setIndexedStoreAction(im, MVT::i16, Legal);
 | 
						|
      setIndexedStoreAction(im, MVT::i32, Legal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // i64 operation support.
 | 
						|
  if (Subtarget->isThumb1Only()) {
 | 
						|
    setOperationAction(ISD::MUL,     MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::MUL,     MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
 | 
						|
    if (!Subtarget->hasV6Ops())
 | 
						|
      setOperationAction(ISD::MULHS, MVT::i32, Expand);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SRL,       MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::SRA,       MVT::i64, Custom);
 | 
						|
 | 
						|
  // ARM does not have ROTL.
 | 
						|
  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
 | 
						|
  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
 | 
						|
    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
 | 
						|
 | 
						|
  // Only ARMv6 has BSWAP.
 | 
						|
  if (!Subtarget->hasV6Ops())
 | 
						|
    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
 | 
						|
 | 
						|
  // These are expanded into libcalls.
 | 
						|
  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
 | 
						|
    // v7M has a hardware divider
 | 
						|
    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::SREM,  MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UREM,  MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
 | 
						|
  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
 | 
						|
  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | 
						|
 | 
						|
  // Use the default implementation.
 | 
						|
  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
 | 
						|
  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
 | 
						|
  setExceptionPointerRegister(ARM::R0);
 | 
						|
  setExceptionSelectorRegister(ARM::R1);
 | 
						|
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
 | 
						|
  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
 | 
						|
  // the default expansion.
 | 
						|
  if (Subtarget->hasDataBarrier() ||
 | 
						|
      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
 | 
						|
    // membarrier needs custom lowering; the rest are legal and handled
 | 
						|
    // normally.
 | 
						|
    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
 | 
						|
  } else {
 | 
						|
    // Set them all for expansion, which will force libcalls.
 | 
						|
    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
 | 
						|
    // Since the libcalls include locking, fold in the fences
 | 
						|
    setShouldFoldAtomicFences(true);
 | 
						|
  }
 | 
						|
  // 64-bit versions are always libcalls (for now)
 | 
						|
  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
 | 
						|
 | 
						|
  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
 | 
						|
  if (!Subtarget->hasV6Ops()) {
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | 
						|
 | 
						|
  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
 | 
						|
    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
 | 
						|
    // iff target supports vfp2.
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  // We want to custom lower some of our intrinsics.
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | 
						|
  if (Subtarget->isTargetDarwin()) {
 | 
						|
    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
 | 
						|
    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
 | 
						|
  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
 | 
						|
  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
 | 
						|
  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
 | 
						|
 | 
						|
  // We don't support sin/cos/fmod/copysign/pow
 | 
						|
  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FREM,      MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FREM,      MVT::f32, Expand);
 | 
						|
  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | 
						|
  }
 | 
						|
  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
 | 
						|
 | 
						|
  // Various VFP goodness
 | 
						|
  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
 | 
						|
    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
 | 
						|
    if (Subtarget->hasVFP2()) {
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | 
						|
    }
 | 
						|
    // Special handling for half-precision FP.
 | 
						|
    if (!Subtarget->hasFP16()) {
 | 
						|
      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
 | 
						|
      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We have target-specific dag combine patterns for the following nodes:
 | 
						|
  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
 | 
						|
  setTargetDAGCombine(ISD::ADD);
 | 
						|
  setTargetDAGCombine(ISD::SUB);
 | 
						|
  setTargetDAGCombine(ISD::MUL);
 | 
						|
 | 
						|
  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
 | 
						|
    setTargetDAGCombine(ISD::OR);
 | 
						|
  if (Subtarget->hasNEON())
 | 
						|
    setTargetDAGCombine(ISD::AND);
 | 
						|
 | 
						|
  setStackPointerRegisterToSaveRestore(ARM::SP);
 | 
						|
 | 
						|
  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
 | 
						|
    setSchedulingPreference(Sched::RegPressure);
 | 
						|
  else
 | 
						|
    setSchedulingPreference(Sched::Hybrid);
 | 
						|
 | 
						|
  //// temporary - rewrite interface to use type
 | 
						|
  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
 | 
						|
 | 
						|
  // On ARM arguments smaller than 4 bytes are extended, so all arguments
 | 
						|
  // are at least 4 bytes aligned.
 | 
						|
  setMinStackArgumentAlignment(4);
 | 
						|
 | 
						|
  benefitFromCodePlacementOpt = true;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: It might make sense to define the representative register class as the
 | 
						|
// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
 | 
						|
// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
 | 
						|
// SPR's representative would be DPR_VFP2. This should work well if register
 | 
						|
// pressure tracking were modified such that a register use would increment the
 | 
						|
// pressure of the register class's representative and all of it's super
 | 
						|
// classes' representatives transitively. We have not implemented this because
 | 
						|
// of the difficulty prior to coalescing of modeling operand register classes
 | 
						|
// due to the common occurence of cross class copies and subregister insertions
 | 
						|
// and extractions.
 | 
						|
std::pair<const TargetRegisterClass*, uint8_t>
 | 
						|
ARMTargetLowering::findRepresentativeClass(EVT VT) const{
 | 
						|
  const TargetRegisterClass *RRC = 0;
 | 
						|
  uint8_t Cost = 1;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default:
 | 
						|
    return TargetLowering::findRepresentativeClass(VT);
 | 
						|
  // Use DPR as representative register class for all floating point
 | 
						|
  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
 | 
						|
  // the cost is 1 for both f32 and f64.
 | 
						|
  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
 | 
						|
  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
 | 
						|
    RRC = ARM::DPRRegisterClass;
 | 
						|
    // When NEON is used for SP, only half of the register file is available
 | 
						|
    // because operations that define both SP and DP results will be constrained
 | 
						|
    // to the VFP2 class (D0-D15). We currently model this constraint prior to
 | 
						|
    // coalescing by double-counting the SP regs. See the FIXME above.
 | 
						|
    if (Subtarget->useNEONForSinglePrecisionFP())
 | 
						|
      Cost = 2;
 | 
						|
    break;
 | 
						|
  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
 | 
						|
  case MVT::v4f32: case MVT::v2f64:
 | 
						|
    RRC = ARM::DPRRegisterClass;
 | 
						|
    Cost = 2;
 | 
						|
    break;
 | 
						|
  case MVT::v4i64:
 | 
						|
    RRC = ARM::DPRRegisterClass;
 | 
						|
    Cost = 4;
 | 
						|
    break;
 | 
						|
  case MVT::v8i64:
 | 
						|
    RRC = ARM::DPRRegisterClass;
 | 
						|
    Cost = 8;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return std::make_pair(RRC, Cost);
 | 
						|
}
 | 
						|
 | 
						|
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch (Opcode) {
 | 
						|
  default: return 0;
 | 
						|
  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
 | 
						|
  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
 | 
						|
  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
 | 
						|
  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
 | 
						|
  case ARMISD::CALL:          return "ARMISD::CALL";
 | 
						|
  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
 | 
						|
  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
 | 
						|
  case ARMISD::tCALL:         return "ARMISD::tCALL";
 | 
						|
  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
 | 
						|
  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
 | 
						|
  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
 | 
						|
  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
 | 
						|
  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
 | 
						|
  case ARMISD::CMP:           return "ARMISD::CMP";
 | 
						|
  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
 | 
						|
  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
 | 
						|
  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
 | 
						|
  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
 | 
						|
  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
 | 
						|
  case ARMISD::CMOV:          return "ARMISD::CMOV";
 | 
						|
 | 
						|
  case ARMISD::RBIT:          return "ARMISD::RBIT";
 | 
						|
 | 
						|
  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
 | 
						|
  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
 | 
						|
  case ARMISD::SITOF:         return "ARMISD::SITOF";
 | 
						|
  case ARMISD::UITOF:         return "ARMISD::UITOF";
 | 
						|
 | 
						|
  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
 | 
						|
  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
 | 
						|
  case ARMISD::RRX:           return "ARMISD::RRX";
 | 
						|
 | 
						|
  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
 | 
						|
  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
 | 
						|
 | 
						|
  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
 | 
						|
  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
 | 
						|
  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
 | 
						|
 | 
						|
  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
 | 
						|
 | 
						|
  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
 | 
						|
 | 
						|
  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
 | 
						|
 | 
						|
  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
 | 
						|
  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
 | 
						|
 | 
						|
  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
 | 
						|
 | 
						|
  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
 | 
						|
  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
 | 
						|
  case ARMISD::VCGE:          return "ARMISD::VCGE";
 | 
						|
  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
 | 
						|
  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
 | 
						|
  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
 | 
						|
  case ARMISD::VCGT:          return "ARMISD::VCGT";
 | 
						|
  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
 | 
						|
  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
 | 
						|
  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
 | 
						|
  case ARMISD::VTST:          return "ARMISD::VTST";
 | 
						|
 | 
						|
  case ARMISD::VSHL:          return "ARMISD::VSHL";
 | 
						|
  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
 | 
						|
  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
 | 
						|
  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
 | 
						|
  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
 | 
						|
  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
 | 
						|
  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
 | 
						|
  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
 | 
						|
  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
 | 
						|
  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
 | 
						|
  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
 | 
						|
  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
 | 
						|
  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
 | 
						|
  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
 | 
						|
  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
 | 
						|
  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
 | 
						|
  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
 | 
						|
  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
 | 
						|
  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
 | 
						|
  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
 | 
						|
  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
 | 
						|
  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
 | 
						|
  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
 | 
						|
  case ARMISD::VDUP:          return "ARMISD::VDUP";
 | 
						|
  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
 | 
						|
  case ARMISD::VEXT:          return "ARMISD::VEXT";
 | 
						|
  case ARMISD::VREV64:        return "ARMISD::VREV64";
 | 
						|
  case ARMISD::VREV32:        return "ARMISD::VREV32";
 | 
						|
  case ARMISD::VREV16:        return "ARMISD::VREV16";
 | 
						|
  case ARMISD::VZIP:          return "ARMISD::VZIP";
 | 
						|
  case ARMISD::VUZP:          return "ARMISD::VUZP";
 | 
						|
  case ARMISD::VTRN:          return "ARMISD::VTRN";
 | 
						|
  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
 | 
						|
  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
 | 
						|
  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
 | 
						|
  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
 | 
						|
  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
 | 
						|
  case ARMISD::FMAX:          return "ARMISD::FMAX";
 | 
						|
  case ARMISD::FMIN:          return "ARMISD::FMIN";
 | 
						|
  case ARMISD::BFI:           return "ARMISD::BFI";
 | 
						|
  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
 | 
						|
  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
 | 
						|
  case ARMISD::VBSL:          return "ARMISD::VBSL";
 | 
						|
  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
 | 
						|
  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
 | 
						|
  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
 | 
						|
  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
 | 
						|
  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
 | 
						|
  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
 | 
						|
  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
 | 
						|
  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
 | 
						|
  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
 | 
						|
  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
 | 
						|
  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
 | 
						|
  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
 | 
						|
  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
 | 
						|
  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
 | 
						|
  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
 | 
						|
  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
 | 
						|
  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
 | 
						|
  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
 | 
						|
  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
 | 
						|
  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getRegClassFor - Return the register class that should be used for the
 | 
						|
/// specified value type.
 | 
						|
TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
 | 
						|
  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
 | 
						|
  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
 | 
						|
  // load / store 4 to 8 consecutive D registers.
 | 
						|
  if (Subtarget->hasNEON()) {
 | 
						|
    if (VT == MVT::v4i64)
 | 
						|
      return ARM::QQPRRegisterClass;
 | 
						|
    else if (VT == MVT::v8i64)
 | 
						|
      return ARM::QQQQPRRegisterClass;
 | 
						|
  }
 | 
						|
  return TargetLowering::getRegClassFor(VT);
 | 
						|
}
 | 
						|
 | 
						|
// Create a fast isel object.
 | 
						|
FastISel *
 | 
						|
ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
 | 
						|
  return ARM::createFastISel(funcInfo);
 | 
						|
}
 | 
						|
 | 
						|
/// getFunctionAlignment - Return the Log2 alignment of this function.
 | 
						|
unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
 | 
						|
  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
 | 
						|
}
 | 
						|
 | 
						|
/// getMaximalGlobalOffset - Returns the maximal possible offset which can
 | 
						|
/// be used for loads / stores from the global.
 | 
						|
unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
 | 
						|
  return (Subtarget->isThumb1Only() ? 127 : 4095);
 | 
						|
}
 | 
						|
 | 
						|
Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
 | 
						|
  unsigned NumVals = N->getNumValues();
 | 
						|
  if (!NumVals)
 | 
						|
    return Sched::RegPressure;
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumVals; ++i) {
 | 
						|
    EVT VT = N->getValueType(i);
 | 
						|
    if (VT == MVT::Glue || VT == MVT::Other)
 | 
						|
      continue;
 | 
						|
    if (VT.isFloatingPoint() || VT.isVector())
 | 
						|
      return Sched::Latency;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!N->isMachineOpcode())
 | 
						|
    return Sched::RegPressure;
 | 
						|
 | 
						|
  // Load are scheduled for latency even if there instruction itinerary
 | 
						|
  // is not available.
 | 
						|
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | 
						|
  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
 | 
						|
 | 
						|
  if (TID.getNumDefs() == 0)
 | 
						|
    return Sched::RegPressure;
 | 
						|
  if (!Itins->isEmpty() &&
 | 
						|
      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
 | 
						|
    return Sched::Latency;
 | 
						|
 | 
						|
  return Sched::RegPressure;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Lowering Code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
 | 
						|
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
  default: llvm_unreachable("Unknown condition code!");
 | 
						|
  case ISD::SETNE:  return ARMCC::NE;
 | 
						|
  case ISD::SETEQ:  return ARMCC::EQ;
 | 
						|
  case ISD::SETGT:  return ARMCC::GT;
 | 
						|
  case ISD::SETGE:  return ARMCC::GE;
 | 
						|
  case ISD::SETLT:  return ARMCC::LT;
 | 
						|
  case ISD::SETLE:  return ARMCC::LE;
 | 
						|
  case ISD::SETUGT: return ARMCC::HI;
 | 
						|
  case ISD::SETUGE: return ARMCC::HS;
 | 
						|
  case ISD::SETULT: return ARMCC::LO;
 | 
						|
  case ISD::SETULE: return ARMCC::LS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
 | 
						|
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
 | 
						|
                        ARMCC::CondCodes &CondCode2) {
 | 
						|
  CondCode2 = ARMCC::AL;
 | 
						|
  switch (CC) {
 | 
						|
  default: llvm_unreachable("Unknown FP condition!");
 | 
						|
  case ISD::SETEQ:
 | 
						|
  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
 | 
						|
  case ISD::SETGT:
 | 
						|
  case ISD::SETOGT: CondCode = ARMCC::GT; break;
 | 
						|
  case ISD::SETGE:
 | 
						|
  case ISD::SETOGE: CondCode = ARMCC::GE; break;
 | 
						|
  case ISD::SETOLT: CondCode = ARMCC::MI; break;
 | 
						|
  case ISD::SETOLE: CondCode = ARMCC::LS; break;
 | 
						|
  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
 | 
						|
  case ISD::SETO:   CondCode = ARMCC::VC; break;
 | 
						|
  case ISD::SETUO:  CondCode = ARMCC::VS; break;
 | 
						|
  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
 | 
						|
  case ISD::SETUGT: CondCode = ARMCC::HI; break;
 | 
						|
  case ISD::SETUGE: CondCode = ARMCC::PL; break;
 | 
						|
  case ISD::SETLT:
 | 
						|
  case ISD::SETULT: CondCode = ARMCC::LT; break;
 | 
						|
  case ISD::SETLE:
 | 
						|
  case ISD::SETULE: CondCode = ARMCC::LE; break;
 | 
						|
  case ISD::SETNE:
 | 
						|
  case ISD::SETUNE: CondCode = ARMCC::NE; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      Calling Convention Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ARMGenCallingConv.inc"
 | 
						|
 | 
						|
/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
 | 
						|
/// given CallingConvention value.
 | 
						|
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
 | 
						|
                                                 bool Return,
 | 
						|
                                                 bool isVarArg) const {
 | 
						|
  switch (CC) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unsupported calling convention");
 | 
						|
  case CallingConv::Fast:
 | 
						|
    if (Subtarget->hasVFP2() && !isVarArg) {
 | 
						|
      if (!Subtarget->isAAPCS_ABI())
 | 
						|
        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
 | 
						|
      // For AAPCS ABI targets, just use VFP variant of the calling convention.
 | 
						|
      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
 | 
						|
    }
 | 
						|
    // Fallthrough
 | 
						|
  case CallingConv::C: {
 | 
						|
    // Use target triple & subtarget features to do actual dispatch.
 | 
						|
    if (!Subtarget->isAAPCS_ABI())
 | 
						|
      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
 | 
						|
    else if (Subtarget->hasVFP2() &&
 | 
						|
             FloatABIType == FloatABI::Hard && !isVarArg)
 | 
						|
      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
 | 
						|
    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
 | 
						|
  }
 | 
						|
  case CallingConv::ARM_AAPCS_VFP:
 | 
						|
    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
 | 
						|
  case CallingConv::ARM_AAPCS:
 | 
						|
    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
 | 
						|
  case CallingConv::ARM_APCS:
 | 
						|
    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// LowerCallResult - Lower the result values of a call into the
 | 
						|
/// appropriate copies out of appropriate physical registers.
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | 
						|
                                   CallingConv::ID CallConv, bool isVarArg,
 | 
						|
                                   const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                   DebugLoc dl, SelectionDAG &DAG,
 | 
						|
                                   SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
 | 
						|
  // Assign locations to each value returned by this call.
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | 
						|
                 RVLocs, *DAG.getContext());
 | 
						|
  CCInfo.AnalyzeCallResult(Ins,
 | 
						|
                           CCAssignFnForNode(CallConv, /* Return*/ true,
 | 
						|
                                             isVarArg));
 | 
						|
 | 
						|
  // Copy all of the result registers out of their specified physreg.
 | 
						|
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | 
						|
    CCValAssign VA = RVLocs[i];
 | 
						|
 | 
						|
    SDValue Val;
 | 
						|
    if (VA.needsCustom()) {
 | 
						|
      // Handle f64 or half of a v2f64.
 | 
						|
      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | 
						|
                                      InFlag);
 | 
						|
      Chain = Lo.getValue(1);
 | 
						|
      InFlag = Lo.getValue(2);
 | 
						|
      VA = RVLocs[++i]; // skip ahead to next loc
 | 
						|
      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | 
						|
                                      InFlag);
 | 
						|
      Chain = Hi.getValue(1);
 | 
						|
      InFlag = Hi.getValue(2);
 | 
						|
      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | 
						|
 | 
						|
      if (VA.getLocVT() == MVT::v2f64) {
 | 
						|
        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
 | 
						|
        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
 | 
						|
                          DAG.getConstant(0, MVT::i32));
 | 
						|
 | 
						|
        VA = RVLocs[++i]; // skip ahead to next loc
 | 
						|
        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
 | 
						|
        Chain = Lo.getValue(1);
 | 
						|
        InFlag = Lo.getValue(2);
 | 
						|
        VA = RVLocs[++i]; // skip ahead to next loc
 | 
						|
        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
 | 
						|
        Chain = Hi.getValue(1);
 | 
						|
        InFlag = Hi.getValue(2);
 | 
						|
        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | 
						|
        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
 | 
						|
                          DAG.getConstant(1, MVT::i32));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
 | 
						|
                               InFlag);
 | 
						|
      Chain = Val.getValue(1);
 | 
						|
      InFlag = Val.getValue(2);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::BCvt:
 | 
						|
      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    InVals.push_back(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | 
						|
/// by "Src" to address "Dst" of size "Size".  Alignment information is
 | 
						|
/// specified by the specific parameter attribute.  The copy will be passed as
 | 
						|
/// a byval function parameter.
 | 
						|
/// Sometimes what we are copying is the end of a larger object, the part that
 | 
						|
/// does not fit in registers.
 | 
						|
static SDValue
 | 
						|
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | 
						|
                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | 
						|
                          DebugLoc dl) {
 | 
						|
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
 | 
						|
  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | 
						|
                       /*isVolatile=*/false, /*AlwaysInline=*/false,
 | 
						|
                       MachinePointerInfo(0), MachinePointerInfo(0));
 | 
						|
}
 | 
						|
 | 
						|
/// LowerMemOpCallTo - Store the argument to the stack.
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
 | 
						|
                                    SDValue StackPtr, SDValue Arg,
 | 
						|
                                    DebugLoc dl, SelectionDAG &DAG,
 | 
						|
                                    const CCValAssign &VA,
 | 
						|
                                    ISD::ArgFlagsTy Flags) const {
 | 
						|
  unsigned LocMemOffset = VA.getLocMemOffset();
 | 
						|
  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | 
						|
  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
 | 
						|
  if (Flags.isByVal())
 | 
						|
    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
 | 
						|
 | 
						|
  return DAG.getStore(Chain, dl, Arg, PtrOff,
 | 
						|
                      MachinePointerInfo::getStack(LocMemOffset),
 | 
						|
                      false, false, 0);
 | 
						|
}
 | 
						|
 | 
						|
void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
 | 
						|
                                         SDValue Chain, SDValue &Arg,
 | 
						|
                                         RegsToPassVector &RegsToPass,
 | 
						|
                                         CCValAssign &VA, CCValAssign &NextVA,
 | 
						|
                                         SDValue &StackPtr,
 | 
						|
                                         SmallVector<SDValue, 8> &MemOpChains,
 | 
						|
                                         ISD::ArgFlagsTy Flags) const {
 | 
						|
 | 
						|
  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
 | 
						|
                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
 | 
						|
  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
 | 
						|
 | 
						|
  if (NextVA.isRegLoc())
 | 
						|
    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
 | 
						|
  else {
 | 
						|
    assert(NextVA.isMemLoc());
 | 
						|
    if (StackPtr.getNode() == 0)
 | 
						|
      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
 | 
						|
 | 
						|
    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
 | 
						|
                                           dl, DAG, NextVA,
 | 
						|
                                           Flags));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// LowerCall - Lowering a call into a callseq_start <-
 | 
						|
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
 | 
						|
/// nodes.
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
 | 
						|
                             CallingConv::ID CallConv, bool isVarArg,
 | 
						|
                             bool &isTailCall,
 | 
						|
                             const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                             const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                             const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                             DebugLoc dl, SelectionDAG &DAG,
 | 
						|
                             SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
 | 
						|
  bool IsSibCall = false;
 | 
						|
  // Temporarily disable tail calls so things don't break.
 | 
						|
  if (!EnableARMTailCalls)
 | 
						|
    isTailCall = false;
 | 
						|
  if (isTailCall) {
 | 
						|
    // Check if it's really possible to do a tail call.
 | 
						|
    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | 
						|
                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
 | 
						|
                                                   Outs, OutVals, Ins, DAG);
 | 
						|
    // We don't support GuaranteedTailCallOpt for ARM, only automatically
 | 
						|
    // detected sibcalls.
 | 
						|
    if (isTailCall) {
 | 
						|
      ++NumTailCalls;
 | 
						|
      IsSibCall = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Analyze operands of the call, assigning locations to each operand.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
  CCInfo.AnalyzeCallOperands(Outs,
 | 
						|
                             CCAssignFnForNode(CallConv, /* Return*/ false,
 | 
						|
                                               isVarArg));
 | 
						|
 | 
						|
  // Get a count of how many bytes are to be pushed on the stack.
 | 
						|
  unsigned NumBytes = CCInfo.getNextStackOffset();
 | 
						|
 | 
						|
  // For tail calls, memory operands are available in our caller's stack.
 | 
						|
  if (IsSibCall)
 | 
						|
    NumBytes = 0;
 | 
						|
 | 
						|
  // Adjust the stack pointer for the new arguments...
 | 
						|
  // These operations are automatically eliminated by the prolog/epilog pass
 | 
						|
  if (!IsSibCall)
 | 
						|
    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
 | 
						|
 | 
						|
  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
 | 
						|
 | 
						|
  RegsToPassVector RegsToPass;
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
 | 
						|
  // Walk the register/memloc assignments, inserting copies/loads.  In the case
 | 
						|
  // of tail call optimization, arguments are handled later.
 | 
						|
  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
 | 
						|
       i != e;
 | 
						|
       ++i, ++realArgIdx) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    SDValue Arg = OutVals[realArgIdx];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | 
						|
    bool isByVal = Flags.isByVal();
 | 
						|
 | 
						|
    // Promote the value if needed.
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::SExt:
 | 
						|
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::ZExt:
 | 
						|
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::AExt:
 | 
						|
      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::BCvt:
 | 
						|
      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
 | 
						|
    if (VA.needsCustom()) {
 | 
						|
      if (VA.getLocVT() == MVT::v2f64) {
 | 
						|
        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | 
						|
                                  DAG.getConstant(0, MVT::i32));
 | 
						|
        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | 
						|
                                  DAG.getConstant(1, MVT::i32));
 | 
						|
 | 
						|
        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
 | 
						|
                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
 | 
						|
 | 
						|
        VA = ArgLocs[++i]; // skip ahead to next loc
 | 
						|
        if (VA.isRegLoc()) {
 | 
						|
          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
 | 
						|
                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
 | 
						|
        } else {
 | 
						|
          assert(VA.isMemLoc());
 | 
						|
 | 
						|
          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
 | 
						|
                                                 dl, DAG, VA, Flags));
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
 | 
						|
                         StackPtr, MemOpChains, Flags);
 | 
						|
      }
 | 
						|
    } else if (VA.isRegLoc()) {
 | 
						|
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | 
						|
    } else if (!IsSibCall || isByVal) {
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
 | 
						|
      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
 | 
						|
                                             dl, DAG, VA, Flags));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | 
						|
                        &MemOpChains[0], MemOpChains.size());
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into the appropriate regs.
 | 
						|
  SDValue InFlag;
 | 
						|
  // Tail call byval lowering might overwrite argument registers so in case of
 | 
						|
  // tail call optimization the copies to registers are lowered later.
 | 
						|
  if (!isTailCall)
 | 
						|
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                               RegsToPass[i].second, InFlag);
 | 
						|
      InFlag = Chain.getValue(1);
 | 
						|
    }
 | 
						|
 | 
						|
  // For tail calls lower the arguments to the 'real' stack slot.
 | 
						|
  if (isTailCall) {
 | 
						|
    // Force all the incoming stack arguments to be loaded from the stack
 | 
						|
    // before any new outgoing arguments are stored to the stack, because the
 | 
						|
    // outgoing stack slots may alias the incoming argument stack slots, and
 | 
						|
    // the alias isn't otherwise explicit. This is slightly more conservative
 | 
						|
    // than necessary, because it means that each store effectively depends
 | 
						|
    // on every argument instead of just those arguments it would clobber.
 | 
						|
 | 
						|
    // Do not flag preceeding copytoreg stuff together with the following stuff.
 | 
						|
    InFlag = SDValue();
 | 
						|
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                               RegsToPass[i].second, InFlag);
 | 
						|
      InFlag = Chain.getValue(1);
 | 
						|
    }
 | 
						|
    InFlag =SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | 
						|
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | 
						|
  // node so that legalize doesn't hack it.
 | 
						|
  bool isDirect = false;
 | 
						|
  bool isARMFunc = false;
 | 
						|
  bool isLocalARMFunc = false;
 | 
						|
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | 
						|
 | 
						|
  if (EnableARMLongCalls) {
 | 
						|
    assert (getTargetMachine().getRelocationModel() == Reloc::Static
 | 
						|
            && "long-calls with non-static relocation model!");
 | 
						|
    // Handle a global address or an external symbol. If it's not one of
 | 
						|
    // those, the target's already in a register, so we don't need to do
 | 
						|
    // anything extra.
 | 
						|
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | 
						|
      const GlobalValue *GV = G->getGlobal();
 | 
						|
      // Create a constant pool entry for the callee address
 | 
						|
      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
 | 
						|
                                                           ARMPCLabelIndex,
 | 
						|
                                                           ARMCP::CPValue, 0);
 | 
						|
      // Get the address of the callee into a register
 | 
						|
      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | 
						|
      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | 
						|
      Callee = DAG.getLoad(getPointerTy(), dl,
 | 
						|
                           DAG.getEntryNode(), CPAddr,
 | 
						|
                           MachinePointerInfo::getConstantPool(),
 | 
						|
                           false, false, 0);
 | 
						|
    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | 
						|
      const char *Sym = S->getSymbol();
 | 
						|
 | 
						|
      // Create a constant pool entry for the callee address
 | 
						|
      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
 | 
						|
                                                       Sym, ARMPCLabelIndex, 0);
 | 
						|
      // Get the address of the callee into a register
 | 
						|
      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | 
						|
      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | 
						|
      Callee = DAG.getLoad(getPointerTy(), dl,
 | 
						|
                           DAG.getEntryNode(), CPAddr,
 | 
						|
                           MachinePointerInfo::getConstantPool(),
 | 
						|
                           false, false, 0);
 | 
						|
    }
 | 
						|
  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | 
						|
    const GlobalValue *GV = G->getGlobal();
 | 
						|
    isDirect = true;
 | 
						|
    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
 | 
						|
    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
 | 
						|
                   getTargetMachine().getRelocationModel() != Reloc::Static;
 | 
						|
    isARMFunc = !Subtarget->isThumb() || isStub;
 | 
						|
    // ARM call to a local ARM function is predicable.
 | 
						|
    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
 | 
						|
    // tBX takes a register source operand.
 | 
						|
    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
 | 
						|
      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
 | 
						|
                                                           ARMPCLabelIndex,
 | 
						|
                                                           ARMCP::CPValue, 4);
 | 
						|
      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | 
						|
      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | 
						|
      Callee = DAG.getLoad(getPointerTy(), dl,
 | 
						|
                           DAG.getEntryNode(), CPAddr,
 | 
						|
                           MachinePointerInfo::getConstantPool(),
 | 
						|
                           false, false, 0);
 | 
						|
      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | 
						|
      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
 | 
						|
                           getPointerTy(), Callee, PICLabel);
 | 
						|
    } else {
 | 
						|
      // On ELF targets for PIC code, direct calls should go through the PLT
 | 
						|
      unsigned OpFlags = 0;
 | 
						|
      if (Subtarget->isTargetELF() &&
 | 
						|
                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
 | 
						|
        OpFlags = ARMII::MO_PLT;
 | 
						|
      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
 | 
						|
    }
 | 
						|
  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | 
						|
    isDirect = true;
 | 
						|
    bool isStub = Subtarget->isTargetDarwin() &&
 | 
						|
                  getTargetMachine().getRelocationModel() != Reloc::Static;
 | 
						|
    isARMFunc = !Subtarget->isThumb() || isStub;
 | 
						|
    // tBX takes a register source operand.
 | 
						|
    const char *Sym = S->getSymbol();
 | 
						|
    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
 | 
						|
      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
 | 
						|
                                                       Sym, ARMPCLabelIndex, 4);
 | 
						|
      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | 
						|
      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | 
						|
      Callee = DAG.getLoad(getPointerTy(), dl,
 | 
						|
                           DAG.getEntryNode(), CPAddr,
 | 
						|
                           MachinePointerInfo::getConstantPool(),
 | 
						|
                           false, false, 0);
 | 
						|
      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | 
						|
      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
 | 
						|
                           getPointerTy(), Callee, PICLabel);
 | 
						|
    } else {
 | 
						|
      unsigned OpFlags = 0;
 | 
						|
      // On ELF targets for PIC code, direct calls should go through the PLT
 | 
						|
      if (Subtarget->isTargetELF() &&
 | 
						|
                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
 | 
						|
        OpFlags = ARMII::MO_PLT;
 | 
						|
      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: handle tail calls differently.
 | 
						|
  unsigned CallOpc;
 | 
						|
  if (Subtarget->isThumb()) {
 | 
						|
    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
 | 
						|
      CallOpc = ARMISD::CALL_NOLINK;
 | 
						|
    else
 | 
						|
      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
 | 
						|
  } else {
 | 
						|
    CallOpc = (isDirect || Subtarget->hasV5TOps())
 | 
						|
      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
 | 
						|
      : ARMISD::CALL_NOLINK;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<SDValue> Ops;
 | 
						|
  Ops.push_back(Chain);
 | 
						|
  Ops.push_back(Callee);
 | 
						|
 | 
						|
  // Add argument registers to the end of the list so that they are known live
 | 
						|
  // into the call.
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | 
						|
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | 
						|
                                  RegsToPass[i].second.getValueType()));
 | 
						|
 | 
						|
  if (InFlag.getNode())
 | 
						|
    Ops.push_back(InFlag);
 | 
						|
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  if (isTailCall)
 | 
						|
    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
 | 
						|
 | 
						|
  // Returns a chain and a flag for retval copy to use.
 | 
						|
  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | 
						|
                             DAG.getIntPtrConstant(0, true), InFlag);
 | 
						|
  if (!Ins.empty())
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  // Handle result values, copying them out of physregs into vregs that we
 | 
						|
  // return.
 | 
						|
  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
 | 
						|
                         dl, DAG, InVals);
 | 
						|
}
 | 
						|
 | 
						|
/// HandleByVal - Every parameter *after* a byval parameter is passed
 | 
						|
/// on the stack.  Confiscate all the parameter registers to insure
 | 
						|
/// this.
 | 
						|
void
 | 
						|
llvm::ARMTargetLowering::HandleByVal(CCState *State) const {
 | 
						|
  static const unsigned RegList1[] = {
 | 
						|
    ARM::R0, ARM::R1, ARM::R2, ARM::R3
 | 
						|
  };
 | 
						|
  do {} while (State->AllocateReg(RegList1, 4));
 | 
						|
}
 | 
						|
 | 
						|
/// MatchingStackOffset - Return true if the given stack call argument is
 | 
						|
/// already available in the same position (relatively) of the caller's
 | 
						|
/// incoming argument stack.
 | 
						|
static
 | 
						|
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
 | 
						|
                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
 | 
						|
                         const ARMInstrInfo *TII) {
 | 
						|
  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
 | 
						|
  int FI = INT_MAX;
 | 
						|
  if (Arg.getOpcode() == ISD::CopyFromReg) {
 | 
						|
    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(VR))
 | 
						|
      return false;
 | 
						|
    MachineInstr *Def = MRI->getVRegDef(VR);
 | 
						|
    if (!Def)
 | 
						|
      return false;
 | 
						|
    if (!Flags.isByVal()) {
 | 
						|
      if (!TII->isLoadFromStackSlot(Def, FI))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
 | 
						|
    if (Flags.isByVal())
 | 
						|
      // ByVal argument is passed in as a pointer but it's now being
 | 
						|
      // dereferenced. e.g.
 | 
						|
      // define @foo(%struct.X* %A) {
 | 
						|
      //   tail call @bar(%struct.X* byval %A)
 | 
						|
      // }
 | 
						|
      return false;
 | 
						|
    SDValue Ptr = Ld->getBasePtr();
 | 
						|
    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
 | 
						|
    if (!FINode)
 | 
						|
      return false;
 | 
						|
    FI = FINode->getIndex();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(FI != INT_MAX);
 | 
						|
  if (!MFI->isFixedObjectIndex(FI))
 | 
						|
    return false;
 | 
						|
  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
 | 
						|
}
 | 
						|
 | 
						|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | 
						|
/// for tail call optimization. Targets which want to do tail call
 | 
						|
/// optimization should implement this function.
 | 
						|
bool
 | 
						|
ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | 
						|
                                                     CallingConv::ID CalleeCC,
 | 
						|
                                                     bool isVarArg,
 | 
						|
                                                     bool isCalleeStructRet,
 | 
						|
                                                     bool isCallerStructRet,
 | 
						|
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                                    const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                                     SelectionDAG& DAG) const {
 | 
						|
  const Function *CallerF = DAG.getMachineFunction().getFunction();
 | 
						|
  CallingConv::ID CallerCC = CallerF->getCallingConv();
 | 
						|
  bool CCMatch = CallerCC == CalleeCC;
 | 
						|
 | 
						|
  // Look for obvious safe cases to perform tail call optimization that do not
 | 
						|
  // require ABI changes. This is what gcc calls sibcall.
 | 
						|
 | 
						|
  // Do not sibcall optimize vararg calls unless the call site is not passing
 | 
						|
  // any arguments.
 | 
						|
  if (isVarArg && !Outs.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Also avoid sibcall optimization if either caller or callee uses struct
 | 
						|
  // return semantics.
 | 
						|
  if (isCalleeStructRet || isCallerStructRet)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
 | 
						|
  // emitEpilogue is not ready for them.
 | 
						|
  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
 | 
						|
  // LR.  This means if we need to reload LR, it takes an extra instructions,
 | 
						|
  // which outweighs the value of the tail call; but here we don't know yet
 | 
						|
  // whether LR is going to be used.  Probably the right approach is to
 | 
						|
  // generate the tail call here and turn it back into CALL/RET in
 | 
						|
  // emitEpilogue if LR is used.
 | 
						|
 | 
						|
  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
 | 
						|
  // but we need to make sure there are enough registers; the only valid
 | 
						|
  // registers are the 4 used for parameters.  We don't currently do this
 | 
						|
  // case.
 | 
						|
  if (Subtarget->isThumb1Only())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the calling conventions do not match, then we'd better make sure the
 | 
						|
  // results are returned in the same way as what the caller expects.
 | 
						|
  if (!CCMatch) {
 | 
						|
    SmallVector<CCValAssign, 16> RVLocs1;
 | 
						|
    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
 | 
						|
                    RVLocs1, *DAG.getContext());
 | 
						|
    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
 | 
						|
 | 
						|
    SmallVector<CCValAssign, 16> RVLocs2;
 | 
						|
    CCState CCInfo2(CallerCC, false, getTargetMachine(),
 | 
						|
                    RVLocs2, *DAG.getContext());
 | 
						|
    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
 | 
						|
 | 
						|
    if (RVLocs1.size() != RVLocs2.size())
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
 | 
						|
      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
 | 
						|
        return false;
 | 
						|
      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
 | 
						|
        return false;
 | 
						|
      if (RVLocs1[i].isRegLoc()) {
 | 
						|
        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
 | 
						|
          return false;
 | 
						|
      } else {
 | 
						|
        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the callee takes no arguments then go on to check the results of the
 | 
						|
  // call.
 | 
						|
  if (!Outs.empty()) {
 | 
						|
    // Check if stack adjustment is needed. For now, do not do this if any
 | 
						|
    // argument is passed on the stack.
 | 
						|
    SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
 | 
						|
                   ArgLocs, *DAG.getContext());
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs,
 | 
						|
                               CCAssignFnForNode(CalleeCC, false, isVarArg));
 | 
						|
    if (CCInfo.getNextStackOffset()) {
 | 
						|
      MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
      // Check if the arguments are already laid out in the right way as
 | 
						|
      // the caller's fixed stack objects.
 | 
						|
      MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
      const MachineRegisterInfo *MRI = &MF.getRegInfo();
 | 
						|
      const ARMInstrInfo *TII =
 | 
						|
        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
 | 
						|
      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
 | 
						|
           i != e;
 | 
						|
           ++i, ++realArgIdx) {
 | 
						|
        CCValAssign &VA = ArgLocs[i];
 | 
						|
        EVT RegVT = VA.getLocVT();
 | 
						|
        SDValue Arg = OutVals[realArgIdx];
 | 
						|
        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | 
						|
        if (VA.getLocInfo() == CCValAssign::Indirect)
 | 
						|
          return false;
 | 
						|
        if (VA.needsCustom()) {
 | 
						|
          // f64 and vector types are split into multiple registers or
 | 
						|
          // register/stack-slot combinations.  The types will not match
 | 
						|
          // the registers; give up on memory f64 refs until we figure
 | 
						|
          // out what to do about this.
 | 
						|
          if (!VA.isRegLoc())
 | 
						|
            return false;
 | 
						|
          if (!ArgLocs[++i].isRegLoc())
 | 
						|
            return false;
 | 
						|
          if (RegVT == MVT::v2f64) {
 | 
						|
            if (!ArgLocs[++i].isRegLoc())
 | 
						|
              return false;
 | 
						|
            if (!ArgLocs[++i].isRegLoc())
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
        } else if (!VA.isRegLoc()) {
 | 
						|
          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
 | 
						|
                                   MFI, MRI, TII))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerReturn(SDValue Chain,
 | 
						|
                               CallingConv::ID CallConv, bool isVarArg,
 | 
						|
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                               const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                               DebugLoc dl, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  // CCValAssign - represent the assignment of the return value to a location.
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
 | 
						|
  // CCState - Info about the registers and stack slots.
 | 
						|
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  // Analyze outgoing return values.
 | 
						|
  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
 | 
						|
                                               isVarArg));
 | 
						|
 | 
						|
  // If this is the first return lowered for this function, add
 | 
						|
  // the regs to the liveout set for the function.
 | 
						|
  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
 | 
						|
    for (unsigned i = 0; i != RVLocs.size(); ++i)
 | 
						|
      if (RVLocs[i].isRegLoc())
 | 
						|
        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Flag;
 | 
						|
 | 
						|
  // Copy the result values into the output registers.
 | 
						|
  for (unsigned i = 0, realRVLocIdx = 0;
 | 
						|
       i != RVLocs.size();
 | 
						|
       ++i, ++realRVLocIdx) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
    assert(VA.isRegLoc() && "Can only return in registers!");
 | 
						|
 | 
						|
    SDValue Arg = OutVals[realRVLocIdx];
 | 
						|
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::BCvt:
 | 
						|
      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.needsCustom()) {
 | 
						|
      if (VA.getLocVT() == MVT::v2f64) {
 | 
						|
        // Extract the first half and return it in two registers.
 | 
						|
        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | 
						|
                                   DAG.getConstant(0, MVT::i32));
 | 
						|
        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
 | 
						|
                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
 | 
						|
 | 
						|
        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
 | 
						|
        Flag = Chain.getValue(1);
 | 
						|
        VA = RVLocs[++i]; // skip ahead to next loc
 | 
						|
        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
 | 
						|
                                 HalfGPRs.getValue(1), Flag);
 | 
						|
        Flag = Chain.getValue(1);
 | 
						|
        VA = RVLocs[++i]; // skip ahead to next loc
 | 
						|
 | 
						|
        // Extract the 2nd half and fall through to handle it as an f64 value.
 | 
						|
        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | 
						|
                          DAG.getConstant(1, MVT::i32));
 | 
						|
      }
 | 
						|
      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
 | 
						|
      // available.
 | 
						|
      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
 | 
						|
                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
 | 
						|
      Flag = Chain.getValue(1);
 | 
						|
      VA = RVLocs[++i]; // skip ahead to next loc
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
 | 
						|
                               Flag);
 | 
						|
    } else
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
 | 
						|
 | 
						|
    // Guarantee that all emitted copies are
 | 
						|
    // stuck together, avoiding something bad.
 | 
						|
    Flag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue result;
 | 
						|
  if (Flag.getNode())
 | 
						|
    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
 | 
						|
  else // Return Void
 | 
						|
    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
 | 
						|
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
 | 
						|
  if (N->getNumValues() != 1)
 | 
						|
    return false;
 | 
						|
  if (!N->hasNUsesOfValue(1, 0))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumCopies = 0;
 | 
						|
  SDNode* Copies[2];
 | 
						|
  SDNode *Use = *N->use_begin();
 | 
						|
  if (Use->getOpcode() == ISD::CopyToReg) {
 | 
						|
    Copies[NumCopies++] = Use;
 | 
						|
  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
 | 
						|
    // f64 returned in a pair of GPRs.
 | 
						|
    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      if (UI->getOpcode() != ISD::CopyToReg)
 | 
						|
        return false;
 | 
						|
      Copies[UI.getUse().getResNo()] = *UI;
 | 
						|
      ++NumCopies;
 | 
						|
    }
 | 
						|
  } else if (Use->getOpcode() == ISD::BITCAST) {
 | 
						|
    // f32 returned in a single GPR.
 | 
						|
    if (!Use->hasNUsesOfValue(1, 0))
 | 
						|
      return false;
 | 
						|
    Use = *Use->use_begin();
 | 
						|
    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
 | 
						|
      return false;
 | 
						|
    Copies[NumCopies++] = Use;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumCopies != 1 && NumCopies != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool HasRet = false;
 | 
						|
  for (unsigned i = 0; i < NumCopies; ++i) {
 | 
						|
    SDNode *Copy = Copies[i];
 | 
						|
    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      if (UI->getOpcode() == ISD::CopyToReg) {
 | 
						|
        SDNode *Use = *UI;
 | 
						|
        if (Use == Copies[0] || Use == Copies[1])
 | 
						|
          continue;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (UI->getOpcode() != ARMISD::RET_FLAG)
 | 
						|
        return false;
 | 
						|
      HasRet = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return HasRet;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
 | 
						|
  if (!EnableARMTailCalls)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!CI->isTailCall())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return !Subtarget->isThumb1Only();
 | 
						|
}
 | 
						|
 | 
						|
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
 | 
						|
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
 | 
						|
// one of the above mentioned nodes. It has to be wrapped because otherwise
 | 
						|
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
 | 
						|
// be used to form addressing mode. These wrapped nodes will be selected
 | 
						|
// into MOVi.
 | 
						|
static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT PtrVT = Op.getValueType();
 | 
						|
  // FIXME there is no actual debug info here
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | 
						|
  SDValue Res;
 | 
						|
  if (CP->isMachineConstantPoolEntry())
 | 
						|
    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
 | 
						|
                                    CP->getAlignment());
 | 
						|
  else
 | 
						|
    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
 | 
						|
                                    CP->getAlignment());
 | 
						|
  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
 | 
						|
}
 | 
						|
 | 
						|
unsigned ARMTargetLowering::getJumpTableEncoding() const {
 | 
						|
  return MachineJumpTableInfo::EK_Inline;
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | 
						|
  unsigned ARMPCLabelIndex = 0;
 | 
						|
  DebugLoc DL = Op.getDebugLoc();
 | 
						|
  EVT PtrVT = getPointerTy();
 | 
						|
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | 
						|
  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | 
						|
  SDValue CPAddr;
 | 
						|
  if (RelocM == Reloc::Static) {
 | 
						|
    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
 | 
						|
  } else {
 | 
						|
    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
 | 
						|
    ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
 | 
						|
                                                         ARMCP::CPBlockAddress,
 | 
						|
                                                         PCAdj);
 | 
						|
    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | 
						|
  }
 | 
						|
  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
 | 
						|
  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
 | 
						|
                               MachinePointerInfo::getConstantPool(),
 | 
						|
                               false, false, 0);
 | 
						|
  if (RelocM == Reloc::Static)
 | 
						|
    return Result;
 | 
						|
  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | 
						|
  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
 | 
						|
}
 | 
						|
 | 
						|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
  DebugLoc dl = GA->getDebugLoc();
 | 
						|
  EVT PtrVT = getPointerTy();
 | 
						|
  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | 
						|
  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
  ARMConstantPoolValue *CPV =
 | 
						|
    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
 | 
						|
                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
 | 
						|
  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | 
						|
  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
 | 
						|
  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
 | 
						|
                         MachinePointerInfo::getConstantPool(),
 | 
						|
                         false, false, 0);
 | 
						|
  SDValue Chain = Argument.getValue(1);
 | 
						|
 | 
						|
  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | 
						|
  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
 | 
						|
 | 
						|
  // call __tls_get_addr.
 | 
						|
  ArgListTy Args;
 | 
						|
  ArgListEntry Entry;
 | 
						|
  Entry.Node = Argument;
 | 
						|
  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
 | 
						|
  Args.push_back(Entry);
 | 
						|
  // FIXME: is there useful debug info available here?
 | 
						|
  std::pair<SDValue, SDValue> CallResult =
 | 
						|
    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
 | 
						|
                false, false, false, false,
 | 
						|
                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
 | 
						|
                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
 | 
						|
  return CallResult.first;
 | 
						|
}
 | 
						|
 | 
						|
// Lower ISD::GlobalTLSAddress using the "initial exec" or
 | 
						|
// "local exec" model.
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
 | 
						|
                                        SelectionDAG &DAG) const {
 | 
						|
  const GlobalValue *GV = GA->getGlobal();
 | 
						|
  DebugLoc dl = GA->getDebugLoc();
 | 
						|
  SDValue Offset;
 | 
						|
  SDValue Chain = DAG.getEntryNode();
 | 
						|
  EVT PtrVT = getPointerTy();
 | 
						|
  // Get the Thread Pointer
 | 
						|
  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
 | 
						|
 | 
						|
  if (GV->isDeclaration()) {
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | 
						|
    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
    // Initial exec model.
 | 
						|
    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
 | 
						|
    ARMConstantPoolValue *CPV =
 | 
						|
      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
 | 
						|
                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
 | 
						|
    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | 
						|
    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
 | 
						|
    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
 | 
						|
                         MachinePointerInfo::getConstantPool(),
 | 
						|
                         false, false, 0);
 | 
						|
    Chain = Offset.getValue(1);
 | 
						|
 | 
						|
    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | 
						|
    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
 | 
						|
 | 
						|
    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
 | 
						|
                         MachinePointerInfo::getConstantPool(),
 | 
						|
                         false, false, 0);
 | 
						|
  } else {
 | 
						|
    // local exec model
 | 
						|
    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
 | 
						|
    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | 
						|
    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
 | 
						|
    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
 | 
						|
                         MachinePointerInfo::getConstantPool(),
 | 
						|
                         false, false, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // The address of the thread local variable is the add of the thread
 | 
						|
  // pointer with the offset of the variable.
 | 
						|
  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // TODO: implement the "local dynamic" model
 | 
						|
  assert(Subtarget->isTargetELF() &&
 | 
						|
         "TLS not implemented for non-ELF targets");
 | 
						|
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | 
						|
  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
 | 
						|
  // otherwise use the "Local Exec" TLS Model
 | 
						|
  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
 | 
						|
    return LowerToTLSGeneralDynamicModel(GA, DAG);
 | 
						|
  else
 | 
						|
    return LowerToTLSExecModels(GA, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = getPointerTy();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | 
						|
  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | 
						|
  if (RelocM == Reloc::PIC_) {
 | 
						|
    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
 | 
						|
    ARMConstantPoolValue *CPV =
 | 
						|
      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
 | 
						|
    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | 
						|
    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | 
						|
    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
 | 
						|
                                 CPAddr,
 | 
						|
                                 MachinePointerInfo::getConstantPool(),
 | 
						|
                                 false, false, 0);
 | 
						|
    SDValue Chain = Result.getValue(1);
 | 
						|
    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
 | 
						|
    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
 | 
						|
    if (!UseGOTOFF)
 | 
						|
      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
 | 
						|
                           MachinePointerInfo::getGOT(), false, false, 0);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have T2 ops, we can materialize the address directly via movt/movw
 | 
						|
  // pair. This is always cheaper.
 | 
						|
  if (Subtarget->useMovt()) {
 | 
						|
    ++NumMovwMovt;
 | 
						|
    // FIXME: Once remat is capable of dealing with instructions with register
 | 
						|
    // operands, expand this into two nodes.
 | 
						|
    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
 | 
						|
                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
 | 
						|
  } else {
 | 
						|
    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
 | 
						|
    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | 
						|
    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | 
						|
                       MachinePointerInfo::getConstantPool(),
 | 
						|
                       false, false, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = getPointerTy();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | 
						|
  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | 
						|
 | 
						|
  if (Subtarget->useMovt()) {
 | 
						|
    ++NumMovwMovt;
 | 
						|
    // FIXME: Once remat is capable of dealing with instructions with register
 | 
						|
    // operands, expand this into two nodes.
 | 
						|
    if (RelocM == Reloc::Static)
 | 
						|
      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
 | 
						|
                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
 | 
						|
 | 
						|
    unsigned Wrapper = (RelocM == Reloc::PIC_)
 | 
						|
      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
 | 
						|
    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
 | 
						|
                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
 | 
						|
    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
 | 
						|
      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
 | 
						|
                           MachinePointerInfo::getGOT(), false, false, 0);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ARMPCLabelIndex = 0;
 | 
						|
  SDValue CPAddr;
 | 
						|
  if (RelocM == Reloc::Static) {
 | 
						|
    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
 | 
						|
  } else {
 | 
						|
    ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
 | 
						|
    ARMConstantPoolValue *CPV =
 | 
						|
      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
 | 
						|
    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | 
						|
  }
 | 
						|
  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | 
						|
 | 
						|
  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | 
						|
                               MachinePointerInfo::getConstantPool(),
 | 
						|
                               false, false, 0);
 | 
						|
  SDValue Chain = Result.getValue(1);
 | 
						|
 | 
						|
  if (RelocM == Reloc::PIC_) {
 | 
						|
    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | 
						|
    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
 | 
						|
    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
 | 
						|
                         false, false, 0);
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  assert(Subtarget->isTargetELF() &&
 | 
						|
         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | 
						|
  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
  EVT PtrVT = getPointerTy();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
 | 
						|
  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
 | 
						|
                                                       "_GLOBAL_OFFSET_TABLE_",
 | 
						|
                                                       ARMPCLabelIndex, PCAdj);
 | 
						|
  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | 
						|
  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | 
						|
  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | 
						|
                               MachinePointerInfo::getConstantPool(),
 | 
						|
                               false, false, 0);
 | 
						|
  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | 
						|
  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
 | 
						|
  const {
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
 | 
						|
                     Op.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  SDValue Val = DAG.getConstant(0, MVT::i32);
 | 
						|
  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
 | 
						|
                     Op.getOperand(1), Val);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
 | 
						|
                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                          const ARMSubtarget *Subtarget) const {
 | 
						|
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  switch (IntNo) {
 | 
						|
  default: return SDValue();    // Don't custom lower most intrinsics.
 | 
						|
  case Intrinsic::arm_thread_pointer: {
 | 
						|
    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
 | 
						|
  }
 | 
						|
  case Intrinsic::eh_sjlj_lsda: {
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | 
						|
    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
 | 
						|
    EVT PtrVT = getPointerTy();
 | 
						|
    DebugLoc dl = Op.getDebugLoc();
 | 
						|
    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | 
						|
    SDValue CPAddr;
 | 
						|
    unsigned PCAdj = (RelocM != Reloc::PIC_)
 | 
						|
      ? 0 : (Subtarget->isThumb() ? 4 : 8);
 | 
						|
    ARMConstantPoolValue *CPV =
 | 
						|
      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
 | 
						|
                               ARMCP::CPLSDA, PCAdj);
 | 
						|
    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | 
						|
    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | 
						|
    SDValue Result =
 | 
						|
      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | 
						|
                  MachinePointerInfo::getConstantPool(),
 | 
						|
                  false, false, 0);
 | 
						|
 | 
						|
    if (RelocM == Reloc::PIC_) {
 | 
						|
      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | 
						|
      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | 
						|
    }
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  case Intrinsic::arm_neon_vmulls:
 | 
						|
  case Intrinsic::arm_neon_vmullu: {
 | 
						|
    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
 | 
						|
      ? ARMISD::VMULLs : ARMISD::VMULLu;
 | 
						|
    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
 | 
						|
                       Op.getOperand(1), Op.getOperand(2));
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
 | 
						|
                               const ARMSubtarget *Subtarget) {
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  if (!Subtarget->hasDataBarrier()) {
 | 
						|
    // Some ARMv6 cpus can support data barriers with an mcr instruction.
 | 
						|
    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
 | 
						|
    // here.
 | 
						|
    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
 | 
						|
           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
 | 
						|
    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
 | 
						|
                       DAG.getConstant(0, MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Op5 = Op.getOperand(5);
 | 
						|
  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
 | 
						|
  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | 
						|
  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | 
						|
  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
 | 
						|
 | 
						|
  ARM_MB::MemBOpt DMBOpt;
 | 
						|
  if (isDeviceBarrier)
 | 
						|
    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
 | 
						|
  else
 | 
						|
    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
 | 
						|
  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
 | 
						|
                     DAG.getConstant(DMBOpt, MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
 | 
						|
                             const ARMSubtarget *Subtarget) {
 | 
						|
  // ARM pre v5TE and Thumb1 does not have preload instructions.
 | 
						|
  if (!(Subtarget->isThumb2() ||
 | 
						|
        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
 | 
						|
    // Just preserve the chain.
 | 
						|
    return Op.getOperand(0);
 | 
						|
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
 | 
						|
  if (!isRead &&
 | 
						|
      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
 | 
						|
    // ARMv7 with MP extension has PLDW.
 | 
						|
    return Op.getOperand(0);
 | 
						|
 | 
						|
  if (Subtarget->isThumb())
 | 
						|
    // Invert the bits.
 | 
						|
    isRead = ~isRead & 1;
 | 
						|
  unsigned isData = Subtarget->isThumb() ? 0 : 1;
 | 
						|
 | 
						|
  // Currently there is no intrinsic that matches pli.
 | 
						|
  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
 | 
						|
                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
 | 
						|
                     DAG.getConstant(isData, MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
 | 
						|
 | 
						|
  // vastart just stores the address of the VarArgsFrameIndex slot into the
 | 
						|
  // memory location argument.
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | 
						|
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
 | 
						|
                      MachinePointerInfo(SV), false, false, 0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
 | 
						|
                                        SDValue &Root, SelectionDAG &DAG,
 | 
						|
                                        DebugLoc dl) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | 
						|
 | 
						|
  TargetRegisterClass *RC;
 | 
						|
  if (AFI->isThumb1OnlyFunction())
 | 
						|
    RC = ARM::tGPRRegisterClass;
 | 
						|
  else
 | 
						|
    RC = ARM::GPRRegisterClass;
 | 
						|
 | 
						|
  // Transform the arguments stored in physical registers into virtual ones.
 | 
						|
  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | 
						|
  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
 | 
						|
 | 
						|
  SDValue ArgValue2;
 | 
						|
  if (NextVA.isMemLoc()) {
 | 
						|
    MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
 | 
						|
 | 
						|
    // Create load node to retrieve arguments from the stack.
 | 
						|
    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | 
						|
    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
 | 
						|
                            MachinePointerInfo::getFixedStack(FI),
 | 
						|
                            false, false, 0);
 | 
						|
  } else {
 | 
						|
    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
 | 
						|
    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::LowerFormalArguments(SDValue Chain,
 | 
						|
                                        CallingConv::ID CallConv, bool isVarArg,
 | 
						|
                                        const SmallVectorImpl<ISD::InputArg>
 | 
						|
                                          &Ins,
 | 
						|
                                        DebugLoc dl, SelectionDAG &DAG,
 | 
						|
                                        SmallVectorImpl<SDValue> &InVals)
 | 
						|
                                          const {
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | 
						|
 | 
						|
  // Assign locations to all of the incoming arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
  CCInfo.AnalyzeFormalArguments(Ins,
 | 
						|
                                CCAssignFnForNode(CallConv, /* Return*/ false,
 | 
						|
                                                  isVarArg));
 | 
						|
 | 
						|
  SmallVector<SDValue, 16> ArgValues;
 | 
						|
  int lastInsIndex = -1;
 | 
						|
 | 
						|
  SDValue ArgValue;
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
 | 
						|
    // Arguments stored in registers.
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      EVT RegVT = VA.getLocVT();
 | 
						|
 | 
						|
      if (VA.needsCustom()) {
 | 
						|
        // f64 and vector types are split up into multiple registers or
 | 
						|
        // combinations of registers and stack slots.
 | 
						|
        if (VA.getLocVT() == MVT::v2f64) {
 | 
						|
          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
 | 
						|
                                                   Chain, DAG, dl);
 | 
						|
          VA = ArgLocs[++i]; // skip ahead to next loc
 | 
						|
          SDValue ArgValue2;
 | 
						|
          if (VA.isMemLoc()) {
 | 
						|
            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
 | 
						|
            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | 
						|
            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
 | 
						|
                                    MachinePointerInfo::getFixedStack(FI),
 | 
						|
                                    false, false, 0);
 | 
						|
          } else {
 | 
						|
            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
 | 
						|
                                             Chain, DAG, dl);
 | 
						|
          }
 | 
						|
          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
 | 
						|
          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
 | 
						|
                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
 | 
						|
          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
 | 
						|
                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
 | 
						|
        } else
 | 
						|
          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
 | 
						|
 | 
						|
      } else {
 | 
						|
        TargetRegisterClass *RC;
 | 
						|
 | 
						|
        if (RegVT == MVT::f32)
 | 
						|
          RC = ARM::SPRRegisterClass;
 | 
						|
        else if (RegVT == MVT::f64)
 | 
						|
          RC = ARM::DPRRegisterClass;
 | 
						|
        else if (RegVT == MVT::v2f64)
 | 
						|
          RC = ARM::QPRRegisterClass;
 | 
						|
        else if (RegVT == MVT::i32)
 | 
						|
          RC = (AFI->isThumb1OnlyFunction() ?
 | 
						|
                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
 | 
						|
        else
 | 
						|
          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
 | 
						|
 | 
						|
        // Transform the arguments in physical registers into virtual ones.
 | 
						|
        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | 
						|
        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is an 8 or 16-bit value, it is really passed promoted
 | 
						|
      // to 32 bits.  Insert an assert[sz]ext to capture this, then
 | 
						|
      // truncate to the right size.
 | 
						|
      switch (VA.getLocInfo()) {
 | 
						|
      default: llvm_unreachable("Unknown loc info!");
 | 
						|
      case CCValAssign::Full: break;
 | 
						|
      case CCValAssign::BCvt:
 | 
						|
        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
 | 
						|
        break;
 | 
						|
      case CCValAssign::SExt:
 | 
						|
        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
 | 
						|
                               DAG.getValueType(VA.getValVT()));
 | 
						|
        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | 
						|
        break;
 | 
						|
      case CCValAssign::ZExt:
 | 
						|
        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
 | 
						|
                               DAG.getValueType(VA.getValVT()));
 | 
						|
        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      InVals.push_back(ArgValue);
 | 
						|
 | 
						|
    } else { // VA.isRegLoc()
 | 
						|
 | 
						|
      // sanity check
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
 | 
						|
 | 
						|
      int index = ArgLocs[i].getValNo();
 | 
						|
 | 
						|
      // Some Ins[] entries become multiple ArgLoc[] entries.
 | 
						|
      // Process them only once.
 | 
						|
      if (index != lastInsIndex)
 | 
						|
        {
 | 
						|
          ISD::ArgFlagsTy Flags = Ins[index].Flags;
 | 
						|
          // FIXME: For now, all byval parameter objects are marked mutable. This can be
 | 
						|
          // changed with more analysis.
 | 
						|
          // In case of tail call optimization mark all arguments mutable. Since they
 | 
						|
          // could be overwritten by lowering of arguments in case of a tail call.
 | 
						|
          if (Flags.isByVal()) {
 | 
						|
            unsigned Bytes = Flags.getByValSize();
 | 
						|
            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
 | 
						|
            int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), false);
 | 
						|
            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
 | 
						|
          } else {
 | 
						|
            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
 | 
						|
                                            VA.getLocMemOffset(), true);
 | 
						|
 | 
						|
            // Create load nodes to retrieve arguments from the stack.
 | 
						|
            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | 
						|
            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
 | 
						|
                                         MachinePointerInfo::getFixedStack(FI),
 | 
						|
                                         false, false, 0));
 | 
						|
          }
 | 
						|
          lastInsIndex = index;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // varargs
 | 
						|
  if (isVarArg) {
 | 
						|
    static const unsigned GPRArgRegs[] = {
 | 
						|
      ARM::R0, ARM::R1, ARM::R2, ARM::R3
 | 
						|
    };
 | 
						|
 | 
						|
    unsigned NumGPRs = CCInfo.getFirstUnallocated
 | 
						|
      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
 | 
						|
 | 
						|
    unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
 | 
						|
    unsigned VARegSize = (4 - NumGPRs) * 4;
 | 
						|
    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
 | 
						|
    unsigned ArgOffset = CCInfo.getNextStackOffset();
 | 
						|
    if (VARegSaveSize) {
 | 
						|
      // If this function is vararg, store any remaining integer argument regs
 | 
						|
      // to their spots on the stack so that they may be loaded by deferencing
 | 
						|
      // the result of va_next.
 | 
						|
      AFI->setVarArgsRegSaveSize(VARegSaveSize);
 | 
						|
      AFI->setVarArgsFrameIndex(
 | 
						|
        MFI->CreateFixedObject(VARegSaveSize,
 | 
						|
                               ArgOffset + VARegSaveSize - VARegSize,
 | 
						|
                               false));
 | 
						|
      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
 | 
						|
                                      getPointerTy());
 | 
						|
 | 
						|
      SmallVector<SDValue, 4> MemOps;
 | 
						|
      for (; NumGPRs < 4; ++NumGPRs) {
 | 
						|
        TargetRegisterClass *RC;
 | 
						|
        if (AFI->isThumb1OnlyFunction())
 | 
						|
          RC = ARM::tGPRRegisterClass;
 | 
						|
        else
 | 
						|
          RC = ARM::GPRRegisterClass;
 | 
						|
 | 
						|
        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
 | 
						|
        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
 | 
						|
        SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | 
						|
               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
 | 
						|
                       false, false, 0);
 | 
						|
        MemOps.push_back(Store);
 | 
						|
        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
 | 
						|
                          DAG.getConstant(4, getPointerTy()));
 | 
						|
      }
 | 
						|
      if (!MemOps.empty())
 | 
						|
        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | 
						|
                            &MemOps[0], MemOps.size());
 | 
						|
    } else
 | 
						|
      // This will point to the next argument passed via stack.
 | 
						|
      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// isFloatingPointZero - Return true if this is +0.0.
 | 
						|
static bool isFloatingPointZero(SDValue Op) {
 | 
						|
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | 
						|
    return CFP->getValueAPF().isPosZero();
 | 
						|
  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | 
						|
    // Maybe this has already been legalized into the constant pool?
 | 
						|
    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
 | 
						|
      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
 | 
						|
      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
 | 
						|
        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | 
						|
          return CFP->getValueAPF().isPosZero();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
 | 
						|
/// the given operands.
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
 | 
						|
                             SDValue &ARMcc, SelectionDAG &DAG,
 | 
						|
                             DebugLoc dl) const {
 | 
						|
  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
 | 
						|
    unsigned C = RHSC->getZExtValue();
 | 
						|
    if (!isLegalICmpImmediate(C)) {
 | 
						|
      // Constant does not fit, try adjusting it by one?
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETLT:
 | 
						|
      case ISD::SETGE:
 | 
						|
        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
 | 
						|
          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
 | 
						|
          RHS = DAG.getConstant(C-1, MVT::i32);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case ISD::SETULT:
 | 
						|
      case ISD::SETUGE:
 | 
						|
        if (C != 0 && isLegalICmpImmediate(C-1)) {
 | 
						|
          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
 | 
						|
          RHS = DAG.getConstant(C-1, MVT::i32);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case ISD::SETLE:
 | 
						|
      case ISD::SETGT:
 | 
						|
        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
 | 
						|
          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
 | 
						|
          RHS = DAG.getConstant(C+1, MVT::i32);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case ISD::SETULE:
 | 
						|
      case ISD::SETUGT:
 | 
						|
        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
 | 
						|
          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | 
						|
          RHS = DAG.getConstant(C+1, MVT::i32);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
 | 
						|
  ARMISD::NodeType CompareType;
 | 
						|
  switch (CondCode) {
 | 
						|
  default:
 | 
						|
    CompareType = ARMISD::CMP;
 | 
						|
    break;
 | 
						|
  case ARMCC::EQ:
 | 
						|
  case ARMCC::NE:
 | 
						|
    // Uses only Z Flag
 | 
						|
    CompareType = ARMISD::CMPZ;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | 
						|
  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
 | 
						|
                             DebugLoc dl) const {
 | 
						|
  SDValue Cmp;
 | 
						|
  if (!isFloatingPointZero(RHS))
 | 
						|
    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
 | 
						|
  else
 | 
						|
    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
 | 
						|
  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
 | 
						|
}
 | 
						|
 | 
						|
/// duplicateCmp - Glue values can have only one use, so this function
 | 
						|
/// duplicates a comparison node.
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
 | 
						|
  unsigned Opc = Cmp.getOpcode();
 | 
						|
  DebugLoc DL = Cmp.getDebugLoc();
 | 
						|
  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
 | 
						|
    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
 | 
						|
 | 
						|
  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
 | 
						|
  Cmp = Cmp.getOperand(0);
 | 
						|
  Opc = Cmp.getOpcode();
 | 
						|
  if (Opc == ARMISD::CMPFP)
 | 
						|
    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
 | 
						|
  else {
 | 
						|
    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
 | 
						|
    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
 | 
						|
  }
 | 
						|
  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue Cond = Op.getOperand(0);
 | 
						|
  SDValue SelectTrue = Op.getOperand(1);
 | 
						|
  SDValue SelectFalse = Op.getOperand(2);
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
 | 
						|
  // Convert:
 | 
						|
  //
 | 
						|
  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
 | 
						|
  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
 | 
						|
  //
 | 
						|
  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
 | 
						|
    const ConstantSDNode *CMOVTrue =
 | 
						|
      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
 | 
						|
    const ConstantSDNode *CMOVFalse =
 | 
						|
      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
 | 
						|
 | 
						|
    if (CMOVTrue && CMOVFalse) {
 | 
						|
      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
 | 
						|
      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
 | 
						|
 | 
						|
      SDValue True;
 | 
						|
      SDValue False;
 | 
						|
      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
 | 
						|
        True = SelectTrue;
 | 
						|
        False = SelectFalse;
 | 
						|
      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
 | 
						|
        True = SelectFalse;
 | 
						|
        False = SelectTrue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (True.getNode() && False.getNode()) {
 | 
						|
        EVT VT = Cond.getValueType();
 | 
						|
        SDValue ARMcc = Cond.getOperand(2);
 | 
						|
        SDValue CCR = Cond.getOperand(3);
 | 
						|
        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
 | 
						|
        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getSelectCC(dl, Cond,
 | 
						|
                         DAG.getConstant(0, Cond.getValueType()),
 | 
						|
                         SelectTrue, SelectFalse, ISD::SETNE);
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDValue LHS = Op.getOperand(0);
 | 
						|
  SDValue RHS = Op.getOperand(1);
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | 
						|
  SDValue TrueVal = Op.getOperand(2);
 | 
						|
  SDValue FalseVal = Op.getOperand(3);
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
 | 
						|
  if (LHS.getValueType() == MVT::i32) {
 | 
						|
    SDValue ARMcc;
 | 
						|
    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | 
						|
    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | 
						|
    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  ARMCC::CondCodes CondCode, CondCode2;
 | 
						|
  FPCCToARMCC(CC, CondCode, CondCode2);
 | 
						|
 | 
						|
  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | 
						|
  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
 | 
						|
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | 
						|
  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
 | 
						|
                               ARMcc, CCR, Cmp);
 | 
						|
  if (CondCode2 != ARMCC::AL) {
 | 
						|
    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
 | 
						|
    // FIXME: Needs another CMP because flag can have but one use.
 | 
						|
    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
 | 
						|
    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
 | 
						|
                         Result, TrueVal, ARMcc2, CCR, Cmp2);
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// canChangeToInt - Given the fp compare operand, return true if it is suitable
 | 
						|
/// to morph to an integer compare sequence.
 | 
						|
static bool canChangeToInt(SDValue Op, bool &SeenZero,
 | 
						|
                           const ARMSubtarget *Subtarget) {
 | 
						|
  SDNode *N = Op.getNode();
 | 
						|
  if (!N->hasOneUse())
 | 
						|
    // Otherwise it requires moving the value from fp to integer registers.
 | 
						|
    return false;
 | 
						|
  if (!N->getNumValues())
 | 
						|
    return false;
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
 | 
						|
    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
 | 
						|
    // vmrs are very slow, e.g. cortex-a8.
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isFloatingPointZero(Op)) {
 | 
						|
    SeenZero = true;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return ISD::isNormalLoad(N);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  if (isFloatingPointZero(Op))
 | 
						|
    return DAG.getConstant(0, MVT::i32);
 | 
						|
 | 
						|
  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
 | 
						|
    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
 | 
						|
                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
 | 
						|
                       Ld->isVolatile(), Ld->isNonTemporal(),
 | 
						|
                       Ld->getAlignment());
 | 
						|
 | 
						|
  llvm_unreachable("Unknown VFP cmp argument!");
 | 
						|
}
 | 
						|
 | 
						|
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
 | 
						|
                           SDValue &RetVal1, SDValue &RetVal2) {
 | 
						|
  if (isFloatingPointZero(Op)) {
 | 
						|
    RetVal1 = DAG.getConstant(0, MVT::i32);
 | 
						|
    RetVal2 = DAG.getConstant(0, MVT::i32);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
 | 
						|
    SDValue Ptr = Ld->getBasePtr();
 | 
						|
    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
 | 
						|
                          Ld->getChain(), Ptr,
 | 
						|
                          Ld->getPointerInfo(),
 | 
						|
                          Ld->isVolatile(), Ld->isNonTemporal(),
 | 
						|
                          Ld->getAlignment());
 | 
						|
 | 
						|
    EVT PtrType = Ptr.getValueType();
 | 
						|
    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
 | 
						|
    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
 | 
						|
                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
 | 
						|
    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
 | 
						|
                          Ld->getChain(), NewPtr,
 | 
						|
                          Ld->getPointerInfo().getWithOffset(4),
 | 
						|
                          Ld->isVolatile(), Ld->isNonTemporal(),
 | 
						|
                          NewAlign);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unknown VFP cmp argument!");
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
 | 
						|
/// f32 and even f64 comparisons to integer ones.
 | 
						|
SDValue
 | 
						|
ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | 
						|
  SDValue LHS = Op.getOperand(2);
 | 
						|
  SDValue RHS = Op.getOperand(3);
 | 
						|
  SDValue Dest = Op.getOperand(4);
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
 | 
						|
  bool SeenZero = false;
 | 
						|
  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
 | 
						|
      canChangeToInt(RHS, SeenZero, Subtarget) &&
 | 
						|
      // If one of the operand is zero, it's safe to ignore the NaN case since
 | 
						|
      // we only care about equality comparisons.
 | 
						|
      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
 | 
						|
    // If unsafe fp math optimization is enabled and there are no other uses of
 | 
						|
    // the CMP operands, and the condition code is EQ or NE, we can optimize it
 | 
						|
    // to an integer comparison.
 | 
						|
    if (CC == ISD::SETOEQ)
 | 
						|
      CC = ISD::SETEQ;
 | 
						|
    else if (CC == ISD::SETUNE)
 | 
						|
      CC = ISD::SETNE;
 | 
						|
 | 
						|
    SDValue ARMcc;
 | 
						|
    if (LHS.getValueType() == MVT::f32) {
 | 
						|
      LHS = bitcastf32Toi32(LHS, DAG);
 | 
						|
      RHS = bitcastf32Toi32(RHS, DAG);
 | 
						|
      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | 
						|
      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | 
						|
      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
 | 
						|
                         Chain, Dest, ARMcc, CCR, Cmp);
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue LHS1, LHS2;
 | 
						|
    SDValue RHS1, RHS2;
 | 
						|
    expandf64Toi32(LHS, DAG, LHS1, LHS2);
 | 
						|
    expandf64Toi32(RHS, DAG, RHS1, RHS2);
 | 
						|
    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
 | 
						|
    ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | 
						|
    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
 | 
						|
    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | 
						|
  SDValue LHS = Op.getOperand(2);
 | 
						|
  SDValue RHS = Op.getOperand(3);
 | 
						|
  SDValue Dest = Op.getOperand(4);
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
 | 
						|
  if (LHS.getValueType() == MVT::i32) {
 | 
						|
    SDValue ARMcc;
 | 
						|
    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | 
						|
    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | 
						|
    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
 | 
						|
                       Chain, Dest, ARMcc, CCR, Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
 | 
						|
 | 
						|
  if (UnsafeFPMath &&
 | 
						|
      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
 | 
						|
       CC == ISD::SETNE || CC == ISD::SETUNE)) {
 | 
						|
    SDValue Result = OptimizeVFPBrcond(Op, DAG);
 | 
						|
    if (Result.getNode())
 | 
						|
      return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  ARMCC::CondCodes CondCode, CondCode2;
 | 
						|
  FPCCToARMCC(CC, CondCode, CondCode2);
 | 
						|
 | 
						|
  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | 
						|
  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
 | 
						|
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | 
						|
  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
 | 
						|
  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
 | 
						|
  if (CondCode2 != ARMCC::AL) {
 | 
						|
    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
 | 
						|
    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
 | 
						|
    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
 | 
						|
  }
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Table = Op.getOperand(1);
 | 
						|
  SDValue Index = Op.getOperand(2);
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
 | 
						|
  EVT PTy = getPointerTy();
 | 
						|
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
 | 
						|
  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
 | 
						|
  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
 | 
						|
  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
 | 
						|
  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
 | 
						|
  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
 | 
						|
  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
 | 
						|
  if (Subtarget->isThumb2()) {
 | 
						|
    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
 | 
						|
    // which does another jump to the destination. This also makes it easier
 | 
						|
    // to translate it to TBB / TBH later.
 | 
						|
    // FIXME: This might not work if the function is extremely large.
 | 
						|
    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
 | 
						|
                       Addr, Op.getOperand(2), JTI, UId);
 | 
						|
  }
 | 
						|
  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
 | 
						|
    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
 | 
						|
                       MachinePointerInfo::getJumpTable(),
 | 
						|
                       false, false, 0);
 | 
						|
    Chain = Addr.getValue(1);
 | 
						|
    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
 | 
						|
    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
 | 
						|
  } else {
 | 
						|
    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
 | 
						|
                       MachinePointerInfo::getJumpTable(), false, false, 0);
 | 
						|
    Chain = Addr.getValue(1);
 | 
						|
    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  unsigned Opc;
 | 
						|
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid opcode!");
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
    Opc = ARMISD::FTOSI;
 | 
						|
    break;
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
    Opc = ARMISD::FTOUI;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
 | 
						|
  EVT OperandVT = Op.getOperand(0).getValueType();
 | 
						|
  assert(OperandVT == MVT::v4i16 && "Invalid type for custom lowering!");
 | 
						|
  if (VT != MVT::v4f32)
 | 
						|
    return DAG.UnrollVectorOp(Op.getNode());
 | 
						|
 | 
						|
  unsigned CastOpc;
 | 
						|
  unsigned Opc;
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid opcode!");
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
    CastOpc = ISD::SIGN_EXTEND;
 | 
						|
    Opc = ISD::SINT_TO_FP;
 | 
						|
    break;
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
    CastOpc = ISD::ZERO_EXTEND;
 | 
						|
    Opc = ISD::UINT_TO_FP;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
 | 
						|
  return DAG.getNode(Opc, dl, VT, Op);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  if (VT.isVector())
 | 
						|
    return LowerVectorINT_TO_FP(Op, DAG);
 | 
						|
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  unsigned Opc;
 | 
						|
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid opcode!");
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
    Opc = ARMISD::SITOF;
 | 
						|
    break;
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
    Opc = ARMISD::UITOF;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
 | 
						|
  return DAG.getNode(Opc, dl, VT, Op);
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // Implement fcopysign with a fabs and a conditional fneg.
 | 
						|
  SDValue Tmp0 = Op.getOperand(0);
 | 
						|
  SDValue Tmp1 = Op.getOperand(1);
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  EVT SrcVT = Tmp1.getValueType();
 | 
						|
  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
 | 
						|
    Tmp0.getOpcode() == ARMISD::VMOVDRR;
 | 
						|
  bool UseNEON = !InGPR && Subtarget->hasNEON();
 | 
						|
 | 
						|
  if (UseNEON) {
 | 
						|
    // Use VBSL to copy the sign bit.
 | 
						|
    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
 | 
						|
    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
 | 
						|
                               DAG.getTargetConstant(EncodedVal, MVT::i32));
 | 
						|
    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
 | 
						|
    if (VT == MVT::f64)
 | 
						|
      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
 | 
						|
                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
 | 
						|
                         DAG.getConstant(32, MVT::i32));
 | 
						|
    else /*if (VT == MVT::f32)*/
 | 
						|
      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
 | 
						|
    if (SrcVT == MVT::f32) {
 | 
						|
      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
 | 
						|
      if (VT == MVT::f64)
 | 
						|
        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
 | 
						|
                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
 | 
						|
                           DAG.getConstant(32, MVT::i32));
 | 
						|
    }
 | 
						|
    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
 | 
						|
    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
 | 
						|
 | 
						|
    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
 | 
						|
                                            MVT::i32);
 | 
						|
    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
 | 
						|
    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
 | 
						|
                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
 | 
						|
 | 
						|
    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
 | 
						|
                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
 | 
						|
                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
 | 
						|
    if (VT == MVT::f32) {
 | 
						|
      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
 | 
						|
      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
 | 
						|
                        DAG.getConstant(0, MVT::i32));
 | 
						|
    } else {
 | 
						|
      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
 | 
						|
    }
 | 
						|
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  // Bitcast operand 1 to i32.
 | 
						|
  if (SrcVT == MVT::f64)
 | 
						|
    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
 | 
						|
                       &Tmp1, 1).getValue(1);
 | 
						|
  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
 | 
						|
 | 
						|
  // Or in the signbit with integer operations.
 | 
						|
  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
 | 
						|
  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
 | 
						|
  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
 | 
						|
  if (VT == MVT::f32) {
 | 
						|
    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
 | 
						|
                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
 | 
						|
                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
 | 
						|
  }
 | 
						|
 | 
						|
  // f64: Or the high part with signbit and then combine two parts.
 | 
						|
  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
 | 
						|
                     &Tmp0, 1);
 | 
						|
  SDValue Lo = Tmp0.getValue(0);
 | 
						|
  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
 | 
						|
  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
 | 
						|
  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  MFI->setReturnAddressIsTaken(true);
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  if (Depth) {
 | 
						|
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | 
						|
    SDValue Offset = DAG.getConstant(4, MVT::i32);
 | 
						|
    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
 | 
						|
                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
 | 
						|
                       MachinePointerInfo(), false, false, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Return LR, which contains the return address. Mark it an implicit live-in.
 | 
						|
  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
 | 
						|
  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  MFI->setFrameAddressIsTaken(true);
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
 | 
						|
    ? ARM::R7 : ARM::R11;
 | 
						|
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
 | 
						|
  while (Depth--)
 | 
						|
    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
 | 
						|
                            MachinePointerInfo(),
 | 
						|
                            false, false, 0);
 | 
						|
  return FrameAddr;
 | 
						|
}
 | 
						|
 | 
						|
/// ExpandBITCAST - If the target supports VFP, this function is called to
 | 
						|
/// expand a bit convert where either the source or destination type is i64 to
 | 
						|
/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
 | 
						|
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
 | 
						|
/// vectors), since the legalizer won't know what to do with that.
 | 
						|
static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
  SDValue Op = N->getOperand(0);
 | 
						|
 | 
						|
  // This function is only supposed to be called for i64 types, either as the
 | 
						|
  // source or destination of the bit convert.
 | 
						|
  EVT SrcVT = Op.getValueType();
 | 
						|
  EVT DstVT = N->getValueType(0);
 | 
						|
  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
 | 
						|
         "ExpandBITCAST called for non-i64 type");
 | 
						|
 | 
						|
  // Turn i64->f64 into VMOVDRR.
 | 
						|
  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
 | 
						|
    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
 | 
						|
                             DAG.getConstant(0, MVT::i32));
 | 
						|
    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
 | 
						|
                             DAG.getConstant(1, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, DstVT,
 | 
						|
                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn f64->i64 into VMOVRRD.
 | 
						|
  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
 | 
						|
    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
 | 
						|
                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
 | 
						|
    // Merge the pieces into a single i64 value.
 | 
						|
    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// getZeroVector - Returns a vector of specified type with all zero elements.
 | 
						|
/// Zero vectors are used to represent vector negation and in those cases
 | 
						|
/// will be implemented with the NEON VNEG instruction.  However, VNEG does
 | 
						|
/// not support i64 elements, so sometimes the zero vectors will need to be
 | 
						|
/// explicitly constructed.  Regardless, use a canonical VMOV to create the
 | 
						|
/// zero vector.
 | 
						|
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
 | 
						|
  assert(VT.isVector() && "Expected a vector type");
 | 
						|
  // The canonical modified immediate encoding of a zero vector is....0!
 | 
						|
  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
 | 
						|
  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
 | 
						|
  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
 | 
						|
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
 | 
						|
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned VTBits = VT.getSizeInBits();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  SDValue ShOpLo = Op.getOperand(0);
 | 
						|
  SDValue ShOpHi = Op.getOperand(1);
 | 
						|
  SDValue ShAmt  = Op.getOperand(2);
 | 
						|
  SDValue ARMcc;
 | 
						|
  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
 | 
						|
 | 
						|
  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
 | 
						|
 | 
						|
  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
 | 
						|
                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
 | 
						|
  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
 | 
						|
                                   DAG.getConstant(VTBits, MVT::i32));
 | 
						|
  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
 | 
						|
  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | 
						|
  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
 | 
						|
 | 
						|
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | 
						|
  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
 | 
						|
                          ARMcc, DAG, dl);
 | 
						|
  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
 | 
						|
  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
 | 
						|
                           CCR, Cmp);
 | 
						|
 | 
						|
  SDValue Ops[2] = { Lo, Hi };
 | 
						|
  return DAG.getMergeValues(Ops, 2, dl);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
 | 
						|
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
 | 
						|
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned VTBits = VT.getSizeInBits();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  SDValue ShOpLo = Op.getOperand(0);
 | 
						|
  SDValue ShOpHi = Op.getOperand(1);
 | 
						|
  SDValue ShAmt  = Op.getOperand(2);
 | 
						|
  SDValue ARMcc;
 | 
						|
 | 
						|
  assert(Op.getOpcode() == ISD::SHL_PARTS);
 | 
						|
  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
 | 
						|
                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
 | 
						|
  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
 | 
						|
                                   DAG.getConstant(VTBits, MVT::i32));
 | 
						|
  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
 | 
						|
 | 
						|
  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | 
						|
  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | 
						|
  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
 | 
						|
                          ARMcc, DAG, dl);
 | 
						|
  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
 | 
						|
  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
 | 
						|
                           CCR, Cmp);
 | 
						|
 | 
						|
  SDValue Ops[2] = { Lo, Hi };
 | 
						|
  return DAG.getMergeValues(Ops, 2, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  // The rounding mode is in bits 23:22 of the FPSCR.
 | 
						|
  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
 | 
						|
  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
 | 
						|
  // so that the shift + and get folded into a bitfield extract.
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
 | 
						|
                              DAG.getConstant(Intrinsic::arm_get_fpscr,
 | 
						|
                                              MVT::i32));
 | 
						|
  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
 | 
						|
                                  DAG.getConstant(1U << 22, MVT::i32));
 | 
						|
  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
 | 
						|
                              DAG.getConstant(22, MVT::i32));
 | 
						|
  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
 | 
						|
                     DAG.getConstant(3, MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
 | 
						|
                         const ARMSubtarget *ST) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
 | 
						|
  if (!ST->hasV6T2Ops())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
 | 
						|
  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
 | 
						|
                          const ARMSubtarget *ST) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
 | 
						|
  if (!VT.isVector())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Lower vector shifts on NEON to use VSHL.
 | 
						|
  assert(ST->hasNEON() && "unexpected vector shift");
 | 
						|
 | 
						|
  // Left shifts translate directly to the vshiftu intrinsic.
 | 
						|
  if (N->getOpcode() == ISD::SHL)
 | 
						|
    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | 
						|
                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
 | 
						|
                       N->getOperand(0), N->getOperand(1));
 | 
						|
 | 
						|
  assert((N->getOpcode() == ISD::SRA ||
 | 
						|
          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
 | 
						|
 | 
						|
  // NEON uses the same intrinsics for both left and right shifts.  For
 | 
						|
  // right shifts, the shift amounts are negative, so negate the vector of
 | 
						|
  // shift amounts.
 | 
						|
  EVT ShiftVT = N->getOperand(1).getValueType();
 | 
						|
  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
 | 
						|
                                     getZeroVector(ShiftVT, DAG, dl),
 | 
						|
                                     N->getOperand(1));
 | 
						|
  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
 | 
						|
                             Intrinsic::arm_neon_vshifts :
 | 
						|
                             Intrinsic::arm_neon_vshiftu);
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | 
						|
                     DAG.getConstant(vshiftInt, MVT::i32),
 | 
						|
                     N->getOperand(0), NegatedCount);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                const ARMSubtarget *ST) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
 | 
						|
  // We can get here for a node like i32 = ISD::SHL i32, i64
 | 
						|
  if (VT != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
 | 
						|
         "Unknown shift to lower!");
 | 
						|
 | 
						|
  // We only lower SRA, SRL of 1 here, all others use generic lowering.
 | 
						|
  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
 | 
						|
      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If we are in thumb mode, we don't have RRX.
 | 
						|
  if (ST->isThumb1Only()) return SDValue();
 | 
						|
 | 
						|
  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
 | 
						|
  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
 | 
						|
                           DAG.getConstant(0, MVT::i32));
 | 
						|
  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
 | 
						|
                           DAG.getConstant(1, MVT::i32));
 | 
						|
 | 
						|
  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
 | 
						|
  // captures the result into a carry flag.
 | 
						|
  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
 | 
						|
  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
 | 
						|
 | 
						|
  // The low part is an ARMISD::RRX operand, which shifts the carry in.
 | 
						|
  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
 | 
						|
 | 
						|
  // Merge the pieces into a single i64 value.
 | 
						|
 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDValue TmpOp0, TmpOp1;
 | 
						|
  bool Invert = false;
 | 
						|
  bool Swap = false;
 | 
						|
  unsigned Opc = 0;
 | 
						|
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
  SDValue Op1 = Op.getOperand(1);
 | 
						|
  SDValue CC = Op.getOperand(2);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
 | 
						|
  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
 | 
						|
    switch (SetCCOpcode) {
 | 
						|
    default: llvm_unreachable("Illegal FP comparison"); break;
 | 
						|
    case ISD::SETUNE:
 | 
						|
    case ISD::SETNE:  Invert = true; // Fallthrough
 | 
						|
    case ISD::SETOEQ:
 | 
						|
    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
 | 
						|
    case ISD::SETOLT:
 | 
						|
    case ISD::SETLT: Swap = true; // Fallthrough
 | 
						|
    case ISD::SETOGT:
 | 
						|
    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
 | 
						|
    case ISD::SETOLE:
 | 
						|
    case ISD::SETLE:  Swap = true; // Fallthrough
 | 
						|
    case ISD::SETOGE:
 | 
						|
    case ISD::SETGE: Opc = ARMISD::VCGE; break;
 | 
						|
    case ISD::SETUGE: Swap = true; // Fallthrough
 | 
						|
    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
 | 
						|
    case ISD::SETUGT: Swap = true; // Fallthrough
 | 
						|
    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
 | 
						|
    case ISD::SETUEQ: Invert = true; // Fallthrough
 | 
						|
    case ISD::SETONE:
 | 
						|
      // Expand this to (OLT | OGT).
 | 
						|
      TmpOp0 = Op0;
 | 
						|
      TmpOp1 = Op1;
 | 
						|
      Opc = ISD::OR;
 | 
						|
      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
 | 
						|
      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
 | 
						|
      break;
 | 
						|
    case ISD::SETUO: Invert = true; // Fallthrough
 | 
						|
    case ISD::SETO:
 | 
						|
      // Expand this to (OLT | OGE).
 | 
						|
      TmpOp0 = Op0;
 | 
						|
      TmpOp1 = Op1;
 | 
						|
      Opc = ISD::OR;
 | 
						|
      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
 | 
						|
      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Integer comparisons.
 | 
						|
    switch (SetCCOpcode) {
 | 
						|
    default: llvm_unreachable("Illegal integer comparison"); break;
 | 
						|
    case ISD::SETNE:  Invert = true;
 | 
						|
    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
 | 
						|
    case ISD::SETLT:  Swap = true;
 | 
						|
    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
 | 
						|
    case ISD::SETLE:  Swap = true;
 | 
						|
    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
 | 
						|
    case ISD::SETULT: Swap = true;
 | 
						|
    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
 | 
						|
    case ISD::SETULE: Swap = true;
 | 
						|
    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
 | 
						|
    if (Opc == ARMISD::VCEQ) {
 | 
						|
 | 
						|
      SDValue AndOp;
 | 
						|
      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
 | 
						|
        AndOp = Op0;
 | 
						|
      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
 | 
						|
        AndOp = Op1;
 | 
						|
 | 
						|
      // Ignore bitconvert.
 | 
						|
      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
 | 
						|
        AndOp = AndOp.getOperand(0);
 | 
						|
 | 
						|
      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
 | 
						|
        Opc = ARMISD::VTST;
 | 
						|
        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
 | 
						|
        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
 | 
						|
        Invert = !Invert;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Swap)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  // If one of the operands is a constant vector zero, attempt to fold the
 | 
						|
  // comparison to a specialized compare-against-zero form.
 | 
						|
  SDValue SingleOp;
 | 
						|
  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
 | 
						|
    SingleOp = Op0;
 | 
						|
  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
 | 
						|
    if (Opc == ARMISD::VCGE)
 | 
						|
      Opc = ARMISD::VCLEZ;
 | 
						|
    else if (Opc == ARMISD::VCGT)
 | 
						|
      Opc = ARMISD::VCLTZ;
 | 
						|
    SingleOp = Op1;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Result;
 | 
						|
  if (SingleOp.getNode()) {
 | 
						|
    switch (Opc) {
 | 
						|
    case ARMISD::VCEQ:
 | 
						|
      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
 | 
						|
    case ARMISD::VCGE:
 | 
						|
      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
 | 
						|
    case ARMISD::VCLEZ:
 | 
						|
      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
 | 
						|
    case ARMISD::VCGT:
 | 
						|
      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
 | 
						|
    case ARMISD::VCLTZ:
 | 
						|
      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
 | 
						|
    default:
 | 
						|
      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Invert)
 | 
						|
    Result = DAG.getNOT(dl, Result, VT);
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// isNEONModifiedImm - Check if the specified splat value corresponds to a
 | 
						|
/// valid vector constant for a NEON instruction with a "modified immediate"
 | 
						|
/// operand (e.g., VMOV).  If so, return the encoded value.
 | 
						|
static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
 | 
						|
                                 unsigned SplatBitSize, SelectionDAG &DAG,
 | 
						|
                                 EVT &VT, bool is128Bits, NEONModImmType type) {
 | 
						|
  unsigned OpCmode, Imm;
 | 
						|
 | 
						|
  // SplatBitSize is set to the smallest size that splats the vector, so a
 | 
						|
  // zero vector will always have SplatBitSize == 8.  However, NEON modified
 | 
						|
  // immediate instructions others than VMOV do not support the 8-bit encoding
 | 
						|
  // of a zero vector, and the default encoding of zero is supposed to be the
 | 
						|
  // 32-bit version.
 | 
						|
  if (SplatBits == 0)
 | 
						|
    SplatBitSize = 32;
 | 
						|
 | 
						|
  switch (SplatBitSize) {
 | 
						|
  case 8:
 | 
						|
    if (type != VMOVModImm)
 | 
						|
      return SDValue();
 | 
						|
    // Any 1-byte value is OK.  Op=0, Cmode=1110.
 | 
						|
    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
 | 
						|
    OpCmode = 0xe;
 | 
						|
    Imm = SplatBits;
 | 
						|
    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
 | 
						|
    break;
 | 
						|
 | 
						|
  case 16:
 | 
						|
    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
 | 
						|
    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
 | 
						|
    if ((SplatBits & ~0xff) == 0) {
 | 
						|
      // Value = 0x00nn: Op=x, Cmode=100x.
 | 
						|
      OpCmode = 0x8;
 | 
						|
      Imm = SplatBits;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if ((SplatBits & ~0xff00) == 0) {
 | 
						|
      // Value = 0xnn00: Op=x, Cmode=101x.
 | 
						|
      OpCmode = 0xa;
 | 
						|
      Imm = SplatBits >> 8;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  case 32:
 | 
						|
    // NEON's 32-bit VMOV supports splat values where:
 | 
						|
    // * only one byte is nonzero, or
 | 
						|
    // * the least significant byte is 0xff and the second byte is nonzero, or
 | 
						|
    // * the least significant 2 bytes are 0xff and the third is nonzero.
 | 
						|
    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
 | 
						|
    if ((SplatBits & ~0xff) == 0) {
 | 
						|
      // Value = 0x000000nn: Op=x, Cmode=000x.
 | 
						|
      OpCmode = 0;
 | 
						|
      Imm = SplatBits;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if ((SplatBits & ~0xff00) == 0) {
 | 
						|
      // Value = 0x0000nn00: Op=x, Cmode=001x.
 | 
						|
      OpCmode = 0x2;
 | 
						|
      Imm = SplatBits >> 8;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if ((SplatBits & ~0xff0000) == 0) {
 | 
						|
      // Value = 0x00nn0000: Op=x, Cmode=010x.
 | 
						|
      OpCmode = 0x4;
 | 
						|
      Imm = SplatBits >> 16;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if ((SplatBits & ~0xff000000) == 0) {
 | 
						|
      // Value = 0xnn000000: Op=x, Cmode=011x.
 | 
						|
      OpCmode = 0x6;
 | 
						|
      Imm = SplatBits >> 24;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
 | 
						|
    if (type == OtherModImm) return SDValue();
 | 
						|
 | 
						|
    if ((SplatBits & ~0xffff) == 0 &&
 | 
						|
        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
 | 
						|
      // Value = 0x0000nnff: Op=x, Cmode=1100.
 | 
						|
      OpCmode = 0xc;
 | 
						|
      Imm = SplatBits >> 8;
 | 
						|
      SplatBits |= 0xff;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((SplatBits & ~0xffffff) == 0 &&
 | 
						|
        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
 | 
						|
      // Value = 0x00nnffff: Op=x, Cmode=1101.
 | 
						|
      OpCmode = 0xd;
 | 
						|
      Imm = SplatBits >> 16;
 | 
						|
      SplatBits |= 0xffff;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
 | 
						|
    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
 | 
						|
    // VMOV.I32.  A (very) minor optimization would be to replicate the value
 | 
						|
    // and fall through here to test for a valid 64-bit splat.  But, then the
 | 
						|
    // caller would also need to check and handle the change in size.
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  case 64: {
 | 
						|
    if (type != VMOVModImm)
 | 
						|
      return SDValue();
 | 
						|
    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
 | 
						|
    uint64_t BitMask = 0xff;
 | 
						|
    uint64_t Val = 0;
 | 
						|
    unsigned ImmMask = 1;
 | 
						|
    Imm = 0;
 | 
						|
    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
 | 
						|
      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
 | 
						|
        Val |= BitMask;
 | 
						|
        Imm |= ImmMask;
 | 
						|
      } else if ((SplatBits & BitMask) != 0) {
 | 
						|
        return SDValue();
 | 
						|
      }
 | 
						|
      BitMask <<= 8;
 | 
						|
      ImmMask <<= 1;
 | 
						|
    }
 | 
						|
    // Op=1, Cmode=1110.
 | 
						|
    OpCmode = 0x1e;
 | 
						|
    SplatBits = Val;
 | 
						|
    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unexpected size for isNEONModifiedImm");
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
 | 
						|
  return DAG.getTargetConstant(EncodedVal, MVT::i32);
 | 
						|
}
 | 
						|
 | 
						|
static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
 | 
						|
                       bool &ReverseVEXT, unsigned &Imm) {
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  ReverseVEXT = false;
 | 
						|
 | 
						|
  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
 | 
						|
  if (M[0] < 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = M[0];
 | 
						|
 | 
						|
  // If this is a VEXT shuffle, the immediate value is the index of the first
 | 
						|
  // element.  The other shuffle indices must be the successive elements after
 | 
						|
  // the first one.
 | 
						|
  unsigned ExpectedElt = Imm;
 | 
						|
  for (unsigned i = 1; i < NumElts; ++i) {
 | 
						|
    // Increment the expected index.  If it wraps around, it may still be
 | 
						|
    // a VEXT but the source vectors must be swapped.
 | 
						|
    ExpectedElt += 1;
 | 
						|
    if (ExpectedElt == NumElts * 2) {
 | 
						|
      ExpectedElt = 0;
 | 
						|
      ReverseVEXT = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (M[i] < 0) continue; // ignore UNDEF indices
 | 
						|
    if (ExpectedElt != static_cast<unsigned>(M[i]))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Adjust the index value if the source operands will be swapped.
 | 
						|
  if (ReverseVEXT)
 | 
						|
    Imm -= NumElts;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVREVMask - Check if a vector shuffle corresponds to a VREV
 | 
						|
/// instruction with the specified blocksize.  (The order of the elements
 | 
						|
/// within each block of the vector is reversed.)
 | 
						|
static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
 | 
						|
                       unsigned BlockSize) {
 | 
						|
  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
 | 
						|
         "Only possible block sizes for VREV are: 16, 32, 64");
 | 
						|
 | 
						|
  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (EltSz == 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned BlockElts = M[0] + 1;
 | 
						|
  // If the first shuffle index is UNDEF, be optimistic.
 | 
						|
  if (M[0] < 0)
 | 
						|
    BlockElts = BlockSize / EltSz;
 | 
						|
 | 
						|
  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    if (M[i] < 0) continue; // ignore UNDEF indices
 | 
						|
    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
 | 
						|
  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
 | 
						|
  // range, then 0 is placed into the resulting vector. So pretty much any mask
 | 
						|
  // of 8 elements can work here.
 | 
						|
  return VT == MVT::v8i8 && M.size() == 8;
 | 
						|
}
 | 
						|
 | 
						|
static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
 | 
						|
                       unsigned &WhichResult) {
 | 
						|
  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (EltSz == 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  for (unsigned i = 0; i < NumElts; i += 2) {
 | 
						|
    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
 | 
						|
        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
 | 
						|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | 
						|
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
 | 
						|
static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
 | 
						|
                                unsigned &WhichResult) {
 | 
						|
  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (EltSz == 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  for (unsigned i = 0; i < NumElts; i += 2) {
 | 
						|
    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
 | 
						|
        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
 | 
						|
                       unsigned &WhichResult) {
 | 
						|
  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (EltSz == 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    if (M[i] < 0) continue; // ignore UNDEF indices
 | 
						|
    if ((unsigned) M[i] != 2 * i + WhichResult)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | 
						|
  if (VT.is64BitVector() && EltSz == 32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
 | 
						|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | 
						|
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
 | 
						|
static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
 | 
						|
                                unsigned &WhichResult) {
 | 
						|
  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (EltSz == 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Half = VT.getVectorNumElements() / 2;
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  for (unsigned j = 0; j != 2; ++j) {
 | 
						|
    unsigned Idx = WhichResult;
 | 
						|
    for (unsigned i = 0; i != Half; ++i) {
 | 
						|
      int MIdx = M[i + j * Half];
 | 
						|
      if (MIdx >= 0 && (unsigned) MIdx != Idx)
 | 
						|
        return false;
 | 
						|
      Idx += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | 
						|
  if (VT.is64BitVector() && EltSz == 32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
 | 
						|
                       unsigned &WhichResult) {
 | 
						|
  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (EltSz == 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  unsigned Idx = WhichResult * NumElts / 2;
 | 
						|
  for (unsigned i = 0; i != NumElts; i += 2) {
 | 
						|
    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
 | 
						|
        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
 | 
						|
      return false;
 | 
						|
    Idx += 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | 
						|
  if (VT.is64BitVector() && EltSz == 32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
 | 
						|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | 
						|
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
 | 
						|
static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
 | 
						|
                                unsigned &WhichResult) {
 | 
						|
  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (EltSz == 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  WhichResult = (M[0] == 0 ? 0 : 1);
 | 
						|
  unsigned Idx = WhichResult * NumElts / 2;
 | 
						|
  for (unsigned i = 0; i != NumElts; i += 2) {
 | 
						|
    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
 | 
						|
        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
 | 
						|
      return false;
 | 
						|
    Idx += 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | 
						|
  if (VT.is64BitVector() && EltSz == 32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If N is an integer constant that can be moved into a register in one
 | 
						|
// instruction, return an SDValue of such a constant (will become a MOV
 | 
						|
// instruction).  Otherwise return null.
 | 
						|
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
 | 
						|
                                     const ARMSubtarget *ST, DebugLoc dl) {
 | 
						|
  uint64_t Val;
 | 
						|
  if (!isa<ConstantSDNode>(N))
 | 
						|
    return SDValue();
 | 
						|
  Val = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
 | 
						|
  if (ST->isThumb1Only()) {
 | 
						|
    if (Val <= 255 || ~Val <= 255)
 | 
						|
      return DAG.getConstant(Val, MVT::i32);
 | 
						|
  } else {
 | 
						|
    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
 | 
						|
      return DAG.getConstant(Val, MVT::i32);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// If this is a case we can't handle, return null and let the default
 | 
						|
// expansion code take care of it.
 | 
						|
SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                             const ARMSubtarget *ST) const {
 | 
						|
  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
 | 
						|
  APInt SplatBits, SplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | 
						|
    if (SplatBitSize <= 64) {
 | 
						|
      // Check if an immediate VMOV works.
 | 
						|
      EVT VmovVT;
 | 
						|
      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
 | 
						|
                                      SplatUndef.getZExtValue(), SplatBitSize,
 | 
						|
                                      DAG, VmovVT, VT.is128BitVector(),
 | 
						|
                                      VMOVModImm);
 | 
						|
      if (Val.getNode()) {
 | 
						|
        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
 | 
						|
        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
 | 
						|
      }
 | 
						|
 | 
						|
      // Try an immediate VMVN.
 | 
						|
      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
 | 
						|
                             ((1LL << SplatBitSize) - 1));
 | 
						|
      Val = isNEONModifiedImm(NegatedImm,
 | 
						|
                                      SplatUndef.getZExtValue(), SplatBitSize,
 | 
						|
                                      DAG, VmovVT, VT.is128BitVector(),
 | 
						|
                                      VMVNModImm);
 | 
						|
      if (Val.getNode()) {
 | 
						|
        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
 | 
						|
        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan through the operands to see if only one value is used.
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  bool isOnlyLowElement = true;
 | 
						|
  bool usesOnlyOneValue = true;
 | 
						|
  bool isConstant = true;
 | 
						|
  SDValue Value;
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    SDValue V = Op.getOperand(i);
 | 
						|
    if (V.getOpcode() == ISD::UNDEF)
 | 
						|
      continue;
 | 
						|
    if (i > 0)
 | 
						|
      isOnlyLowElement = false;
 | 
						|
    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
 | 
						|
      isConstant = false;
 | 
						|
 | 
						|
    if (!Value.getNode())
 | 
						|
      Value = V;
 | 
						|
    else if (V != Value)
 | 
						|
      usesOnlyOneValue = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Value.getNode())
 | 
						|
    return DAG.getUNDEF(VT);
 | 
						|
 | 
						|
  if (isOnlyLowElement)
 | 
						|
    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
 | 
						|
 | 
						|
  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | 
						|
 | 
						|
  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
 | 
						|
  // i32 and try again.
 | 
						|
  if (usesOnlyOneValue && EltSize <= 32) {
 | 
						|
    if (!isConstant)
 | 
						|
      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
 | 
						|
    if (VT.getVectorElementType().isFloatingPoint()) {
 | 
						|
      SmallVector<SDValue, 8> Ops;
 | 
						|
      for (unsigned i = 0; i < NumElts; ++i)
 | 
						|
        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
 | 
						|
                                  Op.getOperand(i)));
 | 
						|
      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
 | 
						|
      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
 | 
						|
      Val = LowerBUILD_VECTOR(Val, DAG, ST);
 | 
						|
      if (Val.getNode())
 | 
						|
        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | 
						|
    }
 | 
						|
    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
 | 
						|
    if (Val.getNode())
 | 
						|
      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  // If all elements are constants and the case above didn't get hit, fall back
 | 
						|
  // to the default expansion, which will generate a load from the constant
 | 
						|
  // pool.
 | 
						|
  if (isConstant)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
 | 
						|
  if (NumElts >= 4) {
 | 
						|
    SDValue shuffle = ReconstructShuffle(Op, DAG);
 | 
						|
    if (shuffle != SDValue())
 | 
						|
      return shuffle;
 | 
						|
  }
 | 
						|
 | 
						|
  // Vectors with 32- or 64-bit elements can be built by directly assigning
 | 
						|
  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
 | 
						|
  // will be legalized.
 | 
						|
  if (EltSize >= 32) {
 | 
						|
    // Do the expansion with floating-point types, since that is what the VFP
 | 
						|
    // registers are defined to use, and since i64 is not legal.
 | 
						|
    EVT EltVT = EVT::getFloatingPointVT(EltSize);
 | 
						|
    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
 | 
						|
    SmallVector<SDValue, 8> Ops;
 | 
						|
    for (unsigned i = 0; i < NumElts; ++i)
 | 
						|
      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
 | 
						|
    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Gather data to see if the operation can be modelled as a
 | 
						|
// shuffle in combination with VEXTs.
 | 
						|
SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
 | 
						|
  SmallVector<SDValue, 2> SourceVecs;
 | 
						|
  SmallVector<unsigned, 2> MinElts;
 | 
						|
  SmallVector<unsigned, 2> MaxElts;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    SDValue V = Op.getOperand(i);
 | 
						|
    if (V.getOpcode() == ISD::UNDEF)
 | 
						|
      continue;
 | 
						|
    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
 | 
						|
      // A shuffle can only come from building a vector from various
 | 
						|
      // elements of other vectors.
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    // Record this extraction against the appropriate vector if possible...
 | 
						|
    SDValue SourceVec = V.getOperand(0);
 | 
						|
    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
 | 
						|
    bool FoundSource = false;
 | 
						|
    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
 | 
						|
      if (SourceVecs[j] == SourceVec) {
 | 
						|
        if (MinElts[j] > EltNo)
 | 
						|
          MinElts[j] = EltNo;
 | 
						|
        if (MaxElts[j] < EltNo)
 | 
						|
          MaxElts[j] = EltNo;
 | 
						|
        FoundSource = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Or record a new source if not...
 | 
						|
    if (!FoundSource) {
 | 
						|
      SourceVecs.push_back(SourceVec);
 | 
						|
      MinElts.push_back(EltNo);
 | 
						|
      MaxElts.push_back(EltNo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Currently only do something sane when at most two source vectors
 | 
						|
  // involved.
 | 
						|
  if (SourceVecs.size() > 2)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
 | 
						|
  int VEXTOffsets[2] = {0, 0};
 | 
						|
 | 
						|
  // This loop extracts the usage patterns of the source vectors
 | 
						|
  // and prepares appropriate SDValues for a shuffle if possible.
 | 
						|
  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
 | 
						|
    if (SourceVecs[i].getValueType() == VT) {
 | 
						|
      // No VEXT necessary
 | 
						|
      ShuffleSrcs[i] = SourceVecs[i];
 | 
						|
      VEXTOffsets[i] = 0;
 | 
						|
      continue;
 | 
						|
    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
 | 
						|
      // It probably isn't worth padding out a smaller vector just to
 | 
						|
      // break it down again in a shuffle.
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    // Since only 64-bit and 128-bit vectors are legal on ARM and
 | 
						|
    // we've eliminated the other cases...
 | 
						|
    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
 | 
						|
           "unexpected vector sizes in ReconstructShuffle");
 | 
						|
 | 
						|
    if (MaxElts[i] - MinElts[i] >= NumElts) {
 | 
						|
      // Span too large for a VEXT to cope
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    if (MinElts[i] >= NumElts) {
 | 
						|
      // The extraction can just take the second half
 | 
						|
      VEXTOffsets[i] = NumElts;
 | 
						|
      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | 
						|
                                   SourceVecs[i],
 | 
						|
                                   DAG.getIntPtrConstant(NumElts));
 | 
						|
    } else if (MaxElts[i] < NumElts) {
 | 
						|
      // The extraction can just take the first half
 | 
						|
      VEXTOffsets[i] = 0;
 | 
						|
      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | 
						|
                                   SourceVecs[i],
 | 
						|
                                   DAG.getIntPtrConstant(0));
 | 
						|
    } else {
 | 
						|
      // An actual VEXT is needed
 | 
						|
      VEXTOffsets[i] = MinElts[i];
 | 
						|
      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | 
						|
                                     SourceVecs[i],
 | 
						|
                                     DAG.getIntPtrConstant(0));
 | 
						|
      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
 | 
						|
                                     SourceVecs[i],
 | 
						|
                                     DAG.getIntPtrConstant(NumElts));
 | 
						|
      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
 | 
						|
                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<int, 8> Mask;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    SDValue Entry = Op.getOperand(i);
 | 
						|
    if (Entry.getOpcode() == ISD::UNDEF) {
 | 
						|
      Mask.push_back(-1);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue ExtractVec = Entry.getOperand(0);
 | 
						|
    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
 | 
						|
                                          .getOperand(1))->getSExtValue();
 | 
						|
    if (ExtractVec == SourceVecs[0]) {
 | 
						|
      Mask.push_back(ExtractElt - VEXTOffsets[0]);
 | 
						|
    } else {
 | 
						|
      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Final check before we try to produce nonsense...
 | 
						|
  if (isShuffleMaskLegal(Mask, VT))
 | 
						|
    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
 | 
						|
                                &Mask[0]);
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// isShuffleMaskLegal - Targets can use this to indicate that they only
 | 
						|
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | 
						|
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | 
						|
/// are assumed to be legal.
 | 
						|
bool
 | 
						|
ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
 | 
						|
                                      EVT VT) const {
 | 
						|
  if (VT.getVectorNumElements() == 4 &&
 | 
						|
      (VT.is128BitVector() || VT.is64BitVector())) {
 | 
						|
    unsigned PFIndexes[4];
 | 
						|
    for (unsigned i = 0; i != 4; ++i) {
 | 
						|
      if (M[i] < 0)
 | 
						|
        PFIndexes[i] = 8;
 | 
						|
      else
 | 
						|
        PFIndexes[i] = M[i];
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the index in the perfect shuffle table.
 | 
						|
    unsigned PFTableIndex =
 | 
						|
      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | 
						|
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | 
						|
    unsigned Cost = (PFEntry >> 30);
 | 
						|
 | 
						|
    if (Cost <= 4)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ReverseVEXT;
 | 
						|
  unsigned Imm, WhichResult;
 | 
						|
 | 
						|
  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | 
						|
  return (EltSize >= 32 ||
 | 
						|
          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
 | 
						|
          isVREVMask(M, VT, 64) ||
 | 
						|
          isVREVMask(M, VT, 32) ||
 | 
						|
          isVREVMask(M, VT, 16) ||
 | 
						|
          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
 | 
						|
          isVTBLMask(M, VT) ||
 | 
						|
          isVTRNMask(M, VT, WhichResult) ||
 | 
						|
          isVUZPMask(M, VT, WhichResult) ||
 | 
						|
          isVZIPMask(M, VT, WhichResult) ||
 | 
						|
          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
 | 
						|
          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
 | 
						|
          isVZIP_v_undef_Mask(M, VT, WhichResult));
 | 
						|
}
 | 
						|
 | 
						|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | 
						|
/// the specified operations to build the shuffle.
 | 
						|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | 
						|
                                      SDValue RHS, SelectionDAG &DAG,
 | 
						|
                                      DebugLoc dl) {
 | 
						|
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | 
						|
  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
 | 
						|
  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | 
						|
 | 
						|
  enum {
 | 
						|
    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | 
						|
    OP_VREV,
 | 
						|
    OP_VDUP0,
 | 
						|
    OP_VDUP1,
 | 
						|
    OP_VDUP2,
 | 
						|
    OP_VDUP3,
 | 
						|
    OP_VEXT1,
 | 
						|
    OP_VEXT2,
 | 
						|
    OP_VEXT3,
 | 
						|
    OP_VUZPL, // VUZP, left result
 | 
						|
    OP_VUZPR, // VUZP, right result
 | 
						|
    OP_VZIPL, // VZIP, left result
 | 
						|
    OP_VZIPR, // VZIP, right result
 | 
						|
    OP_VTRNL, // VTRN, left result
 | 
						|
    OP_VTRNR  // VTRN, right result
 | 
						|
  };
 | 
						|
 | 
						|
  if (OpNum == OP_COPY) {
 | 
						|
    if (LHSID == (1*9+2)*9+3) return LHS;
 | 
						|
    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | 
						|
    return RHS;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue OpLHS, OpRHS;
 | 
						|
  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | 
						|
  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | 
						|
  EVT VT = OpLHS.getValueType();
 | 
						|
 | 
						|
  switch (OpNum) {
 | 
						|
  default: llvm_unreachable("Unknown shuffle opcode!");
 | 
						|
  case OP_VREV:
 | 
						|
    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
 | 
						|
  case OP_VDUP0:
 | 
						|
  case OP_VDUP1:
 | 
						|
  case OP_VDUP2:
 | 
						|
  case OP_VDUP3:
 | 
						|
    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
 | 
						|
                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
 | 
						|
  case OP_VEXT1:
 | 
						|
  case OP_VEXT2:
 | 
						|
  case OP_VEXT3:
 | 
						|
    return DAG.getNode(ARMISD::VEXT, dl, VT,
 | 
						|
                       OpLHS, OpRHS,
 | 
						|
                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
 | 
						|
  case OP_VUZPL:
 | 
						|
  case OP_VUZPR:
 | 
						|
    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | 
						|
                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
 | 
						|
  case OP_VZIPL:
 | 
						|
  case OP_VZIPR:
 | 
						|
    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | 
						|
                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
 | 
						|
  case OP_VTRNL:
 | 
						|
  case OP_VTRNR:
 | 
						|
    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | 
						|
                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
 | 
						|
                                       SmallVectorImpl<int> &ShuffleMask,
 | 
						|
                                       SelectionDAG &DAG) {
 | 
						|
  // Check to see if we can use the VTBL instruction.
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  DebugLoc DL = Op.getDebugLoc();
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> VTBLMask;
 | 
						|
  for (SmallVectorImpl<int>::iterator
 | 
						|
         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
 | 
						|
    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
 | 
						|
 | 
						|
  if (V2.getNode()->getOpcode() == ISD::UNDEF)
 | 
						|
    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
 | 
						|
                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
 | 
						|
                                   &VTBLMask[0], 8));
 | 
						|
 | 
						|
  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
 | 
						|
                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
 | 
						|
                                 &VTBLMask[0], 8));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
 | 
						|
  SmallVector<int, 8> ShuffleMask;
 | 
						|
 | 
						|
  // Convert shuffles that are directly supported on NEON to target-specific
 | 
						|
  // DAG nodes, instead of keeping them as shuffles and matching them again
 | 
						|
  // during code selection.  This is more efficient and avoids the possibility
 | 
						|
  // of inconsistencies between legalization and selection.
 | 
						|
  // FIXME: floating-point vectors should be canonicalized to integer vectors
 | 
						|
  // of the same time so that they get CSEd properly.
 | 
						|
  SVN->getMask(ShuffleMask);
 | 
						|
 | 
						|
  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (EltSize <= 32) {
 | 
						|
    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
 | 
						|
      int Lane = SVN->getSplatIndex();
 | 
						|
      // If this is undef splat, generate it via "just" vdup, if possible.
 | 
						|
      if (Lane == -1) Lane = 0;
 | 
						|
 | 
						|
      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | 
						|
        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
 | 
						|
      }
 | 
						|
      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
 | 
						|
                         DAG.getConstant(Lane, MVT::i32));
 | 
						|
    }
 | 
						|
 | 
						|
    bool ReverseVEXT;
 | 
						|
    unsigned Imm;
 | 
						|
    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
 | 
						|
      if (ReverseVEXT)
 | 
						|
        std::swap(V1, V2);
 | 
						|
      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
 | 
						|
                         DAG.getConstant(Imm, MVT::i32));
 | 
						|
    }
 | 
						|
 | 
						|
    if (isVREVMask(ShuffleMask, VT, 64))
 | 
						|
      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
 | 
						|
    if (isVREVMask(ShuffleMask, VT, 32))
 | 
						|
      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
 | 
						|
    if (isVREVMask(ShuffleMask, VT, 16))
 | 
						|
      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
 | 
						|
 | 
						|
    // Check for Neon shuffles that modify both input vectors in place.
 | 
						|
    // If both results are used, i.e., if there are two shuffles with the same
 | 
						|
    // source operands and with masks corresponding to both results of one of
 | 
						|
    // these operations, DAG memoization will ensure that a single node is
 | 
						|
    // used for both shuffles.
 | 
						|
    unsigned WhichResult;
 | 
						|
    if (isVTRNMask(ShuffleMask, VT, WhichResult))
 | 
						|
      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | 
						|
                         V1, V2).getValue(WhichResult);
 | 
						|
    if (isVUZPMask(ShuffleMask, VT, WhichResult))
 | 
						|
      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | 
						|
                         V1, V2).getValue(WhichResult);
 | 
						|
    if (isVZIPMask(ShuffleMask, VT, WhichResult))
 | 
						|
      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | 
						|
                         V1, V2).getValue(WhichResult);
 | 
						|
 | 
						|
    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | 
						|
      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | 
						|
                         V1, V1).getValue(WhichResult);
 | 
						|
    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | 
						|
      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | 
						|
                         V1, V1).getValue(WhichResult);
 | 
						|
    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | 
						|
      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | 
						|
                         V1, V1).getValue(WhichResult);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the shuffle is not directly supported and it has 4 elements, use
 | 
						|
  // the PerfectShuffle-generated table to synthesize it from other shuffles.
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  if (NumElts == 4) {
 | 
						|
    unsigned PFIndexes[4];
 | 
						|
    for (unsigned i = 0; i != 4; ++i) {
 | 
						|
      if (ShuffleMask[i] < 0)
 | 
						|
        PFIndexes[i] = 8;
 | 
						|
      else
 | 
						|
        PFIndexes[i] = ShuffleMask[i];
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the index in the perfect shuffle table.
 | 
						|
    unsigned PFTableIndex =
 | 
						|
      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | 
						|
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | 
						|
    unsigned Cost = (PFEntry >> 30);
 | 
						|
 | 
						|
    if (Cost <= 4)
 | 
						|
      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
 | 
						|
  if (EltSize >= 32) {
 | 
						|
    // Do the expansion with floating-point types, since that is what the VFP
 | 
						|
    // registers are defined to use, and since i64 is not legal.
 | 
						|
    EVT EltVT = EVT::getFloatingPointVT(EltSize);
 | 
						|
    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
 | 
						|
    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
 | 
						|
    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
 | 
						|
    SmallVector<SDValue, 8> Ops;
 | 
						|
    for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
      if (ShuffleMask[i] < 0)
 | 
						|
        Ops.push_back(DAG.getUNDEF(EltVT));
 | 
						|
      else
 | 
						|
        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
 | 
						|
                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
 | 
						|
                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
 | 
						|
                                                  MVT::i32)));
 | 
						|
    }
 | 
						|
    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::v8i8) {
 | 
						|
    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
 | 
						|
    if (NewOp.getNode())
 | 
						|
      return NewOp;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
 | 
						|
  SDValue Lane = Op.getOperand(1);
 | 
						|
  if (!isa<ConstantSDNode>(Lane))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Vec = Op.getOperand(0);
 | 
						|
  if (Op.getValueType() == MVT::i32 &&
 | 
						|
      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
 | 
						|
    DebugLoc dl = Op.getDebugLoc();
 | 
						|
    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
 | 
						|
  }
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // The only time a CONCAT_VECTORS operation can have legal types is when
 | 
						|
  // two 64-bit vectors are concatenated to a 128-bit vector.
 | 
						|
  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
 | 
						|
         "unexpected CONCAT_VECTORS");
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  SDValue Val = DAG.getUNDEF(MVT::v2f64);
 | 
						|
  SDValue Op0 = Op.getOperand(0);
 | 
						|
  SDValue Op1 = Op.getOperand(1);
 | 
						|
  if (Op0.getOpcode() != ISD::UNDEF)
 | 
						|
    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
 | 
						|
                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
 | 
						|
                      DAG.getIntPtrConstant(0));
 | 
						|
  if (Op1.getOpcode() != ISD::UNDEF)
 | 
						|
    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
 | 
						|
                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
 | 
						|
                      DAG.getIntPtrConstant(1));
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
 | 
						|
}
 | 
						|
 | 
						|
/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
 | 
						|
/// element has been zero/sign-extended, depending on the isSigned parameter,
 | 
						|
/// from an integer type half its size.
 | 
						|
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                   bool isSigned) {
 | 
						|
  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
 | 
						|
    SDNode *BVN = N->getOperand(0).getNode();
 | 
						|
    if (BVN->getValueType(0) != MVT::v4i32 ||
 | 
						|
        BVN->getOpcode() != ISD::BUILD_VECTOR)
 | 
						|
      return false;
 | 
						|
    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
 | 
						|
    unsigned HiElt = 1 - LoElt;
 | 
						|
    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
 | 
						|
    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
 | 
						|
    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
 | 
						|
    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
 | 
						|
    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
 | 
						|
      return false;
 | 
						|
    if (isSigned) {
 | 
						|
      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
 | 
						|
          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
 | 
						|
        return true;
 | 
						|
    } else {
 | 
						|
      if (Hi0->isNullValue() && Hi1->isNullValue())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getOpcode() != ISD::BUILD_VECTOR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    SDNode *Elt = N->getOperand(i).getNode();
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
 | 
						|
      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | 
						|
      unsigned HalfSize = EltSize / 2;
 | 
						|
      if (isSigned) {
 | 
						|
        int64_t SExtVal = C->getSExtValue();
 | 
						|
        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
 | 
						|
          return false;
 | 
						|
      } else {
 | 
						|
        if ((C->getZExtValue() >> HalfSize) != 0)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isSignExtended - Check if a node is a vector value that is sign-extended
 | 
						|
/// or a constant BUILD_VECTOR with sign-extended elements.
 | 
						|
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
 | 
						|
    return true;
 | 
						|
  if (isExtendedBUILD_VECTOR(N, DAG, true))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isZeroExtended - Check if a node is a vector value that is zero-extended
 | 
						|
/// or a constant BUILD_VECTOR with zero-extended elements.
 | 
						|
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
 | 
						|
    return true;
 | 
						|
  if (isExtendedBUILD_VECTOR(N, DAG, false))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
 | 
						|
/// load, or BUILD_VECTOR with extended elements, return the unextended value.
 | 
						|
static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
 | 
						|
    return N->getOperand(0);
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
 | 
						|
    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
 | 
						|
                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
 | 
						|
                       LD->isNonTemporal(), LD->getAlignment());
 | 
						|
  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
 | 
						|
  // have been legalized as a BITCAST from v4i32.
 | 
						|
  if (N->getOpcode() == ISD::BITCAST) {
 | 
						|
    SDNode *BVN = N->getOperand(0).getNode();
 | 
						|
    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
 | 
						|
    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
 | 
						|
    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
 | 
						|
                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
 | 
						|
  }
 | 
						|
  // Construct a new BUILD_VECTOR with elements truncated to half the size.
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  MVT TruncVT = MVT::getIntegerVT(EltSize);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						|
    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
 | 
						|
    const APInt &CInt = C->getAPIntValue();
 | 
						|
    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
 | 
						|
  }
 | 
						|
  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
 | 
						|
                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
 | 
						|
}
 | 
						|
 | 
						|
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
 | 
						|
    SDNode *N0 = N->getOperand(0).getNode();
 | 
						|
    SDNode *N1 = N->getOperand(1).getNode();
 | 
						|
    return N0->hasOneUse() && N1->hasOneUse() &&
 | 
						|
      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
 | 
						|
    SDNode *N0 = N->getOperand(0).getNode();
 | 
						|
    SDNode *N1 = N->getOperand(1).getNode();
 | 
						|
    return N0->hasOneUse() && N1->hasOneUse() &&
 | 
						|
      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  // Multiplications are only custom-lowered for 128-bit vectors so that
 | 
						|
  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
 | 
						|
  SDNode *N0 = Op.getOperand(0).getNode();
 | 
						|
  SDNode *N1 = Op.getOperand(1).getNode();
 | 
						|
  unsigned NewOpc = 0;
 | 
						|
  bool isMLA = false;
 | 
						|
  bool isN0SExt = isSignExtended(N0, DAG);
 | 
						|
  bool isN1SExt = isSignExtended(N1, DAG);
 | 
						|
  if (isN0SExt && isN1SExt)
 | 
						|
    NewOpc = ARMISD::VMULLs;
 | 
						|
  else {
 | 
						|
    bool isN0ZExt = isZeroExtended(N0, DAG);
 | 
						|
    bool isN1ZExt = isZeroExtended(N1, DAG);
 | 
						|
    if (isN0ZExt && isN1ZExt)
 | 
						|
      NewOpc = ARMISD::VMULLu;
 | 
						|
    else if (isN1SExt || isN1ZExt) {
 | 
						|
      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
 | 
						|
      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
 | 
						|
      if (isN1SExt && isAddSubSExt(N0, DAG)) {
 | 
						|
        NewOpc = ARMISD::VMULLs;
 | 
						|
        isMLA = true;
 | 
						|
      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
 | 
						|
        NewOpc = ARMISD::VMULLu;
 | 
						|
        isMLA = true;
 | 
						|
      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
 | 
						|
        std::swap(N0, N1);
 | 
						|
        NewOpc = ARMISD::VMULLu;
 | 
						|
        isMLA = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!NewOpc) {
 | 
						|
      if (VT == MVT::v2i64)
 | 
						|
        // Fall through to expand this.  It is not legal.
 | 
						|
        return SDValue();
 | 
						|
      else
 | 
						|
        // Other vector multiplications are legal.
 | 
						|
        return Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Legalize to a VMULL instruction.
 | 
						|
  DebugLoc DL = Op.getDebugLoc();
 | 
						|
  SDValue Op0;
 | 
						|
  SDValue Op1 = SkipExtension(N1, DAG);
 | 
						|
  if (!isMLA) {
 | 
						|
    Op0 = SkipExtension(N0, DAG);
 | 
						|
    assert(Op0.getValueType().is64BitVector() &&
 | 
						|
           Op1.getValueType().is64BitVector() &&
 | 
						|
           "unexpected types for extended operands to VMULL");
 | 
						|
    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
 | 
						|
  // isel lowering to take advantage of no-stall back to back vmul + vmla.
 | 
						|
  //   vmull q0, d4, d6
 | 
						|
  //   vmlal q0, d5, d6
 | 
						|
  // is faster than
 | 
						|
  //   vaddl q0, d4, d5
 | 
						|
  //   vmovl q1, d6
 | 
						|
  //   vmul  q0, q0, q1
 | 
						|
  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
 | 
						|
  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
 | 
						|
  EVT Op1VT = Op1.getValueType();
 | 
						|
  return DAG.getNode(N0->getOpcode(), DL, VT,
 | 
						|
                     DAG.getNode(NewOpc, DL, VT,
 | 
						|
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
 | 
						|
                     DAG.getNode(NewOpc, DL, VT,
 | 
						|
                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue
 | 
						|
LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
 | 
						|
  // Convert to float
 | 
						|
  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
 | 
						|
  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
 | 
						|
  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
 | 
						|
  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
 | 
						|
  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
 | 
						|
  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
 | 
						|
  // Get reciprocal estimate.
 | 
						|
  // float4 recip = vrecpeq_f32(yf);
 | 
						|
  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | 
						|
                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
 | 
						|
  // Because char has a smaller range than uchar, we can actually get away
 | 
						|
  // without any newton steps.  This requires that we use a weird bias
 | 
						|
  // of 0xb000, however (again, this has been exhaustively tested).
 | 
						|
  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
 | 
						|
  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
 | 
						|
  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
 | 
						|
  Y = DAG.getConstant(0xb000, MVT::i32);
 | 
						|
  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
 | 
						|
  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
 | 
						|
  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
 | 
						|
  // Convert back to short.
 | 
						|
  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
 | 
						|
  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
 | 
						|
  return X;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue
 | 
						|
LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
 | 
						|
  SDValue N2;
 | 
						|
  // Convert to float.
 | 
						|
  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
 | 
						|
  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
 | 
						|
  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
 | 
						|
  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
 | 
						|
  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
 | 
						|
  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
 | 
						|
 | 
						|
  // Use reciprocal estimate and one refinement step.
 | 
						|
  // float4 recip = vrecpeq_f32(yf);
 | 
						|
  // recip *= vrecpsq_f32(yf, recip);
 | 
						|
  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | 
						|
                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
 | 
						|
  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | 
						|
                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
 | 
						|
                   N1, N2);
 | 
						|
  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
 | 
						|
  // Because short has a smaller range than ushort, we can actually get away
 | 
						|
  // with only a single newton step.  This requires that we use a weird bias
 | 
						|
  // of 89, however (again, this has been exhaustively tested).
 | 
						|
  // float4 result = as_float4(as_int4(xf*recip) + 89);
 | 
						|
  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
 | 
						|
  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
 | 
						|
  N1 = DAG.getConstant(89, MVT::i32);
 | 
						|
  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
 | 
						|
  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
 | 
						|
  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
 | 
						|
  // Convert back to integer and return.
 | 
						|
  // return vmovn_s32(vcvt_s32_f32(result));
 | 
						|
  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
 | 
						|
  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
 | 
						|
  return N0;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
 | 
						|
         "unexpected type for custom-lowering ISD::SDIV");
 | 
						|
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  SDValue N0 = Op.getOperand(0);
 | 
						|
  SDValue N1 = Op.getOperand(1);
 | 
						|
  SDValue N2, N3;
 | 
						|
 | 
						|
  if (VT == MVT::v8i8) {
 | 
						|
    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
 | 
						|
    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
 | 
						|
 | 
						|
    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | 
						|
                     DAG.getIntPtrConstant(4));
 | 
						|
    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | 
						|
                     DAG.getIntPtrConstant(4));
 | 
						|
    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | 
						|
                     DAG.getIntPtrConstant(0));
 | 
						|
    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | 
						|
                     DAG.getIntPtrConstant(0));
 | 
						|
 | 
						|
    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
 | 
						|
    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
 | 
						|
 | 
						|
    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
 | 
						|
    N0 = LowerCONCAT_VECTORS(N0, DAG);
 | 
						|
 | 
						|
    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
 | 
						|
    return N0;
 | 
						|
  }
 | 
						|
  return LowerSDIV_v4i16(N0, N1, dl, DAG);
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
 | 
						|
         "unexpected type for custom-lowering ISD::UDIV");
 | 
						|
 | 
						|
  DebugLoc dl = Op.getDebugLoc();
 | 
						|
  SDValue N0 = Op.getOperand(0);
 | 
						|
  SDValue N1 = Op.getOperand(1);
 | 
						|
  SDValue N2, N3;
 | 
						|
 | 
						|
  if (VT == MVT::v8i8) {
 | 
						|
    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
 | 
						|
    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
 | 
						|
 | 
						|
    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | 
						|
                     DAG.getIntPtrConstant(4));
 | 
						|
    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | 
						|
                     DAG.getIntPtrConstant(4));
 | 
						|
    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
 | 
						|
                     DAG.getIntPtrConstant(0));
 | 
						|
    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
 | 
						|
                     DAG.getIntPtrConstant(0));
 | 
						|
 | 
						|
    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
 | 
						|
    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
 | 
						|
 | 
						|
    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
 | 
						|
    N0 = LowerCONCAT_VECTORS(N0, DAG);
 | 
						|
 | 
						|
    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
 | 
						|
                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
 | 
						|
                     N0);
 | 
						|
    return N0;
 | 
						|
  }
 | 
						|
 | 
						|
  // v4i16 sdiv ... Convert to float.
 | 
						|
  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
 | 
						|
  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
 | 
						|
  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
 | 
						|
  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
 | 
						|
  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
 | 
						|
  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
 | 
						|
 | 
						|
  // Use reciprocal estimate and two refinement steps.
 | 
						|
  // float4 recip = vrecpeq_f32(yf);
 | 
						|
  // recip *= vrecpsq_f32(yf, recip);
 | 
						|
  // recip *= vrecpsq_f32(yf, recip);
 | 
						|
  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | 
						|
                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
 | 
						|
  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | 
						|
                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
 | 
						|
                   N1, N2);
 | 
						|
  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
 | 
						|
  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
 | 
						|
                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
 | 
						|
                   N1, N2);
 | 
						|
  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
 | 
						|
  // Simply multiplying by the reciprocal estimate can leave us a few ulps
 | 
						|
  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
 | 
						|
  // and that it will never cause us to return an answer too large).
 | 
						|
  // float4 result = as_float4(as_int4(xf*recip) + 89);
 | 
						|
  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
 | 
						|
  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
 | 
						|
  N1 = DAG.getConstant(2, MVT::i32);
 | 
						|
  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
 | 
						|
  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
 | 
						|
  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
 | 
						|
  // Convert back to integer and return.
 | 
						|
  // return vmovn_u32(vcvt_s32_f32(result));
 | 
						|
  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
 | 
						|
  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
 | 
						|
  return N0;
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: llvm_unreachable("Don't know how to custom lower this!");
 | 
						|
  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
 | 
						|
  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
 | 
						|
  case ISD::GlobalAddress:
 | 
						|
    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
 | 
						|
      LowerGlobalAddressELF(Op, DAG);
 | 
						|
  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
 | 
						|
  case ISD::SELECT:        return LowerSELECT(Op, DAG);
 | 
						|
  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
 | 
						|
  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
 | 
						|
  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
 | 
						|
  case ISD::VASTART:       return LowerVASTART(Op, DAG);
 | 
						|
  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
 | 
						|
  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
 | 
						|
  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
 | 
						|
  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
 | 
						|
  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
 | 
						|
  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
 | 
						|
                                                               Subtarget);
 | 
						|
  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
 | 
						|
  case ISD::SHL:
 | 
						|
  case ISD::SRL:
 | 
						|
  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
 | 
						|
  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
 | 
						|
  case ISD::SRL_PARTS:
 | 
						|
  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
 | 
						|
  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
 | 
						|
  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
 | 
						|
  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
 | 
						|
  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
 | 
						|
  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | 
						|
  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
 | 
						|
  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
 | 
						|
  case ISD::MUL:           return LowerMUL(Op, DAG);
 | 
						|
  case ISD::SDIV:          return LowerSDIV(Op, DAG);
 | 
						|
  case ISD::UDIV:          return LowerUDIV(Op, DAG);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// ReplaceNodeResults - Replace the results of node with an illegal result
 | 
						|
/// type with new values built out of custom code.
 | 
						|
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
 | 
						|
                                           SmallVectorImpl<SDValue>&Results,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDValue Res;
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Don't know how to custom expand this!");
 | 
						|
    break;
 | 
						|
  case ISD::BITCAST:
 | 
						|
    Res = ExpandBITCAST(N, DAG);
 | 
						|
    break;
 | 
						|
  case ISD::SRL:
 | 
						|
  case ISD::SRA:
 | 
						|
    Res = Expand64BitShift(N, DAG, Subtarget);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (Res.getNode())
 | 
						|
    Results.push_back(Res);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           ARM Scheduler Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
 | 
						|
                                     MachineBasicBlock *BB,
 | 
						|
                                     unsigned Size) const {
 | 
						|
  unsigned dest    = MI->getOperand(0).getReg();
 | 
						|
  unsigned ptr     = MI->getOperand(1).getReg();
 | 
						|
  unsigned oldval  = MI->getOperand(2).getReg();
 | 
						|
  unsigned newval  = MI->getOperand(3).getReg();
 | 
						|
  unsigned scratch = BB->getParent()->getRegInfo()
 | 
						|
    .createVirtualRegister(ARM::GPRRegisterClass);
 | 
						|
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | 
						|
  DebugLoc dl = MI->getDebugLoc();
 | 
						|
  bool isThumb2 = Subtarget->isThumb2();
 | 
						|
 | 
						|
  unsigned ldrOpc, strOpc;
 | 
						|
  switch (Size) {
 | 
						|
  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
 | 
						|
  case 1:
 | 
						|
    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
 | 
						|
    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
 | 
						|
    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
 | 
						|
    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  MachineFunction *MF = BB->getParent();
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction::iterator It = BB;
 | 
						|
  ++It; // insert the new blocks after the current block
 | 
						|
 | 
						|
  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MF->insert(It, loop1MBB);
 | 
						|
  MF->insert(It, loop2MBB);
 | 
						|
  MF->insert(It, exitMBB);
 | 
						|
 | 
						|
  // Transfer the remainder of BB and its successor edges to exitMBB.
 | 
						|
  exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                  llvm::next(MachineBasicBlock::iterator(MI)),
 | 
						|
                  BB->end());
 | 
						|
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
  //  thisMBB:
 | 
						|
  //   ...
 | 
						|
  //   fallthrough --> loop1MBB
 | 
						|
  BB->addSuccessor(loop1MBB);
 | 
						|
 | 
						|
  // loop1MBB:
 | 
						|
  //   ldrex dest, [ptr]
 | 
						|
  //   cmp dest, oldval
 | 
						|
  //   bne exitMBB
 | 
						|
  BB = loop1MBB;
 | 
						|
  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
 | 
						|
  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | 
						|
                 .addReg(dest).addReg(oldval));
 | 
						|
  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | 
						|
    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | 
						|
  BB->addSuccessor(loop2MBB);
 | 
						|
  BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
  // loop2MBB:
 | 
						|
  //   strex scratch, newval, [ptr]
 | 
						|
  //   cmp scratch, #0
 | 
						|
  //   bne loop1MBB
 | 
						|
  BB = loop2MBB;
 | 
						|
  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
 | 
						|
                 .addReg(ptr));
 | 
						|
  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | 
						|
                 .addReg(scratch).addImm(0));
 | 
						|
  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | 
						|
    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | 
						|
  BB->addSuccessor(loop1MBB);
 | 
						|
  BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
  //  exitMBB:
 | 
						|
  //   ...
 | 
						|
  BB = exitMBB;
 | 
						|
 | 
						|
  MI->eraseFromParent();   // The instruction is gone now.
 | 
						|
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
 | 
						|
                                    unsigned Size, unsigned BinOpcode) const {
 | 
						|
  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | 
						|
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | 
						|
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction *MF = BB->getParent();
 | 
						|
  MachineFunction::iterator It = BB;
 | 
						|
  ++It;
 | 
						|
 | 
						|
  unsigned dest = MI->getOperand(0).getReg();
 | 
						|
  unsigned ptr = MI->getOperand(1).getReg();
 | 
						|
  unsigned incr = MI->getOperand(2).getReg();
 | 
						|
  DebugLoc dl = MI->getDebugLoc();
 | 
						|
 | 
						|
  bool isThumb2 = Subtarget->isThumb2();
 | 
						|
  unsigned ldrOpc, strOpc;
 | 
						|
  switch (Size) {
 | 
						|
  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
 | 
						|
  case 1:
 | 
						|
    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
 | 
						|
    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
 | 
						|
    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
 | 
						|
    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MF->insert(It, loopMBB);
 | 
						|
  MF->insert(It, exitMBB);
 | 
						|
 | 
						|
  // Transfer the remainder of BB and its successor edges to exitMBB.
 | 
						|
  exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                  llvm::next(MachineBasicBlock::iterator(MI)),
 | 
						|
                  BB->end());
 | 
						|
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
  MachineRegisterInfo &RegInfo = MF->getRegInfo();
 | 
						|
  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
 | 
						|
  unsigned scratch2 = (!BinOpcode) ? incr :
 | 
						|
    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
 | 
						|
 | 
						|
  //  thisMBB:
 | 
						|
  //   ...
 | 
						|
  //   fallthrough --> loopMBB
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
 | 
						|
  //  loopMBB:
 | 
						|
  //   ldrex dest, ptr
 | 
						|
  //   <binop> scratch2, dest, incr
 | 
						|
  //   strex scratch, scratch2, ptr
 | 
						|
  //   cmp scratch, #0
 | 
						|
  //   bne- loopMBB
 | 
						|
  //   fallthrough --> exitMBB
 | 
						|
  BB = loopMBB;
 | 
						|
  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
 | 
						|
  if (BinOpcode) {
 | 
						|
    // operand order needs to go the other way for NAND
 | 
						|
    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
 | 
						|
      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
 | 
						|
                     addReg(incr).addReg(dest)).addReg(0);
 | 
						|
    else
 | 
						|
      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
 | 
						|
                     addReg(dest).addReg(incr)).addReg(0);
 | 
						|
  }
 | 
						|
 | 
						|
  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
 | 
						|
                 .addReg(ptr));
 | 
						|
  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | 
						|
                 .addReg(scratch).addImm(0));
 | 
						|
  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | 
						|
    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | 
						|
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
  BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
  //  exitMBB:
 | 
						|
  //   ...
 | 
						|
  BB = exitMBB;
 | 
						|
 | 
						|
  MI->eraseFromParent();   // The instruction is gone now.
 | 
						|
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
 | 
						|
  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
 | 
						|
       E = MBB->succ_end(); I != E; ++I)
 | 
						|
    if (*I != Succ)
 | 
						|
      return *I;
 | 
						|
  llvm_unreachable("Expecting a BB with two successors!");
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | 
						|
                                               MachineBasicBlock *BB) const {
 | 
						|
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | 
						|
  DebugLoc dl = MI->getDebugLoc();
 | 
						|
  bool isThumb2 = Subtarget->isThumb2();
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  default:
 | 
						|
    MI->dump();
 | 
						|
    llvm_unreachable("Unexpected instr type to insert");
 | 
						|
 | 
						|
  case ARM::ATOMIC_LOAD_ADD_I8:
 | 
						|
     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
 | 
						|
  case ARM::ATOMIC_LOAD_ADD_I16:
 | 
						|
     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
 | 
						|
  case ARM::ATOMIC_LOAD_ADD_I32:
 | 
						|
     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
 | 
						|
 | 
						|
  case ARM::ATOMIC_LOAD_AND_I8:
 | 
						|
     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | 
						|
  case ARM::ATOMIC_LOAD_AND_I16:
 | 
						|
     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | 
						|
  case ARM::ATOMIC_LOAD_AND_I32:
 | 
						|
     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | 
						|
 | 
						|
  case ARM::ATOMIC_LOAD_OR_I8:
 | 
						|
     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | 
						|
  case ARM::ATOMIC_LOAD_OR_I16:
 | 
						|
     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | 
						|
  case ARM::ATOMIC_LOAD_OR_I32:
 | 
						|
     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | 
						|
 | 
						|
  case ARM::ATOMIC_LOAD_XOR_I8:
 | 
						|
     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | 
						|
  case ARM::ATOMIC_LOAD_XOR_I16:
 | 
						|
     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | 
						|
  case ARM::ATOMIC_LOAD_XOR_I32:
 | 
						|
     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | 
						|
 | 
						|
  case ARM::ATOMIC_LOAD_NAND_I8:
 | 
						|
     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
 | 
						|
  case ARM::ATOMIC_LOAD_NAND_I16:
 | 
						|
     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
 | 
						|
  case ARM::ATOMIC_LOAD_NAND_I32:
 | 
						|
     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
 | 
						|
 | 
						|
  case ARM::ATOMIC_LOAD_SUB_I8:
 | 
						|
     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
 | 
						|
  case ARM::ATOMIC_LOAD_SUB_I16:
 | 
						|
     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
 | 
						|
  case ARM::ATOMIC_LOAD_SUB_I32:
 | 
						|
     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
 | 
						|
 | 
						|
  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
 | 
						|
  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
 | 
						|
  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
 | 
						|
 | 
						|
  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
 | 
						|
  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
 | 
						|
  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
 | 
						|
 | 
						|
  case ARM::ADCSSri:
 | 
						|
  case ARM::ADCSSrr:
 | 
						|
  case ARM::ADCSSrs:
 | 
						|
  case ARM::SBCSSri:
 | 
						|
  case ARM::SBCSSrr:
 | 
						|
  case ARM::SBCSSrs:
 | 
						|
  case ARM::RSBSri:
 | 
						|
  case ARM::RSBSrr:
 | 
						|
  case ARM::RSBSrs:
 | 
						|
  case ARM::RSCSri:
 | 
						|
  case ARM::RSCSrs: {
 | 
						|
    unsigned OldOpc = MI->getOpcode();
 | 
						|
    unsigned Opc = 0;
 | 
						|
    switch (OldOpc) {
 | 
						|
      case ARM::ADCSSrr:
 | 
						|
        Opc = ARM::ADCrr;
 | 
						|
        break;
 | 
						|
      case ARM::ADCSSri:
 | 
						|
        Opc = ARM::ADCri;
 | 
						|
        break;
 | 
						|
      case ARM::ADCSSrs:
 | 
						|
        Opc = ARM::ADCrs;
 | 
						|
        break;
 | 
						|
      case ARM::SBCSSrr:
 | 
						|
        Opc = ARM::SBCrr;
 | 
						|
        break;
 | 
						|
      case ARM::SBCSSri:
 | 
						|
        Opc = ARM::SBCri;
 | 
						|
        break;
 | 
						|
      case ARM::SBCSSrs:
 | 
						|
        Opc = ARM::SBCrs;
 | 
						|
        break;
 | 
						|
      case ARM::RSBSri:
 | 
						|
        Opc = ARM::RSBri;
 | 
						|
        break;
 | 
						|
      case ARM::RSBSrr:
 | 
						|
        Opc = ARM::RSBrr;
 | 
						|
        break;
 | 
						|
      case ARM::RSBSrs:
 | 
						|
        Opc = ARM::RSBrs;
 | 
						|
        break;
 | 
						|
      case ARM::RSCSri:
 | 
						|
        Opc = ARM::RSCri;
 | 
						|
        break;
 | 
						|
      case ARM::RSCSrs:
 | 
						|
        Opc = ARM::RSCrs;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unknown opcode?");
 | 
						|
    }
 | 
						|
 | 
						|
    MachineInstrBuilder MIB =
 | 
						|
      BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(Opc));
 | 
						|
    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
 | 
						|
      MIB.addOperand(MI->getOperand(i));
 | 
						|
    AddDefaultPred(MIB);
 | 
						|
    MIB.addReg(ARM::CPSR, RegState::Define); // S bit
 | 
						|
    MI->eraseFromParent();
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  case ARM::tMOVCCr_pseudo: {
 | 
						|
    // To "insert" a SELECT_CC instruction, we actually have to insert the
 | 
						|
    // diamond control-flow pattern.  The incoming instruction knows the
 | 
						|
    // destination vreg to set, the condition code register to branch on, the
 | 
						|
    // true/false values to select between, and a branch opcode to use.
 | 
						|
    const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
    MachineFunction::iterator It = BB;
 | 
						|
    ++It;
 | 
						|
 | 
						|
    //  thisMBB:
 | 
						|
    //  ...
 | 
						|
    //   TrueVal = ...
 | 
						|
    //   cmpTY ccX, r1, r2
 | 
						|
    //   bCC copy1MBB
 | 
						|
    //   fallthrough --> copy0MBB
 | 
						|
    MachineBasicBlock *thisMBB  = BB;
 | 
						|
    MachineFunction *F = BB->getParent();
 | 
						|
    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    F->insert(It, copy0MBB);
 | 
						|
    F->insert(It, sinkMBB);
 | 
						|
 | 
						|
    // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
    sinkMBB->splice(sinkMBB->begin(), BB,
 | 
						|
                    llvm::next(MachineBasicBlock::iterator(MI)),
 | 
						|
                    BB->end());
 | 
						|
    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
    BB->addSuccessor(copy0MBB);
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
 | 
						|
      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
 | 
						|
 | 
						|
    //  copy0MBB:
 | 
						|
    //   %FalseValue = ...
 | 
						|
    //   # fallthrough to sinkMBB
 | 
						|
    BB = copy0MBB;
 | 
						|
 | 
						|
    // Update machine-CFG edges
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
    //  sinkMBB:
 | 
						|
    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | 
						|
    //  ...
 | 
						|
    BB = sinkMBB;
 | 
						|
    BuildMI(*BB, BB->begin(), dl,
 | 
						|
            TII->get(ARM::PHI), MI->getOperand(0).getReg())
 | 
						|
      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
 | 
						|
      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | 
						|
 | 
						|
    MI->eraseFromParent();   // The pseudo instruction is gone now.
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARM::BCCi64:
 | 
						|
  case ARM::BCCZi64: {
 | 
						|
    // If there is an unconditional branch to the other successor, remove it.
 | 
						|
    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
 | 
						|
    // Compare both parts that make up the double comparison separately for
 | 
						|
    // equality.
 | 
						|
    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
 | 
						|
 | 
						|
    unsigned LHS1 = MI->getOperand(1).getReg();
 | 
						|
    unsigned LHS2 = MI->getOperand(2).getReg();
 | 
						|
    if (RHSisZero) {
 | 
						|
      AddDefaultPred(BuildMI(BB, dl,
 | 
						|
                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | 
						|
                     .addReg(LHS1).addImm(0));
 | 
						|
      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | 
						|
        .addReg(LHS2).addImm(0)
 | 
						|
        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | 
						|
    } else {
 | 
						|
      unsigned RHS1 = MI->getOperand(3).getReg();
 | 
						|
      unsigned RHS2 = MI->getOperand(4).getReg();
 | 
						|
      AddDefaultPred(BuildMI(BB, dl,
 | 
						|
                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | 
						|
                     .addReg(LHS1).addReg(RHS1));
 | 
						|
      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | 
						|
        .addReg(LHS2).addReg(RHS2)
 | 
						|
        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | 
						|
    }
 | 
						|
 | 
						|
    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
 | 
						|
    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
 | 
						|
    if (MI->getOperand(0).getImm() == ARMCC::NE)
 | 
						|
      std::swap(destMBB, exitMBB);
 | 
						|
 | 
						|
    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | 
						|
      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | 
						|
    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
 | 
						|
      .addMBB(exitMBB);
 | 
						|
 | 
						|
    MI->eraseFromParent();   // The pseudo instruction is gone now.
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           ARM Optimization Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static
 | 
						|
SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
 | 
						|
                            TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  unsigned Opc = N->getOpcode();
 | 
						|
  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
 | 
						|
  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
 | 
						|
  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
 | 
						|
  ISD::CondCode CC = ISD::SETCC_INVALID;
 | 
						|
 | 
						|
  if (isSlctCC) {
 | 
						|
    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
 | 
						|
  } else {
 | 
						|
    SDValue CCOp = Slct.getOperand(0);
 | 
						|
    if (CCOp.getOpcode() == ISD::SETCC)
 | 
						|
      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
 | 
						|
  }
 | 
						|
 | 
						|
  bool DoXform = false;
 | 
						|
  bool InvCC = false;
 | 
						|
  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
 | 
						|
          "Bad input!");
 | 
						|
 | 
						|
  if (LHS.getOpcode() == ISD::Constant &&
 | 
						|
      cast<ConstantSDNode>(LHS)->isNullValue()) {
 | 
						|
    DoXform = true;
 | 
						|
  } else if (CC != ISD::SETCC_INVALID &&
 | 
						|
             RHS.getOpcode() == ISD::Constant &&
 | 
						|
             cast<ConstantSDNode>(RHS)->isNullValue()) {
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    SDValue Op0 = Slct.getOperand(0);
 | 
						|
    EVT OpVT = isSlctCC ? Op0.getValueType() :
 | 
						|
                          Op0.getOperand(0).getValueType();
 | 
						|
    bool isInt = OpVT.isInteger();
 | 
						|
    CC = ISD::getSetCCInverse(CC, isInt);
 | 
						|
 | 
						|
    if (!TLI.isCondCodeLegal(CC, OpVT))
 | 
						|
      return SDValue();         // Inverse operator isn't legal.
 | 
						|
 | 
						|
    DoXform = true;
 | 
						|
    InvCC = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DoXform) {
 | 
						|
    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
 | 
						|
    if (isSlctCC)
 | 
						|
      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
 | 
						|
                             Slct.getOperand(0), Slct.getOperand(1), CC);
 | 
						|
    SDValue CCOp = Slct.getOperand(0);
 | 
						|
    if (InvCC)
 | 
						|
      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
 | 
						|
                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
 | 
						|
    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
 | 
						|
                       CCOp, OtherOp, Result);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
 | 
						|
/// operands N0 and N1.  This is a helper for PerformADDCombine that is
 | 
						|
/// called with the default operands, and if that fails, with commuted
 | 
						|
/// operands.
 | 
						|
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
 | 
						|
                                         TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
 | 
						|
  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
 | 
						|
    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
 | 
						|
    if (Result.getNode()) return Result;
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
 | 
						|
///
 | 
						|
static SDValue PerformADDCombine(SDNode *N,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  // First try with the default operand order.
 | 
						|
  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
 | 
						|
  if (Result.getNode())
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // If that didn't work, try again with the operands commuted.
 | 
						|
  return PerformADDCombineWithOperands(N, N1, N0, DCI);
 | 
						|
}
 | 
						|
 | 
						|
/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
 | 
						|
///
 | 
						|
static SDValue PerformSUBCombine(SDNode *N,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
 | 
						|
  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
 | 
						|
    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
 | 
						|
    if (Result.getNode()) return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformVMULCombine
 | 
						|
/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
 | 
						|
/// special multiplier accumulator forwarding.
 | 
						|
///   vmul d3, d0, d2
 | 
						|
///   vmla d3, d1, d2
 | 
						|
/// is faster than
 | 
						|
///   vadd d3, d0, d1
 | 
						|
///   vmul d3, d3, d2
 | 
						|
static SDValue PerformVMULCombine(SDNode *N,
 | 
						|
                                  TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                  const ARMSubtarget *Subtarget) {
 | 
						|
  if (!Subtarget->hasVMLxForwarding())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  unsigned Opcode = N0.getOpcode();
 | 
						|
  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
 | 
						|
      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
 | 
						|
    Opcode = N0.getOpcode();
 | 
						|
    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
 | 
						|
        Opcode != ISD::FADD && Opcode != ISD::FSUB)
 | 
						|
      return SDValue();
 | 
						|
    std::swap(N0, N1);
 | 
						|
  }
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  DebugLoc DL = N->getDebugLoc();
 | 
						|
  SDValue N00 = N0->getOperand(0);
 | 
						|
  SDValue N01 = N0->getOperand(1);
 | 
						|
  return DAG.getNode(Opcode, DL, VT,
 | 
						|
                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
 | 
						|
                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
 | 
						|
}
 | 
						|
 | 
						|
static SDValue PerformMULCombine(SDNode *N,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                 const ARMSubtarget *Subtarget) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
 | 
						|
  if (Subtarget->isThumb1Only())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (VT.is64BitVector() || VT.is128BitVector())
 | 
						|
    return PerformVMULCombine(N, DCI, Subtarget);
 | 
						|
  if (VT != MVT::i32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  if (!C)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  uint64_t MulAmt = C->getZExtValue();
 | 
						|
  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
 | 
						|
  ShiftAmt = ShiftAmt & (32 - 1);
 | 
						|
  SDValue V = N->getOperand(0);
 | 
						|
  DebugLoc DL = N->getDebugLoc();
 | 
						|
 | 
						|
  SDValue Res;
 | 
						|
  MulAmt >>= ShiftAmt;
 | 
						|
  if (isPowerOf2_32(MulAmt - 1)) {
 | 
						|
    // (mul x, 2^N + 1) => (add (shl x, N), x)
 | 
						|
    Res = DAG.getNode(ISD::ADD, DL, VT,
 | 
						|
                      V, DAG.getNode(ISD::SHL, DL, VT,
 | 
						|
                                     V, DAG.getConstant(Log2_32(MulAmt-1),
 | 
						|
                                                        MVT::i32)));
 | 
						|
  } else if (isPowerOf2_32(MulAmt + 1)) {
 | 
						|
    // (mul x, 2^N - 1) => (sub (shl x, N), x)
 | 
						|
    Res = DAG.getNode(ISD::SUB, DL, VT,
 | 
						|
                      DAG.getNode(ISD::SHL, DL, VT,
 | 
						|
                                  V, DAG.getConstant(Log2_32(MulAmt+1),
 | 
						|
                                                     MVT::i32)),
 | 
						|
                                                     V);
 | 
						|
  } else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (ShiftAmt != 0)
 | 
						|
    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
 | 
						|
                      DAG.getConstant(ShiftAmt, MVT::i32));
 | 
						|
 | 
						|
  // Do not add new nodes to DAG combiner worklist.
 | 
						|
  DCI.CombineTo(N, Res, false);
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
static SDValue PerformANDCombine(SDNode *N,
 | 
						|
                                TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
 | 
						|
  // Attempt to use immediate-form VBIC
 | 
						|
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
 | 
						|
  APInt SplatBits, SplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
  if (BVN &&
 | 
						|
      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | 
						|
    if (SplatBitSize <= 64) {
 | 
						|
      EVT VbicVT;
 | 
						|
      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
 | 
						|
                                      SplatUndef.getZExtValue(), SplatBitSize,
 | 
						|
                                      DAG, VbicVT, VT.is128BitVector(),
 | 
						|
                                      OtherModImm);
 | 
						|
      if (Val.getNode()) {
 | 
						|
        SDValue Input =
 | 
						|
          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
 | 
						|
        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
 | 
						|
        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
 | 
						|
static SDValue PerformORCombine(SDNode *N,
 | 
						|
                                TargetLowering::DAGCombinerInfo &DCI,
 | 
						|
                                const ARMSubtarget *Subtarget) {
 | 
						|
  // Attempt to use immediate-form VORR
 | 
						|
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
 | 
						|
  APInt SplatBits, SplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
  if (BVN && Subtarget->hasNEON() &&
 | 
						|
      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | 
						|
    if (SplatBitSize <= 64) {
 | 
						|
      EVT VorrVT;
 | 
						|
      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
 | 
						|
                                      SplatUndef.getZExtValue(), SplatBitSize,
 | 
						|
                                      DAG, VorrVT, VT.is128BitVector(),
 | 
						|
                                      OtherModImm);
 | 
						|
      if (Val.getNode()) {
 | 
						|
        SDValue Input =
 | 
						|
          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
 | 
						|
        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
 | 
						|
        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  if (N0.getOpcode() != ISD::AND)
 | 
						|
    return SDValue();
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
 | 
						|
  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
 | 
						|
  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
 | 
						|
      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
 | 
						|
    APInt SplatUndef;
 | 
						|
    unsigned SplatBitSize;
 | 
						|
    bool HasAnyUndefs;
 | 
						|
 | 
						|
    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
 | 
						|
    APInt SplatBits0;
 | 
						|
    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
 | 
						|
                                  HasAnyUndefs) && !HasAnyUndefs) {
 | 
						|
      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
 | 
						|
      APInt SplatBits1;
 | 
						|
      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
 | 
						|
                                    HasAnyUndefs) && !HasAnyUndefs &&
 | 
						|
          SplatBits0 == ~SplatBits1) {
 | 
						|
        // Canonicalize the vector type to make instruction selection simpler.
 | 
						|
        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
 | 
						|
        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
 | 
						|
                                     N0->getOperand(1), N0->getOperand(0),
 | 
						|
                                     N1->getOperand(1));
 | 
						|
        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
 | 
						|
  // reasonable.
 | 
						|
 | 
						|
  // BFI is only available on V6T2+
 | 
						|
  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  DebugLoc DL = N->getDebugLoc();
 | 
						|
  // 1) or (and A, mask), val => ARMbfi A, val, mask
 | 
						|
  //      iff (val & mask) == val
 | 
						|
  //
 | 
						|
  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
 | 
						|
  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
 | 
						|
  //          && mask == ~mask2
 | 
						|
  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
 | 
						|
  //          && ~mask == mask2
 | 
						|
  //  (i.e., copy a bitfield value into another bitfield of the same width)
 | 
						|
 | 
						|
  if (VT != MVT::i32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue N00 = N0.getOperand(0);
 | 
						|
 | 
						|
  // The value and the mask need to be constants so we can verify this is
 | 
						|
  // actually a bitfield set. If the mask is 0xffff, we can do better
 | 
						|
  // via a movt instruction, so don't use BFI in that case.
 | 
						|
  SDValue MaskOp = N0.getOperand(1);
 | 
						|
  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
 | 
						|
  if (!MaskC)
 | 
						|
    return SDValue();
 | 
						|
  unsigned Mask = MaskC->getZExtValue();
 | 
						|
  if (Mask == 0xffff)
 | 
						|
    return SDValue();
 | 
						|
  SDValue Res;
 | 
						|
  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
 | 
						|
  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | 
						|
  if (N1C) {
 | 
						|
    unsigned Val = N1C->getZExtValue();
 | 
						|
    if ((Val & ~Mask) != Val)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (ARM::isBitFieldInvertedMask(Mask)) {
 | 
						|
      Val >>= CountTrailingZeros_32(~Mask);
 | 
						|
 | 
						|
      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
 | 
						|
                        DAG.getConstant(Val, MVT::i32),
 | 
						|
                        DAG.getConstant(Mask, MVT::i32));
 | 
						|
 | 
						|
      // Do not add new nodes to DAG combiner worklist.
 | 
						|
      DCI.CombineTo(N, Res, false);
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
  } else if (N1.getOpcode() == ISD::AND) {
 | 
						|
    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
 | 
						|
    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
 | 
						|
    if (!N11C)
 | 
						|
      return SDValue();
 | 
						|
    unsigned Mask2 = N11C->getZExtValue();
 | 
						|
 | 
						|
    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
 | 
						|
    // as is to match.
 | 
						|
    if (ARM::isBitFieldInvertedMask(Mask) &&
 | 
						|
        (Mask == ~Mask2)) {
 | 
						|
      // The pack halfword instruction works better for masks that fit it,
 | 
						|
      // so use that when it's available.
 | 
						|
      if (Subtarget->hasT2ExtractPack() &&
 | 
						|
          (Mask == 0xffff || Mask == 0xffff0000))
 | 
						|
        return SDValue();
 | 
						|
      // 2a
 | 
						|
      unsigned amt = CountTrailingZeros_32(Mask2);
 | 
						|
      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
 | 
						|
                        DAG.getConstant(amt, MVT::i32));
 | 
						|
      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
 | 
						|
                        DAG.getConstant(Mask, MVT::i32));
 | 
						|
      // Do not add new nodes to DAG combiner worklist.
 | 
						|
      DCI.CombineTo(N, Res, false);
 | 
						|
      return SDValue();
 | 
						|
    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
 | 
						|
               (~Mask == Mask2)) {
 | 
						|
      // The pack halfword instruction works better for masks that fit it,
 | 
						|
      // so use that when it's available.
 | 
						|
      if (Subtarget->hasT2ExtractPack() &&
 | 
						|
          (Mask2 == 0xffff || Mask2 == 0xffff0000))
 | 
						|
        return SDValue();
 | 
						|
      // 2b
 | 
						|
      unsigned lsb = CountTrailingZeros_32(Mask);
 | 
						|
      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
 | 
						|
                        DAG.getConstant(lsb, MVT::i32));
 | 
						|
      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
 | 
						|
                        DAG.getConstant(Mask2, MVT::i32));
 | 
						|
      // Do not add new nodes to DAG combiner worklist.
 | 
						|
      DCI.CombineTo(N, Res, false);
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
 | 
						|
      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
 | 
						|
      ARM::isBitFieldInvertedMask(~Mask)) {
 | 
						|
    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
 | 
						|
    // where lsb(mask) == #shamt and masked bits of B are known zero.
 | 
						|
    SDValue ShAmt = N00.getOperand(1);
 | 
						|
    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
 | 
						|
    unsigned LSB = CountTrailingZeros_32(Mask);
 | 
						|
    if (ShAmtC != LSB)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
 | 
						|
                      DAG.getConstant(~Mask, MVT::i32));
 | 
						|
 | 
						|
    // Do not add new nodes to DAG combiner worklist.
 | 
						|
    DCI.CombineTo(N, Res, false);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformBFICombine - (bfi A, (and B, C1), C2) -> (bfi A, B, C2) iff
 | 
						|
/// C1 & C2 == C1.
 | 
						|
static SDValue PerformBFICombine(SDNode *N,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  if (N1.getOpcode() == ISD::AND) {
 | 
						|
    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
 | 
						|
    if (!N11C)
 | 
						|
      return SDValue();
 | 
						|
    unsigned Mask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
 | 
						|
    unsigned Mask2 = N11C->getZExtValue();
 | 
						|
    if ((Mask & Mask2) == Mask2)
 | 
						|
      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
 | 
						|
                             N->getOperand(0), N1.getOperand(0),
 | 
						|
                             N->getOperand(2));
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
 | 
						|
/// ARMISD::VMOVRRD.
 | 
						|
static SDValue PerformVMOVRRDCombine(SDNode *N,
 | 
						|
                                     TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  // vmovrrd(vmovdrr x, y) -> x,y
 | 
						|
  SDValue InDouble = N->getOperand(0);
 | 
						|
  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
 | 
						|
    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
 | 
						|
 | 
						|
  // vmovrrd(load f64) -> (load i32), (load i32)
 | 
						|
  SDNode *InNode = InDouble.getNode();
 | 
						|
  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
 | 
						|
      InNode->getValueType(0) == MVT::f64 &&
 | 
						|
      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
 | 
						|
      !cast<LoadSDNode>(InNode)->isVolatile()) {
 | 
						|
    // TODO: Should this be done for non-FrameIndex operands?
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(InNode);
 | 
						|
 | 
						|
    SelectionDAG &DAG = DCI.DAG;
 | 
						|
    DebugLoc DL = LD->getDebugLoc();
 | 
						|
    SDValue BasePtr = LD->getBasePtr();
 | 
						|
    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
 | 
						|
                                 LD->getPointerInfo(), LD->isVolatile(),
 | 
						|
                                 LD->isNonTemporal(), LD->getAlignment());
 | 
						|
 | 
						|
    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
 | 
						|
                                    DAG.getConstant(4, MVT::i32));
 | 
						|
    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
 | 
						|
                                 LD->getPointerInfo(), LD->isVolatile(),
 | 
						|
                                 LD->isNonTemporal(),
 | 
						|
                                 std::min(4U, LD->getAlignment() / 2));
 | 
						|
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
 | 
						|
    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
 | 
						|
    DCI.RemoveFromWorklist(LD);
 | 
						|
    DAG.DeleteNode(LD);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
 | 
						|
/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
 | 
						|
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
  if (Op0.getOpcode() == ISD::BITCAST)
 | 
						|
    Op0 = Op0.getOperand(0);
 | 
						|
  if (Op1.getOpcode() == ISD::BITCAST)
 | 
						|
    Op1 = Op1.getOperand(0);
 | 
						|
  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
 | 
						|
      Op0.getNode() == Op1.getNode() &&
 | 
						|
      Op0.getResNo() == 0 && Op1.getResNo() == 1)
 | 
						|
    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
 | 
						|
                       N->getValueType(0), Op0.getOperand(0));
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformSTORECombine - Target-specific dag combine xforms for
 | 
						|
/// ISD::STORE.
 | 
						|
static SDValue PerformSTORECombine(SDNode *N,
 | 
						|
                                   TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  // Bitcast an i64 store extracted from a vector to f64.
 | 
						|
  // Otherwise, the i64 value will be legalized to a pair of i32 values.
 | 
						|
  StoreSDNode *St = cast<StoreSDNode>(N);
 | 
						|
  SDValue StVal = St->getValue();
 | 
						|
  if (!ISD::isNormalStore(St) || St->isVolatile() ||
 | 
						|
      StVal.getValueType() != MVT::i64 ||
 | 
						|
      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  DebugLoc dl = StVal.getDebugLoc();
 | 
						|
  SDValue IntVec = StVal.getOperand(0);
 | 
						|
  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
 | 
						|
                                 IntVec.getValueType().getVectorNumElements());
 | 
						|
  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
 | 
						|
  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | 
						|
                               Vec, StVal.getOperand(1));
 | 
						|
  dl = N->getDebugLoc();
 | 
						|
  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
 | 
						|
  // Make the DAGCombiner fold the bitcasts.
 | 
						|
  DCI.AddToWorklist(Vec.getNode());
 | 
						|
  DCI.AddToWorklist(ExtElt.getNode());
 | 
						|
  DCI.AddToWorklist(V.getNode());
 | 
						|
  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
 | 
						|
                      St->getPointerInfo(), St->isVolatile(),
 | 
						|
                      St->isNonTemporal(), St->getAlignment(),
 | 
						|
                      St->getTBAAInfo());
 | 
						|
}
 | 
						|
 | 
						|
/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
 | 
						|
/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
 | 
						|
/// i64 vector to have f64 elements, since the value can then be loaded
 | 
						|
/// directly into a VFP register.
 | 
						|
static bool hasNormalLoadOperand(SDNode *N) {
 | 
						|
  unsigned NumElts = N->getValueType(0).getVectorNumElements();
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    SDNode *Elt = N->getOperand(i).getNode();
 | 
						|
    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
 | 
						|
/// ISD::BUILD_VECTOR.
 | 
						|
static SDValue PerformBUILD_VECTORCombine(SDNode *N,
 | 
						|
                                          TargetLowering::DAGCombinerInfo &DCI){
 | 
						|
  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
 | 
						|
  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
 | 
						|
  // into a pair of GPRs, which is fine when the value is used as a scalar,
 | 
						|
  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  if (N->getNumOperands() == 2) {
 | 
						|
    SDValue RV = PerformVMOVDRRCombine(N, DAG);
 | 
						|
    if (RV.getNode())
 | 
						|
      return RV;
 | 
						|
  }
 | 
						|
 | 
						|
  // Load i64 elements as f64 values so that type legalization does not split
 | 
						|
  // them up into i32 values.
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
 | 
						|
    return SDValue();
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  for (unsigned i = 0; i < NumElts; ++i) {
 | 
						|
    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
 | 
						|
    Ops.push_back(V);
 | 
						|
    // Make the DAGCombiner fold the bitcast.
 | 
						|
    DCI.AddToWorklist(V.getNode());
 | 
						|
  }
 | 
						|
  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
 | 
						|
  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
 | 
						|
}
 | 
						|
 | 
						|
/// PerformInsertEltCombine - Target-specific dag combine xforms for
 | 
						|
/// ISD::INSERT_VECTOR_ELT.
 | 
						|
static SDValue PerformInsertEltCombine(SDNode *N,
 | 
						|
                                       TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  // Bitcast an i64 load inserted into a vector to f64.
 | 
						|
  // Otherwise, the i64 value will be legalized to a pair of i32 values.
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDNode *Elt = N->getOperand(1).getNode();
 | 
						|
  if (VT.getVectorElementType() != MVT::i64 ||
 | 
						|
      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  DebugLoc dl = N->getDebugLoc();
 | 
						|
  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
 | 
						|
                                 VT.getVectorNumElements());
 | 
						|
  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
 | 
						|
  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
 | 
						|
  // Make the DAGCombiner fold the bitcasts.
 | 
						|
  DCI.AddToWorklist(Vec.getNode());
 | 
						|
  DCI.AddToWorklist(V.getNode());
 | 
						|
  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
 | 
						|
                               Vec, V, N->getOperand(2));
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
 | 
						|
}
 | 
						|
 | 
						|
/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
 | 
						|
/// ISD::VECTOR_SHUFFLE.
 | 
						|
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  // The LLVM shufflevector instruction does not require the shuffle mask
 | 
						|
  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
 | 
						|
  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
 | 
						|
  // operands do not match the mask length, they are extended by concatenating
 | 
						|
  // them with undef vectors.  That is probably the right thing for other
 | 
						|
  // targets, but for NEON it is better to concatenate two double-register
 | 
						|
  // size vector operands into a single quad-register size vector.  Do that
 | 
						|
  // transformation here:
 | 
						|
  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
 | 
						|
  //   shuffle(concat(v1, v2), undef)
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
 | 
						|
      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
 | 
						|
      Op0.getNumOperands() != 2 ||
 | 
						|
      Op1.getNumOperands() != 2)
 | 
						|
    return SDValue();
 | 
						|
  SDValue Concat0Op1 = Op0.getOperand(1);
 | 
						|
  SDValue Concat1Op1 = Op1.getOperand(1);
 | 
						|
  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
 | 
						|
      Concat1Op1.getOpcode() != ISD::UNDEF)
 | 
						|
    return SDValue();
 | 
						|
  // Skip the transformation if any of the types are illegal.
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (!TLI.isTypeLegal(VT) ||
 | 
						|
      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
 | 
						|
      !TLI.isTypeLegal(Concat1Op1.getValueType()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
 | 
						|
                                  Op0.getOperand(0), Op1.getOperand(0));
 | 
						|
  // Translate the shuffle mask.
 | 
						|
  SmallVector<int, 16> NewMask;
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned HalfElts = NumElts/2;
 | 
						|
  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
 | 
						|
  for (unsigned n = 0; n < NumElts; ++n) {
 | 
						|
    int MaskElt = SVN->getMaskElt(n);
 | 
						|
    int NewElt = -1;
 | 
						|
    if (MaskElt < (int)HalfElts)
 | 
						|
      NewElt = MaskElt;
 | 
						|
    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
 | 
						|
      NewElt = HalfElts + MaskElt - NumElts;
 | 
						|
    NewMask.push_back(NewElt);
 | 
						|
  }
 | 
						|
  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
 | 
						|
                              DAG.getUNDEF(VT), NewMask.data());
 | 
						|
}
 | 
						|
 | 
						|
/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
 | 
						|
/// NEON load/store intrinsics to merge base address updates.
 | 
						|
static SDValue CombineBaseUpdate(SDNode *N,
 | 
						|
                                 TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
 | 
						|
                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
 | 
						|
  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
 | 
						|
  SDValue Addr = N->getOperand(AddrOpIdx);
 | 
						|
 | 
						|
  // Search for a use of the address operand that is an increment.
 | 
						|
  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
 | 
						|
         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
 | 
						|
    SDNode *User = *UI;
 | 
						|
    if (User->getOpcode() != ISD::ADD ||
 | 
						|
        UI.getUse().getResNo() != Addr.getResNo())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check that the add is independent of the load/store.  Otherwise, folding
 | 
						|
    // it would create a cycle.
 | 
						|
    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Find the new opcode for the updating load/store.
 | 
						|
    bool isLoad = true;
 | 
						|
    bool isLaneOp = false;
 | 
						|
    unsigned NewOpc = 0;
 | 
						|
    unsigned NumVecs = 0;
 | 
						|
    if (isIntrinsic) {
 | 
						|
      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | 
						|
      switch (IntNo) {
 | 
						|
      default: assert(0 && "unexpected intrinsic for Neon base update");
 | 
						|
      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
 | 
						|
        NumVecs = 1; break;
 | 
						|
      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
 | 
						|
        NumVecs = 2; break;
 | 
						|
      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
 | 
						|
        NumVecs = 3; break;
 | 
						|
      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
 | 
						|
        NumVecs = 4; break;
 | 
						|
      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
 | 
						|
        NumVecs = 2; isLaneOp = true; break;
 | 
						|
      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
 | 
						|
        NumVecs = 3; isLaneOp = true; break;
 | 
						|
      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
 | 
						|
        NumVecs = 4; isLaneOp = true; break;
 | 
						|
      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
 | 
						|
        NumVecs = 1; isLoad = false; break;
 | 
						|
      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
 | 
						|
        NumVecs = 2; isLoad = false; break;
 | 
						|
      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
 | 
						|
        NumVecs = 3; isLoad = false; break;
 | 
						|
      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
 | 
						|
        NumVecs = 4; isLoad = false; break;
 | 
						|
      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
 | 
						|
        NumVecs = 2; isLoad = false; isLaneOp = true; break;
 | 
						|
      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
 | 
						|
        NumVecs = 3; isLoad = false; isLaneOp = true; break;
 | 
						|
      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
 | 
						|
        NumVecs = 4; isLoad = false; isLaneOp = true; break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      isLaneOp = true;
 | 
						|
      switch (N->getOpcode()) {
 | 
						|
      default: assert(0 && "unexpected opcode for Neon base update");
 | 
						|
      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
 | 
						|
      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
 | 
						|
      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Find the size of memory referenced by the load/store.
 | 
						|
    EVT VecTy;
 | 
						|
    if (isLoad)
 | 
						|
      VecTy = N->getValueType(0);
 | 
						|
    else
 | 
						|
      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
 | 
						|
    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
 | 
						|
    if (isLaneOp)
 | 
						|
      NumBytes /= VecTy.getVectorNumElements();
 | 
						|
 | 
						|
    // If the increment is a constant, it must match the memory ref size.
 | 
						|
    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
 | 
						|
    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
 | 
						|
      uint64_t IncVal = CInc->getZExtValue();
 | 
						|
      if (IncVal != NumBytes)
 | 
						|
        continue;
 | 
						|
    } else if (NumBytes >= 3 * 16) {
 | 
						|
      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
 | 
						|
      // separate instructions that make it harder to use a non-constant update.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the new updating load/store node.
 | 
						|
    EVT Tys[6];
 | 
						|
    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
 | 
						|
    unsigned n;
 | 
						|
    for (n = 0; n < NumResultVecs; ++n)
 | 
						|
      Tys[n] = VecTy;
 | 
						|
    Tys[n++] = MVT::i32;
 | 
						|
    Tys[n] = MVT::Other;
 | 
						|
    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
 | 
						|
    SmallVector<SDValue, 8> Ops;
 | 
						|
    Ops.push_back(N->getOperand(0)); // incoming chain
 | 
						|
    Ops.push_back(N->getOperand(AddrOpIdx));
 | 
						|
    Ops.push_back(Inc);
 | 
						|
    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
 | 
						|
      Ops.push_back(N->getOperand(i));
 | 
						|
    }
 | 
						|
    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
 | 
						|
    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
 | 
						|
                                           Ops.data(), Ops.size(),
 | 
						|
                                           MemInt->getMemoryVT(),
 | 
						|
                                           MemInt->getMemOperand());
 | 
						|
 | 
						|
    // Update the uses.
 | 
						|
    std::vector<SDValue> NewResults;
 | 
						|
    for (unsigned i = 0; i < NumResultVecs; ++i) {
 | 
						|
      NewResults.push_back(SDValue(UpdN.getNode(), i));
 | 
						|
    }
 | 
						|
    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
 | 
						|
    DCI.CombineTo(N, NewResults);
 | 
						|
    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
 | 
						|
/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
 | 
						|
/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
 | 
						|
/// return true.
 | 
						|
static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  // vldN-dup instructions only support 64-bit vectors for N > 1.
 | 
						|
  if (!VT.is64BitVector())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
 | 
						|
  SDNode *VLD = N->getOperand(0).getNode();
 | 
						|
  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
 | 
						|
    return false;
 | 
						|
  unsigned NumVecs = 0;
 | 
						|
  unsigned NewOpc = 0;
 | 
						|
  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
 | 
						|
  if (IntNo == Intrinsic::arm_neon_vld2lane) {
 | 
						|
    NumVecs = 2;
 | 
						|
    NewOpc = ARMISD::VLD2DUP;
 | 
						|
  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
 | 
						|
    NumVecs = 3;
 | 
						|
    NewOpc = ARMISD::VLD3DUP;
 | 
						|
  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
 | 
						|
    NumVecs = 4;
 | 
						|
    NewOpc = ARMISD::VLD4DUP;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
 | 
						|
  // numbers match the load.
 | 
						|
  unsigned VLDLaneNo =
 | 
						|
    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
 | 
						|
  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    // Ignore uses of the chain result.
 | 
						|
    if (UI.getUse().getResNo() == NumVecs)
 | 
						|
      continue;
 | 
						|
    SDNode *User = *UI;
 | 
						|
    if (User->getOpcode() != ARMISD::VDUPLANE ||
 | 
						|
        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the vldN-dup node.
 | 
						|
  EVT Tys[5];
 | 
						|
  unsigned n;
 | 
						|
  for (n = 0; n < NumVecs; ++n)
 | 
						|
    Tys[n] = VT;
 | 
						|
  Tys[n] = MVT::Other;
 | 
						|
  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
 | 
						|
  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
 | 
						|
  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
 | 
						|
  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
 | 
						|
                                           Ops, 2, VLDMemInt->getMemoryVT(),
 | 
						|
                                           VLDMemInt->getMemOperand());
 | 
						|
 | 
						|
  // Update the uses.
 | 
						|
  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    unsigned ResNo = UI.getUse().getResNo();
 | 
						|
    // Ignore uses of the chain result.
 | 
						|
    if (ResNo == NumVecs)
 | 
						|
      continue;
 | 
						|
    SDNode *User = *UI;
 | 
						|
    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
 | 
						|
  }
 | 
						|
 | 
						|
  // Now the vldN-lane intrinsic is dead except for its chain result.
 | 
						|
  // Update uses of the chain.
 | 
						|
  std::vector<SDValue> VLDDupResults;
 | 
						|
  for (unsigned n = 0; n < NumVecs; ++n)
 | 
						|
    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
 | 
						|
  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
 | 
						|
  DCI.CombineTo(VLD, VLDDupResults);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// PerformVDUPLANECombine - Target-specific dag combine xforms for
 | 
						|
/// ARMISD::VDUPLANE.
 | 
						|
static SDValue PerformVDUPLANECombine(SDNode *N,
 | 
						|
                                      TargetLowering::DAGCombinerInfo &DCI) {
 | 
						|
  SDValue Op = N->getOperand(0);
 | 
						|
 | 
						|
  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
 | 
						|
  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
 | 
						|
  if (CombineVLDDUP(N, DCI))
 | 
						|
    return SDValue(N, 0);
 | 
						|
 | 
						|
  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
 | 
						|
  // redundant.  Ignore bit_converts for now; element sizes are checked below.
 | 
						|
  while (Op.getOpcode() == ISD::BITCAST)
 | 
						|
    Op = Op.getOperand(0);
 | 
						|
  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
 | 
						|
  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
 | 
						|
  // The canonical VMOV for a zero vector uses a 32-bit element size.
 | 
						|
  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  unsigned EltBits;
 | 
						|
  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
 | 
						|
    EltSize = 8;
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (EltSize > VT.getVectorElementType().getSizeInBits())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
 | 
						|
}
 | 
						|
 | 
						|
/// getVShiftImm - Check if this is a valid build_vector for the immediate
 | 
						|
/// operand of a vector shift operation, where all the elements of the
 | 
						|
/// build_vector must have the same constant integer value.
 | 
						|
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
 | 
						|
  // Ignore bit_converts.
 | 
						|
  while (Op.getOpcode() == ISD::BITCAST)
 | 
						|
    Op = Op.getOperand(0);
 | 
						|
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | 
						|
  APInt SplatBits, SplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
 | 
						|
                                      HasAnyUndefs, ElementBits) ||
 | 
						|
      SplatBitSize > ElementBits)
 | 
						|
    return false;
 | 
						|
  Cnt = SplatBits.getSExtValue();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
 | 
						|
/// operand of a vector shift left operation.  That value must be in the range:
 | 
						|
///   0 <= Value < ElementBits for a left shift; or
 | 
						|
///   0 <= Value <= ElementBits for a long left shift.
 | 
						|
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
 | 
						|
  assert(VT.isVector() && "vector shift count is not a vector type");
 | 
						|
  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (! getVShiftImm(Op, ElementBits, Cnt))
 | 
						|
    return false;
 | 
						|
  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
 | 
						|
}
 | 
						|
 | 
						|
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
 | 
						|
/// operand of a vector shift right operation.  For a shift opcode, the value
 | 
						|
/// is positive, but for an intrinsic the value count must be negative. The
 | 
						|
/// absolute value must be in the range:
 | 
						|
///   1 <= |Value| <= ElementBits for a right shift; or
 | 
						|
///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
 | 
						|
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
 | 
						|
                         int64_t &Cnt) {
 | 
						|
  assert(VT.isVector() && "vector shift count is not a vector type");
 | 
						|
  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
 | 
						|
  if (! getVShiftImm(Op, ElementBits, Cnt))
 | 
						|
    return false;
 | 
						|
  if (isIntrinsic)
 | 
						|
    Cnt = -Cnt;
 | 
						|
  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
 | 
						|
}
 | 
						|
 | 
						|
/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
 | 
						|
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | 
						|
  switch (IntNo) {
 | 
						|
  default:
 | 
						|
    // Don't do anything for most intrinsics.
 | 
						|
    break;
 | 
						|
 | 
						|
  // Vector shifts: check for immediate versions and lower them.
 | 
						|
  // Note: This is done during DAG combining instead of DAG legalizing because
 | 
						|
  // the build_vectors for 64-bit vector element shift counts are generally
 | 
						|
  // not legal, and it is hard to see their values after they get legalized to
 | 
						|
  // loads from a constant pool.
 | 
						|
  case Intrinsic::arm_neon_vshifts:
 | 
						|
  case Intrinsic::arm_neon_vshiftu:
 | 
						|
  case Intrinsic::arm_neon_vshiftls:
 | 
						|
  case Intrinsic::arm_neon_vshiftlu:
 | 
						|
  case Intrinsic::arm_neon_vshiftn:
 | 
						|
  case Intrinsic::arm_neon_vrshifts:
 | 
						|
  case Intrinsic::arm_neon_vrshiftu:
 | 
						|
  case Intrinsic::arm_neon_vrshiftn:
 | 
						|
  case Intrinsic::arm_neon_vqshifts:
 | 
						|
  case Intrinsic::arm_neon_vqshiftu:
 | 
						|
  case Intrinsic::arm_neon_vqshiftsu:
 | 
						|
  case Intrinsic::arm_neon_vqshiftns:
 | 
						|
  case Intrinsic::arm_neon_vqshiftnu:
 | 
						|
  case Intrinsic::arm_neon_vqshiftnsu:
 | 
						|
  case Intrinsic::arm_neon_vqrshiftns:
 | 
						|
  case Intrinsic::arm_neon_vqrshiftnu:
 | 
						|
  case Intrinsic::arm_neon_vqrshiftnsu: {
 | 
						|
    EVT VT = N->getOperand(1).getValueType();
 | 
						|
    int64_t Cnt;
 | 
						|
    unsigned VShiftOpc = 0;
 | 
						|
 | 
						|
    switch (IntNo) {
 | 
						|
    case Intrinsic::arm_neon_vshifts:
 | 
						|
    case Intrinsic::arm_neon_vshiftu:
 | 
						|
      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
 | 
						|
        VShiftOpc = ARMISD::VSHL;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
 | 
						|
        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
 | 
						|
                     ARMISD::VSHRs : ARMISD::VSHRu);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vshiftls:
 | 
						|
    case Intrinsic::arm_neon_vshiftlu:
 | 
						|
      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
 | 
						|
        break;
 | 
						|
      llvm_unreachable("invalid shift count for vshll intrinsic");
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vrshifts:
 | 
						|
    case Intrinsic::arm_neon_vrshiftu:
 | 
						|
      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
 | 
						|
        break;
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vqshifts:
 | 
						|
    case Intrinsic::arm_neon_vqshiftu:
 | 
						|
      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
 | 
						|
        break;
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vqshiftsu:
 | 
						|
      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
 | 
						|
        break;
 | 
						|
      llvm_unreachable("invalid shift count for vqshlu intrinsic");
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vshiftn:
 | 
						|
    case Intrinsic::arm_neon_vrshiftn:
 | 
						|
    case Intrinsic::arm_neon_vqshiftns:
 | 
						|
    case Intrinsic::arm_neon_vqshiftnu:
 | 
						|
    case Intrinsic::arm_neon_vqshiftnsu:
 | 
						|
    case Intrinsic::arm_neon_vqrshiftns:
 | 
						|
    case Intrinsic::arm_neon_vqrshiftnu:
 | 
						|
    case Intrinsic::arm_neon_vqrshiftnsu:
 | 
						|
      // Narrowing shifts require an immediate right shift.
 | 
						|
      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
 | 
						|
        break;
 | 
						|
      llvm_unreachable("invalid shift count for narrowing vector shift "
 | 
						|
                       "intrinsic");
 | 
						|
 | 
						|
    default:
 | 
						|
      llvm_unreachable("unhandled vector shift");
 | 
						|
    }
 | 
						|
 | 
						|
    switch (IntNo) {
 | 
						|
    case Intrinsic::arm_neon_vshifts:
 | 
						|
    case Intrinsic::arm_neon_vshiftu:
 | 
						|
      // Opcode already set above.
 | 
						|
      break;
 | 
						|
    case Intrinsic::arm_neon_vshiftls:
 | 
						|
    case Intrinsic::arm_neon_vshiftlu:
 | 
						|
      if (Cnt == VT.getVectorElementType().getSizeInBits())
 | 
						|
        VShiftOpc = ARMISD::VSHLLi;
 | 
						|
      else
 | 
						|
        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
 | 
						|
                     ARMISD::VSHLLs : ARMISD::VSHLLu);
 | 
						|
      break;
 | 
						|
    case Intrinsic::arm_neon_vshiftn:
 | 
						|
      VShiftOpc = ARMISD::VSHRN; break;
 | 
						|
    case Intrinsic::arm_neon_vrshifts:
 | 
						|
      VShiftOpc = ARMISD::VRSHRs; break;
 | 
						|
    case Intrinsic::arm_neon_vrshiftu:
 | 
						|
      VShiftOpc = ARMISD::VRSHRu; break;
 | 
						|
    case Intrinsic::arm_neon_vrshiftn:
 | 
						|
      VShiftOpc = ARMISD::VRSHRN; break;
 | 
						|
    case Intrinsic::arm_neon_vqshifts:
 | 
						|
      VShiftOpc = ARMISD::VQSHLs; break;
 | 
						|
    case Intrinsic::arm_neon_vqshiftu:
 | 
						|
      VShiftOpc = ARMISD::VQSHLu; break;
 | 
						|
    case Intrinsic::arm_neon_vqshiftsu:
 | 
						|
      VShiftOpc = ARMISD::VQSHLsu; break;
 | 
						|
    case Intrinsic::arm_neon_vqshiftns:
 | 
						|
      VShiftOpc = ARMISD::VQSHRNs; break;
 | 
						|
    case Intrinsic::arm_neon_vqshiftnu:
 | 
						|
      VShiftOpc = ARMISD::VQSHRNu; break;
 | 
						|
    case Intrinsic::arm_neon_vqshiftnsu:
 | 
						|
      VShiftOpc = ARMISD::VQSHRNsu; break;
 | 
						|
    case Intrinsic::arm_neon_vqrshiftns:
 | 
						|
      VShiftOpc = ARMISD::VQRSHRNs; break;
 | 
						|
    case Intrinsic::arm_neon_vqrshiftnu:
 | 
						|
      VShiftOpc = ARMISD::VQRSHRNu; break;
 | 
						|
    case Intrinsic::arm_neon_vqrshiftnsu:
 | 
						|
      VShiftOpc = ARMISD::VQRSHRNsu; break;
 | 
						|
    }
 | 
						|
 | 
						|
    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
 | 
						|
                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::arm_neon_vshiftins: {
 | 
						|
    EVT VT = N->getOperand(1).getValueType();
 | 
						|
    int64_t Cnt;
 | 
						|
    unsigned VShiftOpc = 0;
 | 
						|
 | 
						|
    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
 | 
						|
      VShiftOpc = ARMISD::VSLI;
 | 
						|
    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
 | 
						|
      VShiftOpc = ARMISD::VSRI;
 | 
						|
    else {
 | 
						|
      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
 | 
						|
    }
 | 
						|
 | 
						|
    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
 | 
						|
                       N->getOperand(1), N->getOperand(2),
 | 
						|
                       DAG.getConstant(Cnt, MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::arm_neon_vqrshifts:
 | 
						|
  case Intrinsic::arm_neon_vqrshiftu:
 | 
						|
    // No immediate versions of these to check for.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformShiftCombine - Checks for immediate versions of vector shifts and
 | 
						|
/// lowers them.  As with the vector shift intrinsics, this is done during DAG
 | 
						|
/// combining instead of DAG legalizing because the build_vectors for 64-bit
 | 
						|
/// vector element shift counts are generally not legal, and it is hard to see
 | 
						|
/// their values after they get legalized to loads from a constant pool.
 | 
						|
static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                   const ARMSubtarget *ST) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  // Nothing to be done for scalar shifts.
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  if (!VT.isVector() || !TLI.isTypeLegal(VT))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert(ST->hasNEON() && "unexpected vector shift");
 | 
						|
  int64_t Cnt;
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: llvm_unreachable("unexpected shift opcode");
 | 
						|
 | 
						|
  case ISD::SHL:
 | 
						|
    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
 | 
						|
      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
 | 
						|
                         DAG.getConstant(Cnt, MVT::i32));
 | 
						|
    break;
 | 
						|
 | 
						|
  case ISD::SRA:
 | 
						|
  case ISD::SRL:
 | 
						|
    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
 | 
						|
      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
 | 
						|
                            ARMISD::VSHRs : ARMISD::VSHRu);
 | 
						|
      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
 | 
						|
                         DAG.getConstant(Cnt, MVT::i32));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
 | 
						|
/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
 | 
						|
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                    const ARMSubtarget *ST) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
 | 
						|
  // Check for sign- and zero-extensions of vector extract operations of 8-
 | 
						|
  // and 16-bit vector elements.  NEON supports these directly.  They are
 | 
						|
  // handled during DAG combining because type legalization will promote them
 | 
						|
  // to 32-bit types and it is messy to recognize the operations after that.
 | 
						|
  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | 
						|
    SDValue Vec = N0.getOperand(0);
 | 
						|
    SDValue Lane = N0.getOperand(1);
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    EVT EltVT = N0.getValueType();
 | 
						|
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
    if (VT == MVT::i32 &&
 | 
						|
        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
 | 
						|
        TLI.isTypeLegal(Vec.getValueType()) &&
 | 
						|
        isa<ConstantSDNode>(Lane)) {
 | 
						|
 | 
						|
      unsigned Opc = 0;
 | 
						|
      switch (N->getOpcode()) {
 | 
						|
      default: llvm_unreachable("unexpected opcode");
 | 
						|
      case ISD::SIGN_EXTEND:
 | 
						|
        Opc = ARMISD::VGETLANEs;
 | 
						|
        break;
 | 
						|
      case ISD::ZERO_EXTEND:
 | 
						|
      case ISD::ANY_EXTEND:
 | 
						|
        Opc = ARMISD::VGETLANEu;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
 | 
						|
/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
 | 
						|
static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                       const ARMSubtarget *ST) {
 | 
						|
  // If the target supports NEON, try to use vmax/vmin instructions for f32
 | 
						|
  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
 | 
						|
  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
 | 
						|
  // a NaN; only do the transformation when it matches that behavior.
 | 
						|
 | 
						|
  // For now only do this when using NEON for FP operations; if using VFP, it
 | 
						|
  // is not obvious that the benefit outweighs the cost of switching to the
 | 
						|
  // NEON pipeline.
 | 
						|
  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
 | 
						|
      N->getValueType(0) != MVT::f32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue CondLHS = N->getOperand(0);
 | 
						|
  SDValue CondRHS = N->getOperand(1);
 | 
						|
  SDValue LHS = N->getOperand(2);
 | 
						|
  SDValue RHS = N->getOperand(3);
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | 
						|
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  bool IsReversed;
 | 
						|
  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
 | 
						|
    IsReversed = false; // x CC y ? x : y
 | 
						|
  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
 | 
						|
    IsReversed = true ; // x CC y ? y : x
 | 
						|
  } else {
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsUnordered;
 | 
						|
  switch (CC) {
 | 
						|
  default: break;
 | 
						|
  case ISD::SETOLT:
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETLT:
 | 
						|
  case ISD::SETLE:
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETULE:
 | 
						|
    // If LHS is NaN, an ordered comparison will be false and the result will
 | 
						|
    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
 | 
						|
    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
 | 
						|
    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
 | 
						|
    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
 | 
						|
      break;
 | 
						|
    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
 | 
						|
    // will return -0, so vmin can only be used for unsafe math or if one of
 | 
						|
    // the operands is known to be nonzero.
 | 
						|
    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
 | 
						|
        !UnsafeFPMath &&
 | 
						|
        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | 
						|
      break;
 | 
						|
    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
 | 
						|
    break;
 | 
						|
 | 
						|
  case ISD::SETOGT:
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETGT:
 | 
						|
  case ISD::SETGE:
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETUGE:
 | 
						|
    // If LHS is NaN, an ordered comparison will be false and the result will
 | 
						|
    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
 | 
						|
    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
 | 
						|
    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
 | 
						|
    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
 | 
						|
      break;
 | 
						|
    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
 | 
						|
    // will return +0, so vmax can only be used for unsafe math or if one of
 | 
						|
    // the operands is known to be nonzero.
 | 
						|
    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
 | 
						|
        !UnsafeFPMath &&
 | 
						|
        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | 
						|
      break;
 | 
						|
    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Opcode)
 | 
						|
    return SDValue();
 | 
						|
  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
 | 
						|
                                             DAGCombinerInfo &DCI) const {
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::ADD:        return PerformADDCombine(N, DCI);
 | 
						|
  case ISD::SUB:        return PerformSUBCombine(N, DCI);
 | 
						|
  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
 | 
						|
  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
 | 
						|
  case ISD::AND:        return PerformANDCombine(N, DCI);
 | 
						|
  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
 | 
						|
  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
 | 
						|
  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
 | 
						|
  case ISD::STORE:      return PerformSTORECombine(N, DCI);
 | 
						|
  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
 | 
						|
  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
 | 
						|
  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
 | 
						|
  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
 | 
						|
  case ISD::SHL:
 | 
						|
  case ISD::SRA:
 | 
						|
  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
 | 
						|
  case ISD::SIGN_EXTEND:
 | 
						|
  case ISD::ZERO_EXTEND:
 | 
						|
  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
 | 
						|
  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
 | 
						|
  case ARMISD::VLD2DUP:
 | 
						|
  case ARMISD::VLD3DUP:
 | 
						|
  case ARMISD::VLD4DUP:
 | 
						|
    return CombineBaseUpdate(N, DCI);
 | 
						|
  case ISD::INTRINSIC_VOID:
 | 
						|
  case ISD::INTRINSIC_W_CHAIN:
 | 
						|
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
    case Intrinsic::arm_neon_vld1:
 | 
						|
    case Intrinsic::arm_neon_vld2:
 | 
						|
    case Intrinsic::arm_neon_vld3:
 | 
						|
    case Intrinsic::arm_neon_vld4:
 | 
						|
    case Intrinsic::arm_neon_vld2lane:
 | 
						|
    case Intrinsic::arm_neon_vld3lane:
 | 
						|
    case Intrinsic::arm_neon_vld4lane:
 | 
						|
    case Intrinsic::arm_neon_vst1:
 | 
						|
    case Intrinsic::arm_neon_vst2:
 | 
						|
    case Intrinsic::arm_neon_vst3:
 | 
						|
    case Intrinsic::arm_neon_vst4:
 | 
						|
    case Intrinsic::arm_neon_vst2lane:
 | 
						|
    case Intrinsic::arm_neon_vst3lane:
 | 
						|
    case Intrinsic::arm_neon_vst4lane:
 | 
						|
      return CombineBaseUpdate(N, DCI);
 | 
						|
    default: break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
 | 
						|
                                                          EVT VT) const {
 | 
						|
  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
 | 
						|
  if (!Subtarget->allowsUnalignedMem())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case MVT::i8:
 | 
						|
  case MVT::i16:
 | 
						|
  case MVT::i32:
 | 
						|
    return true;
 | 
						|
  // FIXME: VLD1 etc with standard alignment is legal.
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
 | 
						|
  if (V < 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Scale = 1;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: return false;
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:
 | 
						|
    // Scale == 1;
 | 
						|
    break;
 | 
						|
  case MVT::i16:
 | 
						|
    // Scale == 2;
 | 
						|
    Scale = 2;
 | 
						|
    break;
 | 
						|
  case MVT::i32:
 | 
						|
    // Scale == 4;
 | 
						|
    Scale = 4;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((V & (Scale - 1)) != 0)
 | 
						|
    return false;
 | 
						|
  V /= Scale;
 | 
						|
  return V == (V & ((1LL << 5) - 1));
 | 
						|
}
 | 
						|
 | 
						|
static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
 | 
						|
                                      const ARMSubtarget *Subtarget) {
 | 
						|
  bool isNeg = false;
 | 
						|
  if (V < 0) {
 | 
						|
    isNeg = true;
 | 
						|
    V = - V;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: return false;
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:
 | 
						|
  case MVT::i16:
 | 
						|
  case MVT::i32:
 | 
						|
    // + imm12 or - imm8
 | 
						|
    if (isNeg)
 | 
						|
      return V == (V & ((1LL << 8) - 1));
 | 
						|
    return V == (V & ((1LL << 12) - 1));
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64:
 | 
						|
    // Same as ARM mode. FIXME: NEON?
 | 
						|
    if (!Subtarget->hasVFP2())
 | 
						|
      return false;
 | 
						|
    if ((V & 3) != 0)
 | 
						|
      return false;
 | 
						|
    V >>= 2;
 | 
						|
    return V == (V & ((1LL << 8) - 1));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalAddressImmediate - Return true if the integer value can be used
 | 
						|
/// as the offset of the target addressing mode for load / store of the
 | 
						|
/// given type.
 | 
						|
static bool isLegalAddressImmediate(int64_t V, EVT VT,
 | 
						|
                                    const ARMSubtarget *Subtarget) {
 | 
						|
  if (V == 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Subtarget->isThumb1Only())
 | 
						|
    return isLegalT1AddressImmediate(V, VT);
 | 
						|
  else if (Subtarget->isThumb2())
 | 
						|
    return isLegalT2AddressImmediate(V, VT, Subtarget);
 | 
						|
 | 
						|
  // ARM mode.
 | 
						|
  if (V < 0)
 | 
						|
    V = - V;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: return false;
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:
 | 
						|
  case MVT::i32:
 | 
						|
    // +- imm12
 | 
						|
    return V == (V & ((1LL << 12) - 1));
 | 
						|
  case MVT::i16:
 | 
						|
    // +- imm8
 | 
						|
    return V == (V & ((1LL << 8) - 1));
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64:
 | 
						|
    if (!Subtarget->hasVFP2()) // FIXME: NEON?
 | 
						|
      return false;
 | 
						|
    if ((V & 3) != 0)
 | 
						|
      return false;
 | 
						|
    V >>= 2;
 | 
						|
    return V == (V & ((1LL << 8) - 1));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
 | 
						|
                                                      EVT VT) const {
 | 
						|
  int Scale = AM.Scale;
 | 
						|
  if (Scale < 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: return false;
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:
 | 
						|
  case MVT::i16:
 | 
						|
  case MVT::i32:
 | 
						|
    if (Scale == 1)
 | 
						|
      return true;
 | 
						|
    // r + r << imm
 | 
						|
    Scale = Scale & ~1;
 | 
						|
    return Scale == 2 || Scale == 4 || Scale == 8;
 | 
						|
  case MVT::i64:
 | 
						|
    // r + r
 | 
						|
    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
 | 
						|
      return true;
 | 
						|
    return false;
 | 
						|
  case MVT::isVoid:
 | 
						|
    // Note, we allow "void" uses (basically, uses that aren't loads or
 | 
						|
    // stores), because arm allows folding a scale into many arithmetic
 | 
						|
    // operations.  This should be made more precise and revisited later.
 | 
						|
 | 
						|
    // Allow r << imm, but the imm has to be a multiple of two.
 | 
						|
    if (Scale & 1) return false;
 | 
						|
    return isPowerOf2_32(Scale);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalAddressingMode - Return true if the addressing mode represented
 | 
						|
/// by AM is legal for this target, for a load/store of the specified type.
 | 
						|
bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | 
						|
                                              const Type *Ty) const {
 | 
						|
  EVT VT = getValueType(Ty, true);
 | 
						|
  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Can never fold addr of global into load/store.
 | 
						|
  if (AM.BaseGV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (AM.Scale) {
 | 
						|
  case 0:  // no scale reg, must be "r+i" or "r", or "i".
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    if (Subtarget->isThumb1Only())
 | 
						|
      return false;
 | 
						|
    // FALL THROUGH.
 | 
						|
  default:
 | 
						|
    // ARM doesn't support any R+R*scale+imm addr modes.
 | 
						|
    if (AM.BaseOffs)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!VT.isSimple())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Subtarget->isThumb2())
 | 
						|
      return isLegalT2ScaledAddressingMode(AM, VT);
 | 
						|
 | 
						|
    int Scale = AM.Scale;
 | 
						|
    switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
    default: return false;
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i8:
 | 
						|
    case MVT::i32:
 | 
						|
      if (Scale < 0) Scale = -Scale;
 | 
						|
      if (Scale == 1)
 | 
						|
        return true;
 | 
						|
      // r + r << imm
 | 
						|
      return isPowerOf2_32(Scale & ~1);
 | 
						|
    case MVT::i16:
 | 
						|
    case MVT::i64:
 | 
						|
      // r + r
 | 
						|
      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
 | 
						|
        return true;
 | 
						|
      return false;
 | 
						|
 | 
						|
    case MVT::isVoid:
 | 
						|
      // Note, we allow "void" uses (basically, uses that aren't loads or
 | 
						|
      // stores), because arm allows folding a scale into many arithmetic
 | 
						|
      // operations.  This should be made more precise and revisited later.
 | 
						|
 | 
						|
      // Allow r << imm, but the imm has to be a multiple of two.
 | 
						|
      if (Scale & 1) return false;
 | 
						|
      return isPowerOf2_32(Scale);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalICmpImmediate - Return true if the specified immediate is legal
 | 
						|
/// icmp immediate, that is the target has icmp instructions which can compare
 | 
						|
/// a register against the immediate without having to materialize the
 | 
						|
/// immediate into a register.
 | 
						|
bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | 
						|
  if (!Subtarget->isThumb())
 | 
						|
    return ARM_AM::getSOImmVal(Imm) != -1;
 | 
						|
  if (Subtarget->isThumb2())
 | 
						|
    return ARM_AM::getT2SOImmVal(Imm) != -1;
 | 
						|
  return Imm >= 0 && Imm <= 255;
 | 
						|
}
 | 
						|
 | 
						|
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
 | 
						|
                                      bool isSEXTLoad, SDValue &Base,
 | 
						|
                                      SDValue &Offset, bool &isInc,
 | 
						|
                                      SelectionDAG &DAG) {
 | 
						|
  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
 | 
						|
    // AddressingMode 3
 | 
						|
    Base = Ptr->getOperand(0);
 | 
						|
    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | 
						|
      int RHSC = (int)RHS->getZExtValue();
 | 
						|
      if (RHSC < 0 && RHSC > -256) {
 | 
						|
        assert(Ptr->getOpcode() == ISD::ADD);
 | 
						|
        isInc = false;
 | 
						|
        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    isInc = (Ptr->getOpcode() == ISD::ADD);
 | 
						|
    Offset = Ptr->getOperand(1);
 | 
						|
    return true;
 | 
						|
  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
 | 
						|
    // AddressingMode 2
 | 
						|
    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | 
						|
      int RHSC = (int)RHS->getZExtValue();
 | 
						|
      if (RHSC < 0 && RHSC > -0x1000) {
 | 
						|
        assert(Ptr->getOpcode() == ISD::ADD);
 | 
						|
        isInc = false;
 | 
						|
        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
 | 
						|
        Base = Ptr->getOperand(0);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Ptr->getOpcode() == ISD::ADD) {
 | 
						|
      isInc = true;
 | 
						|
      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
 | 
						|
      if (ShOpcVal != ARM_AM::no_shift) {
 | 
						|
        Base = Ptr->getOperand(1);
 | 
						|
        Offset = Ptr->getOperand(0);
 | 
						|
      } else {
 | 
						|
        Base = Ptr->getOperand(0);
 | 
						|
        Offset = Ptr->getOperand(1);
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    isInc = (Ptr->getOpcode() == ISD::ADD);
 | 
						|
    Base = Ptr->getOperand(0);
 | 
						|
    Offset = Ptr->getOperand(1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
 | 
						|
                                     bool isSEXTLoad, SDValue &Base,
 | 
						|
                                     SDValue &Offset, bool &isInc,
 | 
						|
                                     SelectionDAG &DAG) {
 | 
						|
  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Base = Ptr->getOperand(0);
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | 
						|
    int RHSC = (int)RHS->getZExtValue();
 | 
						|
    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
 | 
						|
      assert(Ptr->getOpcode() == ISD::ADD);
 | 
						|
      isInc = false;
 | 
						|
      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
 | 
						|
      return true;
 | 
						|
    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
 | 
						|
      isInc = Ptr->getOpcode() == ISD::ADD;
 | 
						|
      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getPreIndexedAddressParts - returns true by value, base pointer and
 | 
						|
/// offset pointer and addressing mode by reference if the node's address
 | 
						|
/// can be legally represented as pre-indexed load / store address.
 | 
						|
bool
 | 
						|
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | 
						|
                                             SDValue &Offset,
 | 
						|
                                             ISD::MemIndexedMode &AM,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  if (Subtarget->isThumb1Only())
 | 
						|
    return false;
 | 
						|
 | 
						|
  EVT VT;
 | 
						|
  SDValue Ptr;
 | 
						|
  bool isSEXTLoad = false;
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    Ptr = LD->getBasePtr();
 | 
						|
    VT  = LD->getMemoryVT();
 | 
						|
    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | 
						|
    Ptr = ST->getBasePtr();
 | 
						|
    VT  = ST->getMemoryVT();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool isInc;
 | 
						|
  bool isLegal = false;
 | 
						|
  if (Subtarget->isThumb2())
 | 
						|
    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
 | 
						|
                                       Offset, isInc, DAG);
 | 
						|
  else
 | 
						|
    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
 | 
						|
                                        Offset, isInc, DAG);
 | 
						|
  if (!isLegal)
 | 
						|
    return false;
 | 
						|
 | 
						|
  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getPostIndexedAddressParts - returns true by value, base pointer and
 | 
						|
/// offset pointer and addressing mode by reference if this node can be
 | 
						|
/// combined with a load / store to form a post-indexed load / store.
 | 
						|
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | 
						|
                                                   SDValue &Base,
 | 
						|
                                                   SDValue &Offset,
 | 
						|
                                                   ISD::MemIndexedMode &AM,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  if (Subtarget->isThumb1Only())
 | 
						|
    return false;
 | 
						|
 | 
						|
  EVT VT;
 | 
						|
  SDValue Ptr;
 | 
						|
  bool isSEXTLoad = false;
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    VT  = LD->getMemoryVT();
 | 
						|
    Ptr = LD->getBasePtr();
 | 
						|
    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | 
						|
    VT  = ST->getMemoryVT();
 | 
						|
    Ptr = ST->getBasePtr();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool isInc;
 | 
						|
  bool isLegal = false;
 | 
						|
  if (Subtarget->isThumb2())
 | 
						|
    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | 
						|
                                       isInc, DAG);
 | 
						|
  else
 | 
						|
    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | 
						|
                                        isInc, DAG);
 | 
						|
  if (!isLegal)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Ptr != Base) {
 | 
						|
    // Swap base ptr and offset to catch more post-index load / store when
 | 
						|
    // it's legal. In Thumb2 mode, offset must be an immediate.
 | 
						|
    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
 | 
						|
        !Subtarget->isThumb2())
 | 
						|
      std::swap(Base, Offset);
 | 
						|
 | 
						|
    // Post-indexed load / store update the base pointer.
 | 
						|
    if (Ptr != Base)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
 | 
						|
                                                       const APInt &Mask,
 | 
						|
                                                       APInt &KnownZero,
 | 
						|
                                                       APInt &KnownOne,
 | 
						|
                                                       const SelectionDAG &DAG,
 | 
						|
                                                       unsigned Depth) const {
 | 
						|
  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ARMISD::CMOV: {
 | 
						|
    // Bits are known zero/one if known on the LHS and RHS.
 | 
						|
    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | 
						|
    if (KnownZero == 0 && KnownOne == 0) return;
 | 
						|
 | 
						|
    APInt KnownZeroRHS, KnownOneRHS;
 | 
						|
    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
 | 
						|
                          KnownZeroRHS, KnownOneRHS, Depth+1);
 | 
						|
    KnownZero &= KnownZeroRHS;
 | 
						|
    KnownOne  &= KnownOneRHS;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           ARM Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
 | 
						|
  // Looking for "rev" which is V6+.
 | 
						|
  if (!Subtarget->hasV6Ops())
 | 
						|
    return false;
 | 
						|
 | 
						|
  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
 | 
						|
  std::string AsmStr = IA->getAsmString();
 | 
						|
  SmallVector<StringRef, 4> AsmPieces;
 | 
						|
  SplitString(AsmStr, AsmPieces, ";\n");
 | 
						|
 | 
						|
  switch (AsmPieces.size()) {
 | 
						|
  default: return false;
 | 
						|
  case 1:
 | 
						|
    AsmStr = AsmPieces[0];
 | 
						|
    AsmPieces.clear();
 | 
						|
    SplitString(AsmStr, AsmPieces, " \t,");
 | 
						|
 | 
						|
    // rev $0, $1
 | 
						|
    if (AsmPieces.size() == 3 &&
 | 
						|
        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
 | 
						|
        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
 | 
						|
      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
 | 
						|
      if (Ty && Ty->getBitWidth() == 32)
 | 
						|
        return IntrinsicLowering::LowerToByteSwap(CI);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getConstraintType - Given a constraint letter, return the type of
 | 
						|
/// constraint it is for this target.
 | 
						|
ARMTargetLowering::ConstraintType
 | 
						|
ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    default:  break;
 | 
						|
    case 'l': return C_RegisterClass;
 | 
						|
    case 'w': return C_RegisterClass;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TargetLowering::getConstraintType(Constraint);
 | 
						|
}
 | 
						|
 | 
						|
/// Examine constraint type and operand type and determine a weight value.
 | 
						|
/// This object must already have been set up with the operand type
 | 
						|
/// and the current alternative constraint selected.
 | 
						|
TargetLowering::ConstraintWeight
 | 
						|
ARMTargetLowering::getSingleConstraintMatchWeight(
 | 
						|
    AsmOperandInfo &info, const char *constraint) const {
 | 
						|
  ConstraintWeight weight = CW_Invalid;
 | 
						|
  Value *CallOperandVal = info.CallOperandVal;
 | 
						|
    // If we don't have a value, we can't do a match,
 | 
						|
    // but allow it at the lowest weight.
 | 
						|
  if (CallOperandVal == NULL)
 | 
						|
    return CW_Default;
 | 
						|
  const Type *type = CallOperandVal->getType();
 | 
						|
  // Look at the constraint type.
 | 
						|
  switch (*constraint) {
 | 
						|
  default:
 | 
						|
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | 
						|
    break;
 | 
						|
  case 'l':
 | 
						|
    if (type->isIntegerTy()) {
 | 
						|
      if (Subtarget->isThumb())
 | 
						|
        weight = CW_SpecificReg;
 | 
						|
      else
 | 
						|
        weight = CW_Register;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 'w':
 | 
						|
    if (type->isFloatingPointTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return weight;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, const TargetRegisterClass*>
 | 
						|
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | 
						|
                                                EVT VT) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    // GCC ARM Constraint Letters
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    case 'l':
 | 
						|
      if (Subtarget->isThumb())
 | 
						|
        return std::make_pair(0U, ARM::tGPRRegisterClass);
 | 
						|
      else
 | 
						|
        return std::make_pair(0U, ARM::GPRRegisterClass);
 | 
						|
    case 'r':
 | 
						|
      return std::make_pair(0U, ARM::GPRRegisterClass);
 | 
						|
    case 'w':
 | 
						|
      if (VT == MVT::f32)
 | 
						|
        return std::make_pair(0U, ARM::SPRRegisterClass);
 | 
						|
      if (VT.getSizeInBits() == 64)
 | 
						|
        return std::make_pair(0U, ARM::DPRRegisterClass);
 | 
						|
      if (VT.getSizeInBits() == 128)
 | 
						|
        return std::make_pair(0U, ARM::QPRRegisterClass);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (StringRef("{cc}").equals_lower(Constraint))
 | 
						|
    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
 | 
						|
 | 
						|
  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | 
						|
}
 | 
						|
 | 
						|
std::vector<unsigned> ARMTargetLowering::
 | 
						|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | 
						|
                                  EVT VT) const {
 | 
						|
  if (Constraint.size() != 1)
 | 
						|
    return std::vector<unsigned>();
 | 
						|
 | 
						|
  switch (Constraint[0]) {      // GCC ARM Constraint Letters
 | 
						|
  default: break;
 | 
						|
  case 'l':
 | 
						|
    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
 | 
						|
                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
 | 
						|
                                 0);
 | 
						|
  case 'r':
 | 
						|
    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
 | 
						|
                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
 | 
						|
                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
 | 
						|
                                 ARM::R12, ARM::LR, 0);
 | 
						|
  case 'w':
 | 
						|
    if (VT == MVT::f32)
 | 
						|
      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
 | 
						|
                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
 | 
						|
                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
 | 
						|
                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
 | 
						|
                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
 | 
						|
                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
 | 
						|
                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
 | 
						|
                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
 | 
						|
    if (VT.getSizeInBits() == 64)
 | 
						|
      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
 | 
						|
                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
 | 
						|
                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
 | 
						|
                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
 | 
						|
    if (VT.getSizeInBits() == 128)
 | 
						|
      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
 | 
						|
                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return std::vector<unsigned>();
 | 
						|
}
 | 
						|
 | 
						|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | 
						|
/// vector.  If it is invalid, don't add anything to Ops.
 | 
						|
void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | 
						|
                                                     char Constraint,
 | 
						|
                                                     std::vector<SDValue>&Ops,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  SDValue Result(0, 0);
 | 
						|
 | 
						|
  switch (Constraint) {
 | 
						|
  default: break;
 | 
						|
  case 'I': case 'J': case 'K': case 'L':
 | 
						|
  case 'M': case 'N': case 'O':
 | 
						|
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | 
						|
    if (!C)
 | 
						|
      return;
 | 
						|
 | 
						|
    int64_t CVal64 = C->getSExtValue();
 | 
						|
    int CVal = (int) CVal64;
 | 
						|
    // None of these constraints allow values larger than 32 bits.  Check
 | 
						|
    // that the value fits in an int.
 | 
						|
    if (CVal != CVal64)
 | 
						|
      return;
 | 
						|
 | 
						|
    switch (Constraint) {
 | 
						|
      case 'I':
 | 
						|
        if (Subtarget->isThumb1Only()) {
 | 
						|
          // This must be a constant between 0 and 255, for ADD
 | 
						|
          // immediates.
 | 
						|
          if (CVal >= 0 && CVal <= 255)
 | 
						|
            break;
 | 
						|
        } else if (Subtarget->isThumb2()) {
 | 
						|
          // A constant that can be used as an immediate value in a
 | 
						|
          // data-processing instruction.
 | 
						|
          if (ARM_AM::getT2SOImmVal(CVal) != -1)
 | 
						|
            break;
 | 
						|
        } else {
 | 
						|
          // A constant that can be used as an immediate value in a
 | 
						|
          // data-processing instruction.
 | 
						|
          if (ARM_AM::getSOImmVal(CVal) != -1)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
 | 
						|
      case 'J':
 | 
						|
        if (Subtarget->isThumb()) {  // FIXME thumb2
 | 
						|
          // This must be a constant between -255 and -1, for negated ADD
 | 
						|
          // immediates. This can be used in GCC with an "n" modifier that
 | 
						|
          // prints the negated value, for use with SUB instructions. It is
 | 
						|
          // not useful otherwise but is implemented for compatibility.
 | 
						|
          if (CVal >= -255 && CVal <= -1)
 | 
						|
            break;
 | 
						|
        } else {
 | 
						|
          // This must be a constant between -4095 and 4095. It is not clear
 | 
						|
          // what this constraint is intended for. Implemented for
 | 
						|
          // compatibility with GCC.
 | 
						|
          if (CVal >= -4095 && CVal <= 4095)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
 | 
						|
      case 'K':
 | 
						|
        if (Subtarget->isThumb1Only()) {
 | 
						|
          // A 32-bit value where only one byte has a nonzero value. Exclude
 | 
						|
          // zero to match GCC. This constraint is used by GCC internally for
 | 
						|
          // constants that can be loaded with a move/shift combination.
 | 
						|
          // It is not useful otherwise but is implemented for compatibility.
 | 
						|
          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
 | 
						|
            break;
 | 
						|
        } else if (Subtarget->isThumb2()) {
 | 
						|
          // A constant whose bitwise inverse can be used as an immediate
 | 
						|
          // value in a data-processing instruction. This can be used in GCC
 | 
						|
          // with a "B" modifier that prints the inverted value, for use with
 | 
						|
          // BIC and MVN instructions. It is not useful otherwise but is
 | 
						|
          // implemented for compatibility.
 | 
						|
          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
 | 
						|
            break;
 | 
						|
        } else {
 | 
						|
          // A constant whose bitwise inverse can be used as an immediate
 | 
						|
          // value in a data-processing instruction. This can be used in GCC
 | 
						|
          // with a "B" modifier that prints the inverted value, for use with
 | 
						|
          // BIC and MVN instructions. It is not useful otherwise but is
 | 
						|
          // implemented for compatibility.
 | 
						|
          if (ARM_AM::getSOImmVal(~CVal) != -1)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
 | 
						|
      case 'L':
 | 
						|
        if (Subtarget->isThumb1Only()) {
 | 
						|
          // This must be a constant between -7 and 7,
 | 
						|
          // for 3-operand ADD/SUB immediate instructions.
 | 
						|
          if (CVal >= -7 && CVal < 7)
 | 
						|
            break;
 | 
						|
        } else if (Subtarget->isThumb2()) {
 | 
						|
          // A constant whose negation can be used as an immediate value in a
 | 
						|
          // data-processing instruction. This can be used in GCC with an "n"
 | 
						|
          // modifier that prints the negated value, for use with SUB
 | 
						|
          // instructions. It is not useful otherwise but is implemented for
 | 
						|
          // compatibility.
 | 
						|
          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
 | 
						|
            break;
 | 
						|
        } else {
 | 
						|
          // A constant whose negation can be used as an immediate value in a
 | 
						|
          // data-processing instruction. This can be used in GCC with an "n"
 | 
						|
          // modifier that prints the negated value, for use with SUB
 | 
						|
          // instructions. It is not useful otherwise but is implemented for
 | 
						|
          // compatibility.
 | 
						|
          if (ARM_AM::getSOImmVal(-CVal) != -1)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
 | 
						|
      case 'M':
 | 
						|
        if (Subtarget->isThumb()) { // FIXME thumb2
 | 
						|
          // This must be a multiple of 4 between 0 and 1020, for
 | 
						|
          // ADD sp + immediate.
 | 
						|
          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
 | 
						|
            break;
 | 
						|
        } else {
 | 
						|
          // A power of two or a constant between 0 and 32.  This is used in
 | 
						|
          // GCC for the shift amount on shifted register operands, but it is
 | 
						|
          // useful in general for any shift amounts.
 | 
						|
          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
 | 
						|
      case 'N':
 | 
						|
        if (Subtarget->isThumb()) {  // FIXME thumb2
 | 
						|
          // This must be a constant between 0 and 31, for shift amounts.
 | 
						|
          if (CVal >= 0 && CVal <= 31)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
 | 
						|
      case 'O':
 | 
						|
        if (Subtarget->isThumb()) {  // FIXME thumb2
 | 
						|
          // This must be a multiple of 4 between -508 and 508, for
 | 
						|
          // ADD/SUB sp = sp + immediate.
 | 
						|
          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    Result = DAG.getTargetConstant(CVal, Op.getValueType());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result.getNode()) {
 | 
						|
    Ops.push_back(Result);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | 
						|
  // The ARM target isn't yet aware of offsets.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
int ARM::getVFPf32Imm(const APFloat &FPImm) {
 | 
						|
  APInt Imm = FPImm.bitcastToAPInt();
 | 
						|
  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
 | 
						|
  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
 | 
						|
  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
 | 
						|
 | 
						|
  // We can handle 4 bits of mantissa.
 | 
						|
  // mantissa = (16+UInt(e:f:g:h))/16.
 | 
						|
  if (Mantissa & 0x7ffff)
 | 
						|
    return -1;
 | 
						|
  Mantissa >>= 19;
 | 
						|
  if ((Mantissa & 0xf) != Mantissa)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
 | 
						|
  if (Exp < -3 || Exp > 4)
 | 
						|
    return -1;
 | 
						|
  Exp = ((Exp+3) & 0x7) ^ 4;
 | 
						|
 | 
						|
  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
 | 
						|
}
 | 
						|
 | 
						|
int ARM::getVFPf64Imm(const APFloat &FPImm) {
 | 
						|
  APInt Imm = FPImm.bitcastToAPInt();
 | 
						|
  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
 | 
						|
  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
 | 
						|
  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
 | 
						|
 | 
						|
  // We can handle 4 bits of mantissa.
 | 
						|
  // mantissa = (16+UInt(e:f:g:h))/16.
 | 
						|
  if (Mantissa & 0xffffffffffffLL)
 | 
						|
    return -1;
 | 
						|
  Mantissa >>= 48;
 | 
						|
  if ((Mantissa & 0xf) != Mantissa)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
 | 
						|
  if (Exp < -3 || Exp > 4)
 | 
						|
    return -1;
 | 
						|
  Exp = ((Exp+3) & 0x7) ^ 4;
 | 
						|
 | 
						|
  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
 | 
						|
}
 | 
						|
 | 
						|
bool ARM::isBitFieldInvertedMask(unsigned v) {
 | 
						|
  if (v == 0xffffffff)
 | 
						|
    return 0;
 | 
						|
  // there can be 1's on either or both "outsides", all the "inside"
 | 
						|
  // bits must be 0's
 | 
						|
  unsigned int lsb = 0, msb = 31;
 | 
						|
  while (v & (1 << msb)) --msb;
 | 
						|
  while (v & (1 << lsb)) ++lsb;
 | 
						|
  for (unsigned int i = lsb; i <= msb; ++i) {
 | 
						|
    if (v & (1 << i))
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/// isFPImmLegal - Returns true if the target can instruction select the
 | 
						|
/// specified FP immediate natively. If false, the legalizer will
 | 
						|
/// materialize the FP immediate as a load from a constant pool.
 | 
						|
bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | 
						|
  if (!Subtarget->hasVFP3())
 | 
						|
    return false;
 | 
						|
  if (VT == MVT::f32)
 | 
						|
    return ARM::getVFPf32Imm(Imm) != -1;
 | 
						|
  if (VT == MVT::f64)
 | 
						|
    return ARM::getVFPf64Imm(Imm) != -1;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
 | 
						|
/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
 | 
						|
/// specified in the intrinsic calls.
 | 
						|
bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | 
						|
                                           const CallInst &I,
 | 
						|
                                           unsigned Intrinsic) const {
 | 
						|
  switch (Intrinsic) {
 | 
						|
  case Intrinsic::arm_neon_vld1:
 | 
						|
  case Intrinsic::arm_neon_vld2:
 | 
						|
  case Intrinsic::arm_neon_vld3:
 | 
						|
  case Intrinsic::arm_neon_vld4:
 | 
						|
  case Intrinsic::arm_neon_vld2lane:
 | 
						|
  case Intrinsic::arm_neon_vld3lane:
 | 
						|
  case Intrinsic::arm_neon_vld4lane: {
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    // Conservatively set memVT to the entire set of vectors loaded.
 | 
						|
    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
 | 
						|
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = 0;
 | 
						|
    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
 | 
						|
    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
 | 
						|
    Info.vol = false; // volatile loads with NEON intrinsics not supported
 | 
						|
    Info.readMem = true;
 | 
						|
    Info.writeMem = false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::arm_neon_vst1:
 | 
						|
  case Intrinsic::arm_neon_vst2:
 | 
						|
  case Intrinsic::arm_neon_vst3:
 | 
						|
  case Intrinsic::arm_neon_vst4:
 | 
						|
  case Intrinsic::arm_neon_vst2lane:
 | 
						|
  case Intrinsic::arm_neon_vst3lane:
 | 
						|
  case Intrinsic::arm_neon_vst4lane: {
 | 
						|
    Info.opc = ISD::INTRINSIC_VOID;
 | 
						|
    // Conservatively set memVT to the entire set of vectors stored.
 | 
						|
    unsigned NumElts = 0;
 | 
						|
    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
 | 
						|
      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
 | 
						|
      if (!ArgTy->isVectorTy())
 | 
						|
        break;
 | 
						|
      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
 | 
						|
    }
 | 
						|
    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = 0;
 | 
						|
    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
 | 
						|
    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
 | 
						|
    Info.vol = false; // volatile stores with NEON intrinsics not supported
 | 
						|
    Info.readMem = false;
 | 
						|
    Info.writeMem = true;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 |