forked from OSchip/llvm-project
1325 lines
51 KiB
C++
1325 lines
51 KiB
C++
//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the targeting of the Machinelegalizer class for
|
|
/// AArch64.
|
|
/// \todo This should be generated by TableGen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64LegalizerInfo.h"
|
|
#include "AArch64RegisterBankInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IntrinsicsAArch64.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <initializer_list>
|
|
|
|
#define DEBUG_TYPE "aarch64-legalinfo"
|
|
|
|
using namespace llvm;
|
|
using namespace LegalizeActions;
|
|
using namespace LegalizeMutations;
|
|
using namespace LegalityPredicates;
|
|
|
|
AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST)
|
|
: ST(&ST) {
|
|
using namespace TargetOpcode;
|
|
const LLT p0 = LLT::pointer(0, 64);
|
|
const LLT s1 = LLT::scalar(1);
|
|
const LLT s8 = LLT::scalar(8);
|
|
const LLT s16 = LLT::scalar(16);
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
const LLT s128 = LLT::scalar(128);
|
|
const LLT v16s8 = LLT::fixed_vector(16, 8);
|
|
const LLT v8s8 = LLT::fixed_vector(8, 8);
|
|
const LLT v4s8 = LLT::fixed_vector(4, 8);
|
|
const LLT v8s16 = LLT::fixed_vector(8, 16);
|
|
const LLT v4s16 = LLT::fixed_vector(4, 16);
|
|
const LLT v2s16 = LLT::fixed_vector(2, 16);
|
|
const LLT v2s32 = LLT::fixed_vector(2, 32);
|
|
const LLT v4s32 = LLT::fixed_vector(4, 32);
|
|
const LLT v2s64 = LLT::fixed_vector(2, 64);
|
|
const LLT v2p0 = LLT::fixed_vector(2, p0);
|
|
|
|
std::initializer_list<LLT> PackedVectorAllTypeList = {/* Begin 128bit types */
|
|
v16s8, v8s16, v4s32,
|
|
v2s64, v2p0,
|
|
/* End 128bit types */
|
|
/* Begin 64bit types */
|
|
v8s8, v4s16, v2s32};
|
|
|
|
const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
|
|
|
|
// FIXME: support subtargets which have neon/fp-armv8 disabled.
|
|
if (!ST.hasNEON() || !ST.hasFPARMv8()) {
|
|
getLegacyLegalizerInfo().computeTables();
|
|
return;
|
|
}
|
|
|
|
// Some instructions only support s16 if the subtarget has full 16-bit FP
|
|
// support.
|
|
const bool HasFP16 = ST.hasFullFP16();
|
|
const LLT &MinFPScalar = HasFP16 ? s16 : s32;
|
|
|
|
getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
|
|
.legalFor({p0, s1, s8, s16, s32, s64})
|
|
.legalFor(PackedVectorAllTypeList)
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s8, s64)
|
|
.fewerElementsIf(
|
|
[=](const LegalityQuery &Query) {
|
|
return Query.Types[0].isVector() &&
|
|
(Query.Types[0].getElementType() != s64 ||
|
|
Query.Types[0].getNumElements() != 2);
|
|
},
|
|
[=](const LegalityQuery &Query) {
|
|
LLT EltTy = Query.Types[0].getElementType();
|
|
if (EltTy == s64)
|
|
return std::make_pair(0, LLT::fixed_vector(2, 64));
|
|
return std::make_pair(0, EltTy);
|
|
});
|
|
|
|
getActionDefinitionsBuilder(G_PHI)
|
|
.legalFor({p0, s16, s32, s64})
|
|
.legalFor(PackedVectorAllTypeList)
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s16, s64)
|
|
// Maximum: sN * k = 128
|
|
.clampMaxNumElements(0, s8, 16)
|
|
.clampMaxNumElements(0, s16, 8)
|
|
.clampMaxNumElements(0, s32, 4)
|
|
.clampMaxNumElements(0, s64, 2)
|
|
.clampMaxNumElements(0, p0, 2);
|
|
|
|
getActionDefinitionsBuilder(G_BSWAP)
|
|
.legalFor({s32, s64, v4s32, v2s32, v2s64})
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s32, s64)
|
|
.customIf(typeIs(0, v2s16)); // custom lower as G_REV32 + G_LSHR
|
|
|
|
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
|
|
.legalFor({s32, s64, v2s32, v4s32, v4s16, v8s16, v16s8, v8s8})
|
|
.scalarizeIf(
|
|
[=](const LegalityQuery &Query) {
|
|
return Query.Opcode == G_MUL && Query.Types[0] == v2s64;
|
|
},
|
|
0)
|
|
.legalFor({v2s64})
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s32, s64)
|
|
.clampNumElements(0, v2s32, v4s32)
|
|
.clampNumElements(0, v2s64, v2s64)
|
|
.moreElementsToNextPow2(0);
|
|
|
|
getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
|
|
.customIf([=](const LegalityQuery &Query) {
|
|
const auto &SrcTy = Query.Types[0];
|
|
const auto &AmtTy = Query.Types[1];
|
|
return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
|
|
AmtTy.getSizeInBits() == 32;
|
|
})
|
|
.legalFor({
|
|
{s32, s32},
|
|
{s32, s64},
|
|
{s64, s64},
|
|
{v8s8, v8s8},
|
|
{v16s8, v16s8},
|
|
{v4s16, v4s16},
|
|
{v8s16, v8s16},
|
|
{v2s32, v2s32},
|
|
{v4s32, v4s32},
|
|
{v2s64, v2s64},
|
|
})
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(1, s32, s64)
|
|
.clampScalar(0, s32, s64)
|
|
.clampNumElements(0, v2s32, v4s32)
|
|
.clampNumElements(0, v2s64, v2s64)
|
|
.moreElementsToNextPow2(0)
|
|
.minScalarSameAs(1, 0);
|
|
|
|
getActionDefinitionsBuilder(G_PTR_ADD)
|
|
.legalFor({{p0, s64}, {v2p0, v2s64}})
|
|
.clampScalar(1, s64, s64);
|
|
|
|
getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}});
|
|
|
|
getActionDefinitionsBuilder({G_SDIV, G_UDIV})
|
|
.legalFor({s32, s64})
|
|
.libcallFor({s128})
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0)
|
|
.scalarize(0);
|
|
|
|
getActionDefinitionsBuilder({G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
|
|
.lowerFor({s1, s8, s16, s32, s64});
|
|
|
|
getActionDefinitionsBuilder({G_SMULO, G_UMULO}).lowerFor({{s64, s1}});
|
|
|
|
getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
|
|
.legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
|
|
.clampNumElements(0, v8s8, v16s8)
|
|
.clampNumElements(0, v4s16, v8s16)
|
|
.clampNumElements(0, v2s32, v4s32)
|
|
// FIXME: This sholdn't be needed as v2s64 types are going to
|
|
// be expanded anyway, but G_ICMP doesn't support splitting vectors yet
|
|
.clampNumElements(0, v2s64, v2s64)
|
|
.lower();
|
|
|
|
getActionDefinitionsBuilder(
|
|
{G_SADDE, G_SSUBE, G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
|
|
.legalFor({{s32, s1}, {s64, s1}})
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0);
|
|
|
|
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
|
|
.legalFor({s32, s64, v2s64, v4s32, v2s32})
|
|
.clampNumElements(0, v2s32, v4s32)
|
|
.clampNumElements(0, v2s64, v2s64);
|
|
|
|
getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
|
|
G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
|
|
G_FNEARBYINT, G_INTRINSIC_LRINT})
|
|
// If we don't have full FP16 support, then scalarize the elements of
|
|
// vectors containing fp16 types.
|
|
.fewerElementsIf(
|
|
[=, &ST](const LegalityQuery &Query) {
|
|
const auto &Ty = Query.Types[0];
|
|
return Ty.isVector() && Ty.getElementType() == s16 &&
|
|
!ST.hasFullFP16();
|
|
},
|
|
[=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
|
|
// If we don't have full FP16 support, then widen s16 to s32 if we
|
|
// encounter it.
|
|
.widenScalarIf(
|
|
[=, &ST](const LegalityQuery &Query) {
|
|
return Query.Types[0] == s16 && !ST.hasFullFP16();
|
|
},
|
|
[=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
|
|
.legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});
|
|
|
|
getActionDefinitionsBuilder(
|
|
{G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
|
|
// We need a call for these, so we always need to scalarize.
|
|
.scalarize(0)
|
|
// Regardless of FP16 support, widen 16-bit elements to 32-bits.
|
|
.minScalar(0, s32)
|
|
.libcallFor({s32, s64, v2s32, v4s32, v2s64});
|
|
|
|
getActionDefinitionsBuilder(G_INSERT)
|
|
.legalIf(all(typeInSet(0, {s32, s64, p0}),
|
|
typeInSet(1, {s1, s8, s16, s32}), smallerThan(1, 0)))
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(1)
|
|
.minScalar(1, s8)
|
|
.maxScalarIf(typeInSet(0, {s32}), 1, s16)
|
|
.maxScalarIf(typeInSet(0, {s64, p0}), 1, s32);
|
|
|
|
getActionDefinitionsBuilder(G_EXTRACT)
|
|
.legalIf(all(typeInSet(0, {s16, s32, s64, p0}),
|
|
typeInSet(1, {s32, s64, s128, p0}), smallerThan(0, 1)))
|
|
.widenScalarToNextPow2(1)
|
|
.clampScalar(1, s32, s128)
|
|
.widenScalarToNextPow2(0)
|
|
.minScalar(0, s16)
|
|
.maxScalarIf(typeInSet(1, {s32}), 0, s16)
|
|
.maxScalarIf(typeInSet(1, {s64, p0}), 0, s32)
|
|
.maxScalarIf(typeInSet(1, {s128}), 0, s64);
|
|
|
|
getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
|
|
.lowerIf(atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Unordered))
|
|
.legalForTypesWithMemDesc({{s32, p0, s8, 8},
|
|
{s32, p0, s16, 8},
|
|
{s32, p0, s32, 8},
|
|
{s64, p0, s8, 2},
|
|
{s64, p0, s16, 2},
|
|
{s64, p0, s32, 4},
|
|
{s64, p0, s64, 8},
|
|
{p0, p0, s64, 8},
|
|
{v2s32, p0, s64, 8}})
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s32, s64)
|
|
// TODO: We could support sum-of-pow2's but the lowering code doesn't know
|
|
// how to do that yet.
|
|
.unsupportedIfMemSizeNotPow2()
|
|
// Lower anything left over into G_*EXT and G_LOAD
|
|
.lower();
|
|
|
|
auto IsPtrVecPred = [=](const LegalityQuery &Query) {
|
|
const LLT &ValTy = Query.Types[0];
|
|
if (!ValTy.isVector())
|
|
return false;
|
|
const LLT EltTy = ValTy.getElementType();
|
|
return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
|
|
};
|
|
|
|
getActionDefinitionsBuilder(G_LOAD)
|
|
.legalForTypesWithMemDesc({{s8, p0, s8, 8},
|
|
{s16, p0, s16, 8},
|
|
{s32, p0, s32, 8},
|
|
{s64, p0, s64, 8},
|
|
{p0, p0, s64, 8},
|
|
{s128, p0, s128, 8},
|
|
{v8s8, p0, s64, 8},
|
|
{v16s8, p0, s128, 8},
|
|
{v4s16, p0, s64, 8},
|
|
{v8s16, p0, s128, 8},
|
|
{v2s32, p0, s64, 8},
|
|
{v4s32, p0, s128, 8},
|
|
{v2s64, p0, s128, 8}})
|
|
// These extends are also legal
|
|
.legalForTypesWithMemDesc({{s32, p0, s8, 8}, {s32, p0, s16, 8}})
|
|
.widenScalarToNextPow2(0, /* MinSize = */8)
|
|
.lowerIfMemSizeNotPow2()
|
|
.clampScalar(0, s8, s64)
|
|
.narrowScalarIf([=](const LegalityQuery &Query) {
|
|
// Clamp extending load results to 32-bits.
|
|
return Query.Types[0].isScalar() &&
|
|
Query.Types[0] != Query.MMODescrs[0].MemoryTy &&
|
|
Query.Types[0].getSizeInBits() > 32;
|
|
},
|
|
changeTo(0, s32))
|
|
// Lower any any-extending loads left into G_ANYEXT and G_LOAD
|
|
.lowerIf([=](const LegalityQuery &Query) {
|
|
return Query.Types[0] != Query.MMODescrs[0].MemoryTy;
|
|
})
|
|
.clampMaxNumElements(0, s8, 16)
|
|
.clampMaxNumElements(0, s16, 8)
|
|
.clampMaxNumElements(0, s32, 4)
|
|
.clampMaxNumElements(0, s64, 2)
|
|
.customIf(IsPtrVecPred)
|
|
.scalarizeIf(typeIs(0, v2s16), 0);
|
|
|
|
getActionDefinitionsBuilder(G_STORE)
|
|
.legalForTypesWithMemDesc({{s8, p0, s8, 8},
|
|
{s16, p0, s8, 8}, // truncstorei8 from s16
|
|
{s32, p0, s8, 8}, // truncstorei8 from s32
|
|
{s64, p0, s8, 8}, // truncstorei8 from s64
|
|
{s16, p0, s16, 8},
|
|
{s32, p0, s16, 8}, // truncstorei16 from s32
|
|
{s64, p0, s16, 8}, // truncstorei16 from s64
|
|
{s32, p0, s8, 8},
|
|
{s32, p0, s16, 8},
|
|
{s32, p0, s32, 8},
|
|
{s64, p0, s64, 8},
|
|
{s64, p0, s32, 8}, // truncstorei32 from s64
|
|
{p0, p0, s64, 8},
|
|
{s128, p0, s128, 8},
|
|
{v16s8, p0, s128, 8},
|
|
{v8s8, p0, s64, 8},
|
|
{v4s16, p0, s64, 8},
|
|
{v8s16, p0, s128, 8},
|
|
{v2s32, p0, s64, 8},
|
|
{v4s32, p0, s128, 8},
|
|
{v2s64, p0, s128, 8}})
|
|
.clampScalar(0, s8, s64)
|
|
.lowerIf([=](const LegalityQuery &Query) {
|
|
return Query.Types[0].isScalar() &&
|
|
Query.Types[0] != Query.MMODescrs[0].MemoryTy;
|
|
})
|
|
// Maximum: sN * k = 128
|
|
.clampMaxNumElements(0, s8, 16)
|
|
.clampMaxNumElements(0, s16, 8)
|
|
.clampMaxNumElements(0, s32, 4)
|
|
.clampMaxNumElements(0, s64, 2)
|
|
.lowerIfMemSizeNotPow2()
|
|
.customIf(IsPtrVecPred)
|
|
.scalarizeIf(typeIs(0, v2s16), 0);
|
|
|
|
// Constants
|
|
getActionDefinitionsBuilder(G_CONSTANT)
|
|
.legalFor({p0, s8, s16, s32, s64})
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s8, s64);
|
|
getActionDefinitionsBuilder(G_FCONSTANT)
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const auto &Ty = Query.Types[0];
|
|
if (HasFP16 && Ty == s16)
|
|
return true;
|
|
return Ty == s32 || Ty == s64 || Ty == s128;
|
|
})
|
|
.clampScalar(0, MinFPScalar, s128);
|
|
|
|
getActionDefinitionsBuilder({G_ICMP, G_FCMP})
|
|
.legalFor({{s32, s32},
|
|
{s32, s64},
|
|
{s32, p0},
|
|
{v4s32, v4s32},
|
|
{v2s32, v2s32},
|
|
{v2s64, v2s64},
|
|
{v2s64, v2p0},
|
|
{v4s16, v4s16},
|
|
{v8s16, v8s16},
|
|
{v8s8, v8s8},
|
|
{v16s8, v16s8}})
|
|
.widenScalarOrEltToNextPow2(1)
|
|
.clampScalar(1, s32, s64)
|
|
.clampScalar(0, s32, s32)
|
|
.minScalarEltSameAsIf(
|
|
[=](const LegalityQuery &Query) {
|
|
const LLT &Ty = Query.Types[0];
|
|
const LLT &SrcTy = Query.Types[1];
|
|
return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
|
|
Ty.getElementType() != SrcTy.getElementType();
|
|
},
|
|
0, 1)
|
|
.minScalarOrEltIf(
|
|
[=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
|
|
1, s32)
|
|
.minScalarOrEltIf(
|
|
[=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
|
|
s64)
|
|
.clampNumElements(0, v2s32, v4s32);
|
|
|
|
// Extensions
|
|
auto ExtLegalFunc = [=](const LegalityQuery &Query) {
|
|
unsigned DstSize = Query.Types[0].getSizeInBits();
|
|
|
|
if (DstSize == 128 && !Query.Types[0].isVector())
|
|
return false; // Extending to a scalar s128 needs narrowing.
|
|
|
|
// Make sure that we have something that will fit in a register, and
|
|
// make sure it's a power of 2.
|
|
if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
|
|
return false;
|
|
|
|
const LLT &SrcTy = Query.Types[1];
|
|
|
|
// Special case for s1.
|
|
if (SrcTy == s1)
|
|
return true;
|
|
|
|
// Make sure we fit in a register otherwise. Don't bother checking that
|
|
// the source type is below 128 bits. We shouldn't be allowing anything
|
|
// through which is wider than the destination in the first place.
|
|
unsigned SrcSize = SrcTy.getSizeInBits();
|
|
if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
|
|
.legalIf(ExtLegalFunc)
|
|
.clampScalar(0, s64, s64); // Just for s128, others are handled above.
|
|
|
|
getActionDefinitionsBuilder(G_TRUNC)
|
|
.minScalarOrEltIf(
|
|
[=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
|
|
0, s8)
|
|
.customIf([=](const LegalityQuery &Query) {
|
|
LLT DstTy = Query.Types[0];
|
|
LLT SrcTy = Query.Types[1];
|
|
return DstTy == v8s8 && SrcTy.getSizeInBits() > 128;
|
|
})
|
|
.alwaysLegal();
|
|
|
|
getActionDefinitionsBuilder(G_SEXT_INREG).legalFor({s32, s64}).lower();
|
|
|
|
// FP conversions
|
|
getActionDefinitionsBuilder(G_FPTRUNC)
|
|
.legalFor(
|
|
{{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
|
|
.clampMaxNumElements(0, s32, 2);
|
|
getActionDefinitionsBuilder(G_FPEXT)
|
|
.legalFor(
|
|
{{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
|
|
.clampMaxNumElements(0, s64, 2);
|
|
|
|
// Conversions
|
|
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
|
|
.legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(1)
|
|
.clampScalar(1, s32, s64);
|
|
|
|
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
|
|
.legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
|
|
.clampScalar(1, s32, s64)
|
|
.minScalarSameAs(1, 0)
|
|
.clampScalar(0, s32, s64)
|
|
.widenScalarToNextPow2(0);
|
|
|
|
// Control-flow
|
|
getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
|
|
getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
|
|
|
|
getActionDefinitionsBuilder(G_SELECT)
|
|
.legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, s32, s64)
|
|
.minScalarEltSameAsIf(all(isVector(0), isVector(1)), 1, 0)
|
|
.lowerIf(isVector(0));
|
|
|
|
// Pointer-handling
|
|
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
|
|
|
|
if (TM.getCodeModel() == CodeModel::Small)
|
|
getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom();
|
|
else
|
|
getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
|
|
|
|
getActionDefinitionsBuilder(G_PTRTOINT)
|
|
.legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
|
|
.maxScalar(0, s64)
|
|
.widenScalarToNextPow2(0, /*Min*/ 8);
|
|
|
|
getActionDefinitionsBuilder(G_INTTOPTR)
|
|
.unsupportedIf([&](const LegalityQuery &Query) {
|
|
return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
|
|
})
|
|
.legalFor({{p0, s64}, {v2p0, v2s64}});
|
|
|
|
// Casts for 32 and 64-bit width type are just copies.
|
|
// Same for 128-bit width type, except they are on the FPR bank.
|
|
getActionDefinitionsBuilder(G_BITCAST)
|
|
// FIXME: This is wrong since G_BITCAST is not allowed to change the
|
|
// number of bits but it's what the previous code described and fixing
|
|
// it breaks tests.
|
|
.legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
|
|
v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
|
|
v2p0});
|
|
|
|
getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
|
|
|
|
// va_list must be a pointer, but most sized types are pretty easy to handle
|
|
// as the destination.
|
|
getActionDefinitionsBuilder(G_VAARG)
|
|
.customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
|
|
.clampScalar(0, s8, s64)
|
|
.widenScalarToNextPow2(0, /*Min*/ 8);
|
|
|
|
getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
|
|
.lowerIf(
|
|
all(typeInSet(0, {s8, s16, s32, s64, s128}), typeIs(1, s1), typeIs(2, p0)));
|
|
|
|
getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
|
|
.customIf([](const LegalityQuery &Query) {
|
|
return Query.Types[0].getSizeInBits() == 128;
|
|
})
|
|
.clampScalar(0, s32, s64)
|
|
.legalIf(all(typeInSet(0, {s32, s64}), typeIs(1, p0)));
|
|
|
|
getActionDefinitionsBuilder(
|
|
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
|
|
G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
|
|
G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX})
|
|
.clampScalar(0, s32, s64)
|
|
.legalIf(all(typeInSet(0, {s32, s64}), typeIs(1, p0)));
|
|
|
|
getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
|
|
|
|
// Merge/Unmerge
|
|
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
|
|
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
|
|
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
|
|
getActionDefinitionsBuilder(Op)
|
|
.widenScalarToNextPow2(LitTyIdx, 8)
|
|
.widenScalarToNextPow2(BigTyIdx, 32)
|
|
.clampScalar(LitTyIdx, s8, s64)
|
|
.clampScalar(BigTyIdx, s32, s128)
|
|
.legalIf([=](const LegalityQuery &Q) {
|
|
switch (Q.Types[BigTyIdx].getSizeInBits()) {
|
|
case 32:
|
|
case 64:
|
|
case 128:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
switch (Q.Types[LitTyIdx].getSizeInBits()) {
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
});
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
|
|
.unsupportedIf([=](const LegalityQuery &Query) {
|
|
const LLT &EltTy = Query.Types[1].getElementType();
|
|
return Query.Types[0] != EltTy;
|
|
})
|
|
.minScalar(2, s64)
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &VecTy = Query.Types[1];
|
|
return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
|
|
VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 ||
|
|
VecTy == v16s8 || VecTy == v2s32 || VecTy == v2p0;
|
|
})
|
|
.minScalarOrEltIf(
|
|
[=](const LegalityQuery &Query) {
|
|
// We want to promote to <M x s1> to <M x s64> if that wouldn't
|
|
// cause the total vec size to be > 128b.
|
|
return Query.Types[1].getNumElements() <= 2;
|
|
},
|
|
0, s64)
|
|
.minScalarOrEltIf(
|
|
[=](const LegalityQuery &Query) {
|
|
return Query.Types[1].getNumElements() <= 4;
|
|
},
|
|
0, s32)
|
|
.minScalarOrEltIf(
|
|
[=](const LegalityQuery &Query) {
|
|
return Query.Types[1].getNumElements() <= 8;
|
|
},
|
|
0, s16)
|
|
.minScalarOrEltIf(
|
|
[=](const LegalityQuery &Query) {
|
|
return Query.Types[1].getNumElements() <= 16;
|
|
},
|
|
0, s8)
|
|
.minScalarOrElt(0, s8) // Worst case, we need at least s8.
|
|
.clampMaxNumElements(1, s64, 2)
|
|
.clampMaxNumElements(1, s32, 4)
|
|
.clampMaxNumElements(1, s16, 8)
|
|
.clampMaxNumElements(1, p0, 2);
|
|
|
|
getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
|
|
.legalIf(typeInSet(0, {v8s16, v2s32, v4s32, v2s64}));
|
|
|
|
getActionDefinitionsBuilder(G_BUILD_VECTOR)
|
|
.legalFor({{v8s8, s8},
|
|
{v16s8, s8},
|
|
{v2s16, s16},
|
|
{v4s16, s16},
|
|
{v8s16, s16},
|
|
{v2s32, s32},
|
|
{v4s32, s32},
|
|
{v2p0, p0},
|
|
{v2s64, s64}})
|
|
.clampNumElements(0, v4s32, v4s32)
|
|
.clampNumElements(0, v2s64, v2s64)
|
|
.minScalarSameAs(1, 0);
|
|
|
|
getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC).lower();
|
|
|
|
getActionDefinitionsBuilder(G_CTLZ)
|
|
.legalForCartesianProduct(
|
|
{s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
|
|
.scalarize(1);
|
|
getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF).lower();
|
|
|
|
// TODO: Custom lowering for v2s32, v4s32, v2s64.
|
|
getActionDefinitionsBuilder(G_BITREVERSE).legalFor({s32, s64, v8s8, v16s8});
|
|
|
|
getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF).lower();
|
|
|
|
// TODO: Handle vector types.
|
|
getActionDefinitionsBuilder(G_CTTZ)
|
|
.clampScalar(0, s32, s64)
|
|
.scalarSameSizeAs(1, 0)
|
|
.customFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &DstTy = Query.Types[0];
|
|
const LLT &SrcTy = Query.Types[1];
|
|
// For now just support the TBL2 variant which needs the source vectors
|
|
// to be the same size as the dest.
|
|
if (DstTy != SrcTy)
|
|
return false;
|
|
for (auto &Ty : {v2s32, v4s32, v2s64, v2p0, v16s8, v8s16}) {
|
|
if (DstTy == Ty)
|
|
return true;
|
|
}
|
|
return false;
|
|
})
|
|
// G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
|
|
// just want those lowered into G_BUILD_VECTOR
|
|
.lowerIf([=](const LegalityQuery &Query) {
|
|
return !Query.Types[1].isVector();
|
|
})
|
|
.moreElementsToNextPow2(0)
|
|
.clampNumElements(0, v4s32, v4s32)
|
|
.clampNumElements(0, v2s64, v2s64);
|
|
|
|
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
|
|
.legalFor({{v4s32, v2s32}, {v8s16, v4s16}, {v16s8, v8s8}});
|
|
|
|
getActionDefinitionsBuilder(G_JUMP_TABLE).legalFor({{p0}, {s64}});
|
|
|
|
getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
|
|
return Query.Types[0] == p0 && Query.Types[1] == s64;
|
|
});
|
|
|
|
getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
|
|
|
|
getActionDefinitionsBuilder({G_BZERO, G_MEMCPY, G_MEMMOVE, G_MEMSET})
|
|
.libcall();
|
|
|
|
// FIXME: Legal types are only legal with NEON.
|
|
getActionDefinitionsBuilder(G_ABS)
|
|
.lowerIf(isScalar(0))
|
|
.legalFor(PackedVectorAllTypeList);
|
|
|
|
getActionDefinitionsBuilder(G_VECREDUCE_FADD)
|
|
// We only have FADDP to do reduction-like operations. Lower the rest.
|
|
.legalFor({{s32, v2s32}, {s64, v2s64}})
|
|
.clampMaxNumElements(1, s64, 2)
|
|
.clampMaxNumElements(1, s32, 2)
|
|
.lower();
|
|
|
|
getActionDefinitionsBuilder(G_VECREDUCE_ADD)
|
|
.legalFor(
|
|
{{s8, v16s8}, {s16, v8s16}, {s32, v4s32}, {s32, v2s32}, {s64, v2s64}})
|
|
.clampMaxNumElements(1, s64, 2)
|
|
.clampMaxNumElements(1, s32, 4)
|
|
.lower();
|
|
|
|
getActionDefinitionsBuilder(G_VECREDUCE_OR)
|
|
// Try to break down into smaller vectors as long as they're at least 64
|
|
// bits. This lets us use vector operations for some parts of the
|
|
// reduction.
|
|
.fewerElementsIf(
|
|
[=](const LegalityQuery &Q) {
|
|
LLT SrcTy = Q.Types[1];
|
|
if (SrcTy.isScalar())
|
|
return false;
|
|
if (!isPowerOf2_32(SrcTy.getNumElements()))
|
|
return false;
|
|
// We can usually perform 64b vector operations.
|
|
return SrcTy.getSizeInBits() > 64;
|
|
},
|
|
[=](const LegalityQuery &Q) {
|
|
LLT SrcTy = Q.Types[1];
|
|
return std::make_pair(1, SrcTy.divide(2));
|
|
})
|
|
.scalarize(1)
|
|
.lower();
|
|
|
|
getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
|
|
.lowerIf([=](const LegalityQuery &Q) { return Q.Types[0].isScalar(); });
|
|
|
|
getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
|
|
|
|
getActionDefinitionsBuilder(G_ROTR)
|
|
.legalFor({{s32, s64}, {s64, s64}})
|
|
.customIf([=](const LegalityQuery &Q) {
|
|
return Q.Types[0].isScalar() && Q.Types[1].getScalarSizeInBits() < 64;
|
|
})
|
|
.lower();
|
|
getActionDefinitionsBuilder(G_ROTL).lower();
|
|
|
|
getActionDefinitionsBuilder({G_SBFX, G_UBFX})
|
|
.customFor({{s32, s32}, {s64, s64}});
|
|
|
|
// TODO: Use generic lowering when custom lowering is not possible.
|
|
auto always = [=](const LegalityQuery &Q) { return true; };
|
|
getActionDefinitionsBuilder(G_CTPOP)
|
|
.legalFor({{v8s8, v8s8}, {v16s8, v16s8}})
|
|
.clampScalar(0, s32, s128)
|
|
.widenScalarToNextPow2(0)
|
|
.minScalarEltSameAsIf(always, 1, 0)
|
|
.maxScalarEltSameAsIf(always, 1, 0)
|
|
.customFor({{s32, s32},
|
|
{s64, s64},
|
|
{s128, s128},
|
|
{v2s64, v2s64},
|
|
{v2s32, v2s32},
|
|
{v4s32, v4s32},
|
|
{v4s16, v4s16},
|
|
{v8s16, v8s16}});
|
|
|
|
// TODO: Vector types.
|
|
getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT}).lowerIf(isScalar(0));
|
|
|
|
getActionDefinitionsBuilder(G_ISNAN).lowerIf(
|
|
any(isVector(1), typeInSet(1, {s16, s32, s64})));
|
|
|
|
// TODO: Vector types.
|
|
getActionDefinitionsBuilder({G_FMAXNUM, G_FMINNUM})
|
|
.legalFor({MinFPScalar, s32, s64})
|
|
.libcallFor({s128})
|
|
.minScalar(0, MinFPScalar);
|
|
|
|
getLegacyLegalizerInfo().computeTables();
|
|
verify(*ST.getInstrInfo());
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
|
|
MachineInstr &MI) const {
|
|
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
|
|
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
|
|
GISelChangeObserver &Observer = Helper.Observer;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
// No idea what to do.
|
|
return false;
|
|
case TargetOpcode::G_VAARG:
|
|
return legalizeVaArg(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_LOAD:
|
|
case TargetOpcode::G_STORE:
|
|
return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
|
|
case TargetOpcode::G_BSWAP:
|
|
return legalizeBSwap(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_SHL:
|
|
case TargetOpcode::G_ASHR:
|
|
case TargetOpcode::G_LSHR:
|
|
return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
|
|
case TargetOpcode::G_GLOBAL_VALUE:
|
|
return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer);
|
|
case TargetOpcode::G_TRUNC:
|
|
return legalizeVectorTrunc(MI, Helper);
|
|
case TargetOpcode::G_SBFX:
|
|
case TargetOpcode::G_UBFX:
|
|
return legalizeBitfieldExtract(MI, MRI, Helper);
|
|
case TargetOpcode::G_ROTR:
|
|
return legalizeRotate(MI, MRI, Helper);
|
|
case TargetOpcode::G_CTPOP:
|
|
return legalizeCTPOP(MI, MRI, Helper);
|
|
case TargetOpcode::G_ATOMIC_CMPXCHG:
|
|
return legalizeAtomicCmpxchg128(MI, MRI, Helper);
|
|
case TargetOpcode::G_CTTZ:
|
|
return legalizeCTTZ(MI, Helper);
|
|
}
|
|
|
|
llvm_unreachable("expected switch to return");
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeRotate(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
LegalizerHelper &Helper) const {
|
|
// To allow for imported patterns to match, we ensure that the rotate amount
|
|
// is 64b with an extension.
|
|
Register AmtReg = MI.getOperand(2).getReg();
|
|
LLT AmtTy = MRI.getType(AmtReg);
|
|
(void)AmtTy;
|
|
assert(AmtTy.isScalar() && "Expected a scalar rotate");
|
|
assert(AmtTy.getSizeInBits() < 64 && "Expected this rotate to be legal");
|
|
auto NewAmt = Helper.MIRBuilder.buildSExt(LLT::scalar(64), AmtReg);
|
|
Helper.Observer.changingInstr(MI);
|
|
MI.getOperand(2).setReg(NewAmt.getReg(0));
|
|
Helper.Observer.changedInstr(MI);
|
|
return true;
|
|
}
|
|
|
|
static void extractParts(Register Reg, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder, LLT Ty, int NumParts,
|
|
SmallVectorImpl<Register> &VRegs) {
|
|
for (int I = 0; I < NumParts; ++I)
|
|
VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
|
|
MIRBuilder.buildUnmerge(VRegs, Reg);
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeVectorTrunc(
|
|
MachineInstr &MI, LegalizerHelper &Helper) const {
|
|
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
|
|
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
|
|
// Similar to how operand splitting is done in SelectiondDAG, we can handle
|
|
// %res(v8s8) = G_TRUNC %in(v8s32) by generating:
|
|
// %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>)
|
|
// %lo16(<4 x s16>) = G_TRUNC %inlo
|
|
// %hi16(<4 x s16>) = G_TRUNC %inhi
|
|
// %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16
|
|
// %res(<8 x s8>) = G_TRUNC %in16
|
|
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
LLT DstTy = MRI.getType(DstReg);
|
|
LLT SrcTy = MRI.getType(SrcReg);
|
|
assert(isPowerOf2_32(DstTy.getSizeInBits()) &&
|
|
isPowerOf2_32(SrcTy.getSizeInBits()));
|
|
|
|
// Split input type.
|
|
LLT SplitSrcTy =
|
|
SrcTy.changeElementCount(SrcTy.getElementCount().divideCoefficientBy(2));
|
|
// First, split the source into two smaller vectors.
|
|
SmallVector<Register, 2> SplitSrcs;
|
|
extractParts(SrcReg, MRI, MIRBuilder, SplitSrcTy, 2, SplitSrcs);
|
|
|
|
// Truncate the splits into intermediate narrower elements.
|
|
LLT InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
|
|
for (unsigned I = 0; I < SplitSrcs.size(); ++I)
|
|
SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
|
|
|
|
auto Concat = MIRBuilder.buildConcatVectors(
|
|
DstTy.changeElementSize(DstTy.getScalarSizeInBits() * 2), SplitSrcs);
|
|
|
|
Helper.Observer.changingInstr(MI);
|
|
MI.getOperand(1).setReg(Concat.getReg(0));
|
|
Helper.Observer.changedInstr(MI);
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
|
|
GISelChangeObserver &Observer) const {
|
|
assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
|
|
// We do this custom legalization to convert G_GLOBAL_VALUE into target ADRP +
|
|
// G_ADD_LOW instructions.
|
|
// By splitting this here, we can optimize accesses in the small code model by
|
|
// folding in the G_ADD_LOW into the load/store offset.
|
|
auto &GlobalOp = MI.getOperand(1);
|
|
const auto* GV = GlobalOp.getGlobal();
|
|
if (GV->isThreadLocal())
|
|
return true; // Don't want to modify TLS vars.
|
|
|
|
auto &TM = ST->getTargetLowering()->getTargetMachine();
|
|
unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
|
|
|
|
if (OpFlags & AArch64II::MO_GOT)
|
|
return true;
|
|
|
|
auto Offset = GlobalOp.getOffset();
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {})
|
|
.addGlobalAddress(GV, Offset, OpFlags | AArch64II::MO_PAGE);
|
|
// Set the regclass on the dest reg too.
|
|
MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
|
|
|
|
// MO_TAGGED on the page indicates a tagged address. Set the tag now. We do so
|
|
// by creating a MOVK that sets bits 48-63 of the register to (global address
|
|
// + 0x100000000 - PC) >> 48. The additional 0x100000000 offset here is to
|
|
// prevent an incorrect tag being generated during relocation when the the
|
|
// global appears before the code section. Without the offset, a global at
|
|
// `0x0f00'0000'0000'1000` (i.e. at `0x1000` with tag `0xf`) that's referenced
|
|
// by code at `0x2000` would result in `0x0f00'0000'0000'1000 - 0x2000 =
|
|
// 0x0eff'ffff'ffff'f000`, meaning the tag would be incorrectly set to `0xe`
|
|
// instead of `0xf`.
|
|
// This assumes that we're in the small code model so we can assume a binary
|
|
// size of <= 4GB, which makes the untagged PC relative offset positive. The
|
|
// binary must also be loaded into address range [0, 2^48). Both of these
|
|
// properties need to be ensured at runtime when using tagged addresses.
|
|
if (OpFlags & AArch64II::MO_TAGGED) {
|
|
assert(!Offset &&
|
|
"Should not have folded in an offset for a tagged global!");
|
|
ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP})
|
|
.addGlobalAddress(GV, 0x100000000,
|
|
AArch64II::MO_PREL | AArch64II::MO_G3)
|
|
.addImm(48);
|
|
MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
|
|
}
|
|
|
|
MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
|
|
.addGlobalAddress(GV, Offset,
|
|
OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
static unsigned findIntrinsicID(MachineInstr &I) {
|
|
auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) {
|
|
return Op.isIntrinsicID();
|
|
});
|
|
if (IntrinOp == I.operands_end())
|
|
return 0;
|
|
return IntrinOp->getIntrinsicID();
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
|
|
MachineInstr &MI) const {
|
|
switch (findIntrinsicID(MI)) {
|
|
case Intrinsic::vacopy: {
|
|
unsigned PtrSize = ST->isTargetILP32() ? 4 : 8;
|
|
unsigned VaListSize =
|
|
(ST->isTargetDarwin() || ST->isTargetWindows())
|
|
? PtrSize
|
|
: ST->isTargetILP32() ? 20 : 32;
|
|
|
|
MachineFunction &MF = *MI.getMF();
|
|
auto Val = MF.getRegInfo().createGenericVirtualRegister(
|
|
LLT::scalar(VaListSize * 8));
|
|
MachineIRBuilder MIB(MI);
|
|
MIB.buildLoad(Val, MI.getOperand(2),
|
|
*MF.getMachineMemOperand(MachinePointerInfo(),
|
|
MachineMemOperand::MOLoad,
|
|
VaListSize, Align(PtrSize)));
|
|
MIB.buildStore(Val, MI.getOperand(1),
|
|
*MF.getMachineMemOperand(MachinePointerInfo(),
|
|
MachineMemOperand::MOStore,
|
|
VaListSize, Align(PtrSize)));
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeShlAshrLshr(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
|
|
GISelChangeObserver &Observer) const {
|
|
assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
|
|
MI.getOpcode() == TargetOpcode::G_LSHR ||
|
|
MI.getOpcode() == TargetOpcode::G_SHL);
|
|
// If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
|
|
// imported patterns can select it later. Either way, it will be legal.
|
|
Register AmtReg = MI.getOperand(2).getReg();
|
|
auto VRegAndVal = getConstantVRegValWithLookThrough(AmtReg, MRI);
|
|
if (!VRegAndVal)
|
|
return true;
|
|
// Check the shift amount is in range for an immediate form.
|
|
int64_t Amount = VRegAndVal->Value.getSExtValue();
|
|
if (Amount > 31)
|
|
return true; // This will have to remain a register variant.
|
|
auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
|
|
Observer.changingInstr(MI);
|
|
MI.getOperand(2).setReg(ExtCst.getReg(0));
|
|
Observer.changedInstr(MI);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: This should be removed and replaced with the generic bitcast legalize
|
|
// action.
|
|
bool AArch64LegalizerInfo::legalizeLoadStore(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
|
|
GISelChangeObserver &Observer) const {
|
|
assert(MI.getOpcode() == TargetOpcode::G_STORE ||
|
|
MI.getOpcode() == TargetOpcode::G_LOAD);
|
|
// Here we just try to handle vector loads/stores where our value type might
|
|
// have pointer elements, which the SelectionDAG importer can't handle. To
|
|
// allow the existing patterns for s64 to fire for p0, we just try to bitcast
|
|
// the value to use s64 types.
|
|
|
|
// Custom legalization requires the instruction, if not deleted, must be fully
|
|
// legalized. In order to allow further legalization of the inst, we create
|
|
// a new instruction and erase the existing one.
|
|
|
|
Register ValReg = MI.getOperand(0).getReg();
|
|
const LLT ValTy = MRI.getType(ValReg);
|
|
|
|
if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
|
|
ValTy.getElementType().getAddressSpace() != 0) {
|
|
LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
|
|
return false;
|
|
}
|
|
|
|
unsigned PtrSize = ValTy.getElementType().getSizeInBits();
|
|
const LLT NewTy = LLT::vector(ValTy.getElementCount(), PtrSize);
|
|
auto &MMO = **MI.memoperands_begin();
|
|
MMO.setType(NewTy);
|
|
|
|
if (MI.getOpcode() == TargetOpcode::G_STORE) {
|
|
auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg);
|
|
MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO);
|
|
} else {
|
|
auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO);
|
|
MIRBuilder.buildBitcast(ValReg, NewLoad);
|
|
}
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeBSwap(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
assert(MI.getOpcode() == TargetOpcode::G_BSWAP);
|
|
|
|
// The <2 x half> case needs special lowering because there isn't an
|
|
// instruction that does that directly. Instead, we widen to <8 x i8>
|
|
// and emit a G_REV32 followed by a G_LSHR knowing that instruction selection
|
|
// will later match them as:
|
|
//
|
|
// rev32.8b v0, v0
|
|
// ushr.2s v0, v0, #16
|
|
//
|
|
// We could emit those here directly, but it seems better to keep things as
|
|
// generic as possible through legalization, and avoid committing layering
|
|
// violations by legalizing & selecting here at the same time.
|
|
|
|
Register ValReg = MI.getOperand(1).getReg();
|
|
assert(LLT::fixed_vector(2, 16) == MRI.getType(ValReg));
|
|
const LLT v2s32 = LLT::fixed_vector(2, 32);
|
|
const LLT v8s8 = LLT::fixed_vector(8, 8);
|
|
const LLT s32 = LLT::scalar(32);
|
|
|
|
auto Undef = MIRBuilder.buildUndef(v8s8);
|
|
auto Insert =
|
|
MIRBuilder
|
|
.buildInstr(TargetOpcode::INSERT_SUBREG, {v8s8}, {Undef, ValReg})
|
|
.addImm(AArch64::ssub);
|
|
auto Rev32 = MIRBuilder.buildInstr(AArch64::G_REV32, {v8s8}, {Insert});
|
|
auto Bitcast = MIRBuilder.buildBitcast(v2s32, Rev32);
|
|
auto Amt = MIRBuilder.buildConstant(v2s32, 16);
|
|
auto UShr =
|
|
MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {v2s32}, {Bitcast, Amt});
|
|
auto Zero = MIRBuilder.buildConstant(s32, 0);
|
|
auto Extract = MIRBuilder.buildExtractVectorElement(s32, UShr, Zero);
|
|
MIRBuilder.buildBitcast({MI.getOperand(0).getReg()}, Extract);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
Align Alignment(MI.getOperand(2).getImm());
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register ListPtr = MI.getOperand(1).getReg();
|
|
|
|
LLT PtrTy = MRI.getType(ListPtr);
|
|
LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
|
|
|
|
const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
|
|
const Align PtrAlign = Align(PtrSize);
|
|
auto List = MIRBuilder.buildLoad(
|
|
PtrTy, ListPtr,
|
|
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
|
|
PtrTy, PtrAlign));
|
|
|
|
MachineInstrBuilder DstPtr;
|
|
if (Alignment > PtrAlign) {
|
|
// Realign the list to the actual required alignment.
|
|
auto AlignMinus1 =
|
|
MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1);
|
|
auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));
|
|
DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment));
|
|
} else
|
|
DstPtr = List;
|
|
|
|
LLT ValTy = MRI.getType(Dst);
|
|
uint64_t ValSize = ValTy.getSizeInBits() / 8;
|
|
MIRBuilder.buildLoad(
|
|
Dst, DstPtr,
|
|
*MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
|
|
ValTy, std::max(Alignment, PtrAlign)));
|
|
|
|
auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign));
|
|
|
|
auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));
|
|
|
|
MIRBuilder.buildStore(NewList, ListPtr,
|
|
*MF.getMachineMemOperand(MachinePointerInfo(),
|
|
MachineMemOperand::MOStore,
|
|
PtrTy, PtrAlign));
|
|
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeBitfieldExtract(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
|
|
// Only legal if we can select immediate forms.
|
|
// TODO: Lower this otherwise.
|
|
return getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI) &&
|
|
getConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeCTPOP(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
LegalizerHelper &Helper) const {
|
|
// While there is no integer popcount instruction, it can
|
|
// be more efficiently lowered to the following sequence that uses
|
|
// AdvSIMD registers/instructions as long as the copies to/from
|
|
// the AdvSIMD registers are cheap.
|
|
// FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
|
|
// CNT V0.8B, V0.8B // 8xbyte pop-counts
|
|
// ADDV B0, V0.8B // sum 8xbyte pop-counts
|
|
// UMOV X0, V0.B[0] // copy byte result back to integer reg
|
|
//
|
|
// For 128 bit vector popcounts, we lower to the following sequence:
|
|
// cnt.16b v0, v0 // v8s16, v4s32, v2s64
|
|
// uaddlp.8h v0, v0 // v8s16, v4s32, v2s64
|
|
// uaddlp.4s v0, v0 // v4s32, v2s64
|
|
// uaddlp.2d v0, v0 // v2s64
|
|
//
|
|
// For 64 bit vector popcounts, we lower to the following sequence:
|
|
// cnt.8b v0, v0 // v4s16, v2s32
|
|
// uaddlp.4h v0, v0 // v4s16, v2s32
|
|
// uaddlp.2s v0, v0 // v2s32
|
|
|
|
if (!ST->hasNEON() ||
|
|
MI.getMF()->getFunction().hasFnAttribute(Attribute::NoImplicitFloat))
|
|
return false;
|
|
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register Val = MI.getOperand(1).getReg();
|
|
LLT Ty = MRI.getType(Val);
|
|
|
|
assert(Ty == MRI.getType(Dst) &&
|
|
"Expected src and dst to have the same type!");
|
|
unsigned Size = Ty.getSizeInBits();
|
|
|
|
// Pre-conditioning: widen Val up to the nearest vector type.
|
|
// s32,s64,v4s16,v2s32 -> v8i8
|
|
// v8s16,v4s32,v2s64 -> v16i8
|
|
LLT VTy = Size == 128 ? LLT::fixed_vector(16, 8) : LLT::fixed_vector(8, 8);
|
|
if (Ty.isScalar()) {
|
|
assert((Size == 32 || Size == 64 || Size == 128) && "Expected only 32, 64, or 128 bit scalars!");
|
|
if (Size == 32) {
|
|
Val = MIRBuilder.buildZExt(LLT::scalar(64), Val).getReg(0);
|
|
}
|
|
}
|
|
Val = MIRBuilder.buildBitcast(VTy, Val).getReg(0);
|
|
|
|
// Count bits in each byte-sized lane.
|
|
auto CTPOP = MIRBuilder.buildCTPOP(VTy, Val);
|
|
|
|
// Sum across lanes.
|
|
Register HSum = CTPOP.getReg(0);
|
|
unsigned Opc;
|
|
SmallVector<LLT> HAddTys;
|
|
if (Ty.isScalar()) {
|
|
Opc = Intrinsic::aarch64_neon_uaddlv;
|
|
HAddTys.push_back(LLT::scalar(32));
|
|
} else if (Ty == LLT::fixed_vector(8, 16)) {
|
|
Opc = Intrinsic::aarch64_neon_uaddlp;
|
|
HAddTys.push_back(LLT::fixed_vector(8, 16));
|
|
} else if (Ty == LLT::fixed_vector(4, 32)) {
|
|
Opc = Intrinsic::aarch64_neon_uaddlp;
|
|
HAddTys.push_back(LLT::fixed_vector(8, 16));
|
|
HAddTys.push_back(LLT::fixed_vector(4, 32));
|
|
} else if (Ty == LLT::fixed_vector(2, 64)) {
|
|
Opc = Intrinsic::aarch64_neon_uaddlp;
|
|
HAddTys.push_back(LLT::fixed_vector(8, 16));
|
|
HAddTys.push_back(LLT::fixed_vector(4, 32));
|
|
HAddTys.push_back(LLT::fixed_vector(2, 64));
|
|
} else if (Ty == LLT::fixed_vector(4, 16)) {
|
|
Opc = Intrinsic::aarch64_neon_uaddlp;
|
|
HAddTys.push_back(LLT::fixed_vector(4, 16));
|
|
} else if (Ty == LLT::fixed_vector(2, 32)) {
|
|
Opc = Intrinsic::aarch64_neon_uaddlp;
|
|
HAddTys.push_back(LLT::fixed_vector(4, 16));
|
|
HAddTys.push_back(LLT::fixed_vector(2, 32));
|
|
} else
|
|
llvm_unreachable("unexpected vector shape");
|
|
MachineInstrBuilder UADD;
|
|
for (LLT HTy : HAddTys) {
|
|
UADD = MIRBuilder.buildIntrinsic(Opc, {HTy}, /*HasSideEffects =*/false)
|
|
.addUse(HSum);
|
|
HSum = UADD.getReg(0);
|
|
}
|
|
|
|
// Post-conditioning.
|
|
if (Ty.isScalar() && (Size == 64 || Size == 128))
|
|
MIRBuilder.buildZExt(Dst, UADD);
|
|
else
|
|
UADD->getOperand(0).setReg(Dst);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeAtomicCmpxchg128(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
|
|
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
|
|
LLT s64 = LLT::scalar(64);
|
|
auto Addr = MI.getOperand(1).getReg();
|
|
auto DesiredI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(2));
|
|
auto NewI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(3));
|
|
auto DstLo = MRI.createGenericVirtualRegister(s64);
|
|
auto DstHi = MRI.createGenericVirtualRegister(s64);
|
|
|
|
MachineInstrBuilder CAS;
|
|
if (ST->hasLSE()) {
|
|
// We have 128-bit CASP instructions taking XSeqPair registers, which are
|
|
// s128. We need the merge/unmerge to bracket the expansion and pair up with
|
|
// the rest of the MIR so we must reassemble the extracted registers into a
|
|
// 128-bit known-regclass one with code like this:
|
|
//
|
|
// %in1 = REG_SEQUENCE Lo, Hi ; One for each input
|
|
// %out = CASP %in1, ...
|
|
// %OldLo = G_EXTRACT %out, 0
|
|
// %OldHi = G_EXTRACT %out, 64
|
|
auto Ordering = (*MI.memoperands_begin())->getMergedOrdering();
|
|
unsigned Opcode;
|
|
switch (Ordering) {
|
|
case AtomicOrdering::Acquire:
|
|
Opcode = AArch64::CASPAX;
|
|
break;
|
|
case AtomicOrdering::Release:
|
|
Opcode = AArch64::CASPLX;
|
|
break;
|
|
case AtomicOrdering::AcquireRelease:
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
Opcode = AArch64::CASPALX;
|
|
break;
|
|
default:
|
|
Opcode = AArch64::CASPX;
|
|
break;
|
|
}
|
|
|
|
LLT s128 = LLT::scalar(128);
|
|
auto CASDst = MRI.createGenericVirtualRegister(s128);
|
|
auto CASDesired = MRI.createGenericVirtualRegister(s128);
|
|
auto CASNew = MRI.createGenericVirtualRegister(s128);
|
|
MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASDesired}, {})
|
|
.addUse(DesiredI->getOperand(0).getReg())
|
|
.addImm(AArch64::sube64)
|
|
.addUse(DesiredI->getOperand(1).getReg())
|
|
.addImm(AArch64::subo64);
|
|
MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASNew}, {})
|
|
.addUse(NewI->getOperand(0).getReg())
|
|
.addImm(AArch64::sube64)
|
|
.addUse(NewI->getOperand(1).getReg())
|
|
.addImm(AArch64::subo64);
|
|
|
|
CAS = MIRBuilder.buildInstr(Opcode, {CASDst}, {CASDesired, CASNew, Addr});
|
|
|
|
MIRBuilder.buildExtract({DstLo}, {CASDst}, 0);
|
|
MIRBuilder.buildExtract({DstHi}, {CASDst}, 64);
|
|
} else {
|
|
// The -O0 CMP_SWAP_128 is friendlier to generate code for because LDXP/STXP
|
|
// can take arbitrary registers so it just has the normal GPR64 operands the
|
|
// rest of AArch64 is expecting.
|
|
auto Ordering = (*MI.memoperands_begin())->getMergedOrdering();
|
|
unsigned Opcode;
|
|
switch (Ordering) {
|
|
case AtomicOrdering::Acquire:
|
|
Opcode = AArch64::CMP_SWAP_128_ACQUIRE;
|
|
break;
|
|
case AtomicOrdering::Release:
|
|
Opcode = AArch64::CMP_SWAP_128_RELEASE;
|
|
break;
|
|
case AtomicOrdering::AcquireRelease:
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
Opcode = AArch64::CMP_SWAP_128;
|
|
break;
|
|
default:
|
|
Opcode = AArch64::CMP_SWAP_128_MONOTONIC;
|
|
break;
|
|
}
|
|
|
|
auto Scratch = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
|
|
CAS = MIRBuilder.buildInstr(Opcode, {DstLo, DstHi, Scratch},
|
|
{Addr, DesiredI->getOperand(0),
|
|
DesiredI->getOperand(1), NewI->getOperand(0),
|
|
NewI->getOperand(1)});
|
|
}
|
|
|
|
CAS.cloneMemRefs(MI);
|
|
constrainSelectedInstRegOperands(*CAS, *ST->getInstrInfo(),
|
|
*MRI.getTargetRegisterInfo(),
|
|
*ST->getRegBankInfo());
|
|
|
|
MIRBuilder.buildMerge(MI.getOperand(0), {DstLo, DstHi});
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AArch64LegalizerInfo::legalizeCTTZ(MachineInstr &MI,
|
|
LegalizerHelper &Helper) const {
|
|
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
|
|
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
|
|
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
|
|
auto BitReverse = MIRBuilder.buildBitReverse(Ty, MI.getOperand(1));
|
|
MIRBuilder.buildCTLZ(MI.getOperand(0).getReg(), BitReverse);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|