forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			675 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			675 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- IntegerDivision.cpp - Expand integer division ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains an implementation of 32bit and 64bit scalar integer
 | |
| // division for targets that don't have native support. It's largely derived
 | |
| // from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
 | |
| // but hand-tuned for targets that prefer less control flow.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/IntegerDivision.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "integer-division"
 | |
| 
 | |
| /// Generate code to compute the remainder of two signed integers. Returns the
 | |
| /// remainder, which will have the sign of the dividend. Builder's insert point
 | |
| /// should be pointing where the caller wants code generated, e.g. at the srem
 | |
| /// instruction. This will generate a urem in the process, and Builder's insert
 | |
| /// point will be pointing at the uren (if present, i.e. not folded), ready to
 | |
| /// be expanded if the user wishes
 | |
| static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
 | |
|                                           IRBuilder<> &Builder) {
 | |
|   unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
 | |
|   ConstantInt *Shift;
 | |
| 
 | |
|   if (BitWidth == 64) {
 | |
|     Shift = Builder.getInt64(63);
 | |
|   } else {
 | |
|     assert(BitWidth == 32 && "Unexpected bit width");
 | |
|     Shift = Builder.getInt32(31);
 | |
|   }
 | |
| 
 | |
|   // Following instructions are generated for both i32 (shift 31) and
 | |
|   // i64 (shift 63).
 | |
| 
 | |
|   // ;   %dividend_sgn = ashr i32 %dividend, 31
 | |
|   // ;   %divisor_sgn  = ashr i32 %divisor, 31
 | |
|   // ;   %dvd_xor      = xor i32 %dividend, %dividend_sgn
 | |
|   // ;   %dvs_xor      = xor i32 %divisor, %divisor_sgn
 | |
|   // ;   %u_dividend   = sub i32 %dvd_xor, %dividend_sgn
 | |
|   // ;   %u_divisor    = sub i32 %dvs_xor, %divisor_sgn
 | |
|   // ;   %urem         = urem i32 %dividend, %divisor
 | |
|   // ;   %xored        = xor i32 %urem, %dividend_sgn
 | |
|   // ;   %srem         = sub i32 %xored, %dividend_sgn
 | |
|   Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
 | |
|   Value *DivisorSign  = Builder.CreateAShr(Divisor, Shift);
 | |
|   Value *DvdXor       = Builder.CreateXor(Dividend, DividendSign);
 | |
|   Value *DvsXor       = Builder.CreateXor(Divisor, DivisorSign);
 | |
|   Value *UDividend    = Builder.CreateSub(DvdXor, DividendSign);
 | |
|   Value *UDivisor     = Builder.CreateSub(DvsXor, DivisorSign);
 | |
|   Value *URem         = Builder.CreateURem(UDividend, UDivisor);
 | |
|   Value *Xored        = Builder.CreateXor(URem, DividendSign);
 | |
|   Value *SRem         = Builder.CreateSub(Xored, DividendSign);
 | |
| 
 | |
|   if (Instruction *URemInst = dyn_cast<Instruction>(URem))
 | |
|     Builder.SetInsertPoint(URemInst);
 | |
| 
 | |
|   return SRem;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Generate code to compute the remainder of two unsigned integers. Returns the
 | |
| /// remainder. Builder's insert point should be pointing where the caller wants
 | |
| /// code generated, e.g. at the urem instruction. This will generate a udiv in
 | |
| /// the process, and Builder's insert point will be pointing at the udiv (if
 | |
| /// present, i.e. not folded), ready to be expanded if the user wishes
 | |
| static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
 | |
|                                              IRBuilder<> &Builder) {
 | |
|   // Remainder = Dividend - Quotient*Divisor
 | |
| 
 | |
|   // Following instructions are generated for both i32 and i64
 | |
| 
 | |
|   // ;   %quotient  = udiv i32 %dividend, %divisor
 | |
|   // ;   %product   = mul i32 %divisor, %quotient
 | |
|   // ;   %remainder = sub i32 %dividend, %product
 | |
|   Value *Quotient  = Builder.CreateUDiv(Dividend, Divisor);
 | |
|   Value *Product   = Builder.CreateMul(Divisor, Quotient);
 | |
|   Value *Remainder = Builder.CreateSub(Dividend, Product);
 | |
| 
 | |
|   if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
 | |
|     Builder.SetInsertPoint(UDiv);
 | |
| 
 | |
|   return Remainder;
 | |
| }
 | |
| 
 | |
| /// Generate code to divide two signed integers. Returns the quotient, rounded
 | |
| /// towards 0. Builder's insert point should be pointing where the caller wants
 | |
| /// code generated, e.g. at the sdiv instruction. This will generate a udiv in
 | |
| /// the process, and Builder's insert point will be pointing at the udiv (if
 | |
| /// present, i.e. not folded), ready to be expanded if the user wishes.
 | |
| static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
 | |
|                                          IRBuilder<> &Builder) {
 | |
|   // Implementation taken from compiler-rt's __divsi3 and __divdi3
 | |
| 
 | |
|   unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
 | |
|   ConstantInt *Shift;
 | |
| 
 | |
|   if (BitWidth == 64) {
 | |
|     Shift = Builder.getInt64(63);
 | |
|   } else {
 | |
|     assert(BitWidth == 32 && "Unexpected bit width");
 | |
|     Shift = Builder.getInt32(31);
 | |
|   }
 | |
| 
 | |
|   // Following instructions are generated for both i32 (shift 31) and
 | |
|   // i64 (shift 63).
 | |
| 
 | |
|   // ;   %tmp    = ashr i32 %dividend, 31
 | |
|   // ;   %tmp1   = ashr i32 %divisor, 31
 | |
|   // ;   %tmp2   = xor i32 %tmp, %dividend
 | |
|   // ;   %u_dvnd = sub nsw i32 %tmp2, %tmp
 | |
|   // ;   %tmp3   = xor i32 %tmp1, %divisor
 | |
|   // ;   %u_dvsr = sub nsw i32 %tmp3, %tmp1
 | |
|   // ;   %q_sgn  = xor i32 %tmp1, %tmp
 | |
|   // ;   %q_mag  = udiv i32 %u_dvnd, %u_dvsr
 | |
|   // ;   %tmp4   = xor i32 %q_mag, %q_sgn
 | |
|   // ;   %q      = sub i32 %tmp4, %q_sgn
 | |
|   Value *Tmp    = Builder.CreateAShr(Dividend, Shift);
 | |
|   Value *Tmp1   = Builder.CreateAShr(Divisor, Shift);
 | |
|   Value *Tmp2   = Builder.CreateXor(Tmp, Dividend);
 | |
|   Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
 | |
|   Value *Tmp3   = Builder.CreateXor(Tmp1, Divisor);
 | |
|   Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
 | |
|   Value *Q_Sgn  = Builder.CreateXor(Tmp1, Tmp);
 | |
|   Value *Q_Mag  = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
 | |
|   Value *Tmp4   = Builder.CreateXor(Q_Mag, Q_Sgn);
 | |
|   Value *Q      = Builder.CreateSub(Tmp4, Q_Sgn);
 | |
| 
 | |
|   if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
 | |
|     Builder.SetInsertPoint(UDiv);
 | |
| 
 | |
|   return Q;
 | |
| }
 | |
| 
 | |
| /// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
 | |
| /// Returns the quotient, rounded towards 0. Builder's insert point should
 | |
| /// point where the caller wants code generated, e.g. at the udiv instruction.
 | |
| static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
 | |
|                                            IRBuilder<> &Builder) {
 | |
|   // The basic algorithm can be found in the compiler-rt project's
 | |
|   // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
 | |
|   // that's been hand-tuned to lessen the amount of control flow involved.
 | |
| 
 | |
|   // Some helper values
 | |
|   IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
 | |
|   unsigned BitWidth = DivTy->getBitWidth();
 | |
| 
 | |
|   ConstantInt *Zero;
 | |
|   ConstantInt *One;
 | |
|   ConstantInt *NegOne;
 | |
|   ConstantInt *MSB;
 | |
| 
 | |
|   if (BitWidth == 64) {
 | |
|     Zero      = Builder.getInt64(0);
 | |
|     One       = Builder.getInt64(1);
 | |
|     NegOne    = ConstantInt::getSigned(DivTy, -1);
 | |
|     MSB       = Builder.getInt64(63);
 | |
|   } else {
 | |
|     assert(BitWidth == 32 && "Unexpected bit width");
 | |
|     Zero      = Builder.getInt32(0);
 | |
|     One       = Builder.getInt32(1);
 | |
|     NegOne    = ConstantInt::getSigned(DivTy, -1);
 | |
|     MSB       = Builder.getInt32(31);
 | |
|   }
 | |
| 
 | |
|   ConstantInt *True = Builder.getTrue();
 | |
| 
 | |
|   BasicBlock *IBB = Builder.GetInsertBlock();
 | |
|   Function *F = IBB->getParent();
 | |
|   Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
 | |
|                                              DivTy);
 | |
| 
 | |
|   // Our CFG is going to look like:
 | |
|   // +---------------------+
 | |
|   // | special-cases       |
 | |
|   // |   ...               |
 | |
|   // +---------------------+
 | |
|   //  |       |
 | |
|   //  |   +----------+
 | |
|   //  |   |  bb1     |
 | |
|   //  |   |  ...     |
 | |
|   //  |   +----------+
 | |
|   //  |    |      |
 | |
|   //  |    |  +------------+
 | |
|   //  |    |  |  preheader |
 | |
|   //  |    |  |  ...       |
 | |
|   //  |    |  +------------+
 | |
|   //  |    |      |
 | |
|   //  |    |      |      +---+
 | |
|   //  |    |      |      |   |
 | |
|   //  |    |  +------------+ |
 | |
|   //  |    |  |  do-while  | |
 | |
|   //  |    |  |  ...       | |
 | |
|   //  |    |  +------------+ |
 | |
|   //  |    |      |      |   |
 | |
|   //  |   +-----------+  +---+
 | |
|   //  |   | loop-exit |
 | |
|   //  |   |  ...      |
 | |
|   //  |   +-----------+
 | |
|   //  |     |
 | |
|   // +-------+
 | |
|   // | ...   |
 | |
|   // | end   |
 | |
|   // +-------+
 | |
|   BasicBlock *SpecialCases = Builder.GetInsertBlock();
 | |
|   SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
 | |
|   BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
 | |
|                                                   "udiv-end");
 | |
|   BasicBlock *LoopExit  = BasicBlock::Create(Builder.getContext(),
 | |
|                                              "udiv-loop-exit", F, End);
 | |
|   BasicBlock *DoWhile   = BasicBlock::Create(Builder.getContext(),
 | |
|                                              "udiv-do-while", F, End);
 | |
|   BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
 | |
|                                              "udiv-preheader", F, End);
 | |
|   BasicBlock *BB1       = BasicBlock::Create(Builder.getContext(),
 | |
|                                              "udiv-bb1", F, End);
 | |
| 
 | |
|   // We'll be overwriting the terminator to insert our extra blocks
 | |
|   SpecialCases->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
 | |
| 
 | |
|   // First off, check for special cases: dividend or divisor is zero, divisor
 | |
|   // is greater than dividend, and divisor is 1.
 | |
|   // ; special-cases:
 | |
|   // ;   %ret0_1      = icmp eq i32 %divisor, 0
 | |
|   // ;   %ret0_2      = icmp eq i32 %dividend, 0
 | |
|   // ;   %ret0_3      = or i1 %ret0_1, %ret0_2
 | |
|   // ;   %tmp0        = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
 | |
|   // ;   %tmp1        = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
 | |
|   // ;   %sr          = sub nsw i32 %tmp0, %tmp1
 | |
|   // ;   %ret0_4      = icmp ugt i32 %sr, 31
 | |
|   // ;   %ret0        = or i1 %ret0_3, %ret0_4
 | |
|   // ;   %retDividend = icmp eq i32 %sr, 31
 | |
|   // ;   %retVal      = select i1 %ret0, i32 0, i32 %dividend
 | |
|   // ;   %earlyRet    = or i1 %ret0, %retDividend
 | |
|   // ;   br i1 %earlyRet, label %end, label %bb1
 | |
|   Builder.SetInsertPoint(SpecialCases);
 | |
|   Value *Ret0_1      = Builder.CreateICmpEQ(Divisor, Zero);
 | |
|   Value *Ret0_2      = Builder.CreateICmpEQ(Dividend, Zero);
 | |
|   Value *Ret0_3      = Builder.CreateOr(Ret0_1, Ret0_2);
 | |
|   Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
 | |
|   Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
 | |
|   Value *SR          = Builder.CreateSub(Tmp0, Tmp1);
 | |
|   Value *Ret0_4      = Builder.CreateICmpUGT(SR, MSB);
 | |
|   Value *Ret0        = Builder.CreateOr(Ret0_3, Ret0_4);
 | |
|   Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
 | |
|   Value *RetVal      = Builder.CreateSelect(Ret0, Zero, Dividend);
 | |
|   Value *EarlyRet    = Builder.CreateOr(Ret0, RetDividend);
 | |
|   Builder.CreateCondBr(EarlyRet, End, BB1);
 | |
| 
 | |
|   // ; bb1:                                             ; preds = %special-cases
 | |
|   // ;   %sr_1     = add i32 %sr, 1
 | |
|   // ;   %tmp2     = sub i32 31, %sr
 | |
|   // ;   %q        = shl i32 %dividend, %tmp2
 | |
|   // ;   %skipLoop = icmp eq i32 %sr_1, 0
 | |
|   // ;   br i1 %skipLoop, label %loop-exit, label %preheader
 | |
|   Builder.SetInsertPoint(BB1);
 | |
|   Value *SR_1     = Builder.CreateAdd(SR, One);
 | |
|   Value *Tmp2     = Builder.CreateSub(MSB, SR);
 | |
|   Value *Q        = Builder.CreateShl(Dividend, Tmp2);
 | |
|   Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
 | |
|   Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
 | |
| 
 | |
|   // ; preheader:                                           ; preds = %bb1
 | |
|   // ;   %tmp3 = lshr i32 %dividend, %sr_1
 | |
|   // ;   %tmp4 = add i32 %divisor, -1
 | |
|   // ;   br label %do-while
 | |
|   Builder.SetInsertPoint(Preheader);
 | |
|   Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
 | |
|   Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
 | |
|   Builder.CreateBr(DoWhile);
 | |
| 
 | |
|   // ; do-while:                                 ; preds = %do-while, %preheader
 | |
|   // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
 | |
|   // ;   %sr_3    = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
 | |
|   // ;   %r_1     = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
 | |
|   // ;   %q_2     = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
 | |
|   // ;   %tmp5  = shl i32 %r_1, 1
 | |
|   // ;   %tmp6  = lshr i32 %q_2, 31
 | |
|   // ;   %tmp7  = or i32 %tmp5, %tmp6
 | |
|   // ;   %tmp8  = shl i32 %q_2, 1
 | |
|   // ;   %q_1   = or i32 %carry_1, %tmp8
 | |
|   // ;   %tmp9  = sub i32 %tmp4, %tmp7
 | |
|   // ;   %tmp10 = ashr i32 %tmp9, 31
 | |
|   // ;   %carry = and i32 %tmp10, 1
 | |
|   // ;   %tmp11 = and i32 %tmp10, %divisor
 | |
|   // ;   %r     = sub i32 %tmp7, %tmp11
 | |
|   // ;   %sr_2  = add i32 %sr_3, -1
 | |
|   // ;   %tmp12 = icmp eq i32 %sr_2, 0
 | |
|   // ;   br i1 %tmp12, label %loop-exit, label %do-while
 | |
|   Builder.SetInsertPoint(DoWhile);
 | |
|   PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
 | |
|   PHINode *SR_3    = Builder.CreatePHI(DivTy, 2);
 | |
|   PHINode *R_1     = Builder.CreatePHI(DivTy, 2);
 | |
|   PHINode *Q_2     = Builder.CreatePHI(DivTy, 2);
 | |
|   Value *Tmp5  = Builder.CreateShl(R_1, One);
 | |
|   Value *Tmp6  = Builder.CreateLShr(Q_2, MSB);
 | |
|   Value *Tmp7  = Builder.CreateOr(Tmp5, Tmp6);
 | |
|   Value *Tmp8  = Builder.CreateShl(Q_2, One);
 | |
|   Value *Q_1   = Builder.CreateOr(Carry_1, Tmp8);
 | |
|   Value *Tmp9  = Builder.CreateSub(Tmp4, Tmp7);
 | |
|   Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
 | |
|   Value *Carry = Builder.CreateAnd(Tmp10, One);
 | |
|   Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
 | |
|   Value *R     = Builder.CreateSub(Tmp7, Tmp11);
 | |
|   Value *SR_2  = Builder.CreateAdd(SR_3, NegOne);
 | |
|   Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
 | |
|   Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
 | |
| 
 | |
|   // ; loop-exit:                                      ; preds = %do-while, %bb1
 | |
|   // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
 | |
|   // ;   %q_3     = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
 | |
|   // ;   %tmp13 = shl i32 %q_3, 1
 | |
|   // ;   %q_4   = or i32 %carry_2, %tmp13
 | |
|   // ;   br label %end
 | |
|   Builder.SetInsertPoint(LoopExit);
 | |
|   PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
 | |
|   PHINode *Q_3     = Builder.CreatePHI(DivTy, 2);
 | |
|   Value *Tmp13 = Builder.CreateShl(Q_3, One);
 | |
|   Value *Q_4   = Builder.CreateOr(Carry_2, Tmp13);
 | |
|   Builder.CreateBr(End);
 | |
| 
 | |
|   // ; end:                                 ; preds = %loop-exit, %special-cases
 | |
|   // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
 | |
|   // ;   ret i32 %q_5
 | |
|   Builder.SetInsertPoint(End, End->begin());
 | |
|   PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
 | |
| 
 | |
|   // Populate the Phis, since all values have now been created. Our Phis were:
 | |
|   // ;   %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
 | |
|   Carry_1->addIncoming(Zero, Preheader);
 | |
|   Carry_1->addIncoming(Carry, DoWhile);
 | |
|   // ;   %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
 | |
|   SR_3->addIncoming(SR_1, Preheader);
 | |
|   SR_3->addIncoming(SR_2, DoWhile);
 | |
|   // ;   %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
 | |
|   R_1->addIncoming(Tmp3, Preheader);
 | |
|   R_1->addIncoming(R, DoWhile);
 | |
|   // ;   %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
 | |
|   Q_2->addIncoming(Q, Preheader);
 | |
|   Q_2->addIncoming(Q_1, DoWhile);
 | |
|   // ;   %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
 | |
|   Carry_2->addIncoming(Zero, BB1);
 | |
|   Carry_2->addIncoming(Carry, DoWhile);
 | |
|   // ;   %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
 | |
|   Q_3->addIncoming(Q, BB1);
 | |
|   Q_3->addIncoming(Q_1, DoWhile);
 | |
|   // ;   %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
 | |
|   Q_5->addIncoming(Q_4, LoopExit);
 | |
|   Q_5->addIncoming(RetVal, SpecialCases);
 | |
| 
 | |
|   return Q_5;
 | |
| }
 | |
| 
 | |
| /// Generate code to calculate the remainder of two integers, replacing Rem with
 | |
| /// the generated code. This currently generates code using the udiv expansion,
 | |
| /// but future work includes generating more specialized code, e.g. when more
 | |
| /// information about the operands are known. Implements both 32bit and 64bit
 | |
| /// scalar division.
 | |
| ///
 | |
| /// @brief Replace Rem with generated code.
 | |
| bool llvm::expandRemainder(BinaryOperator *Rem) {
 | |
|   assert((Rem->getOpcode() == Instruction::SRem ||
 | |
|           Rem->getOpcode() == Instruction::URem) &&
 | |
|          "Trying to expand remainder from a non-remainder function");
 | |
| 
 | |
|   IRBuilder<> Builder(Rem);
 | |
| 
 | |
|   assert(!Rem->getType()->isVectorTy() && "Div over vectors not supported");
 | |
|   assert((Rem->getType()->getIntegerBitWidth() == 32 ||
 | |
|           Rem->getType()->getIntegerBitWidth() == 64) &&
 | |
|          "Div of bitwidth other than 32 or 64 not supported");
 | |
| 
 | |
|   // First prepare the sign if it's a signed remainder
 | |
|   if (Rem->getOpcode() == Instruction::SRem) {
 | |
|     Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
 | |
|                                                    Rem->getOperand(1), Builder);
 | |
| 
 | |
|     // Check whether this is the insert point while Rem is still valid.
 | |
|     bool IsInsertPoint = Rem->getIterator() == Builder.GetInsertPoint();
 | |
|     Rem->replaceAllUsesWith(Remainder);
 | |
|     Rem->dropAllReferences();
 | |
|     Rem->eraseFromParent();
 | |
| 
 | |
|     // If we didn't actually generate an urem instruction, we're done
 | |
|     // This happens for example if the input were constant. In this case the
 | |
|     // Builder insertion point was unchanged
 | |
|     if (IsInsertPoint)
 | |
|       return true;
 | |
| 
 | |
|     BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
 | |
|     Rem = BO;
 | |
|   }
 | |
| 
 | |
|   Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
 | |
|                                                     Rem->getOperand(1),
 | |
|                                                     Builder);
 | |
| 
 | |
|   Rem->replaceAllUsesWith(Remainder);
 | |
|   Rem->dropAllReferences();
 | |
|   Rem->eraseFromParent();
 | |
| 
 | |
|   // Expand the udiv
 | |
|   if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
 | |
|     assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
 | |
|     expandDivision(UDiv);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Generate code to divide two integers, replacing Div with the generated
 | |
| /// code. This currently generates code similarly to compiler-rt's
 | |
| /// implementations, but future work includes generating more specialized code
 | |
| /// when more information about the operands are known. Implements both
 | |
| /// 32bit and 64bit scalar division.
 | |
| ///
 | |
| /// @brief Replace Div with generated code.
 | |
| bool llvm::expandDivision(BinaryOperator *Div) {
 | |
|   assert((Div->getOpcode() == Instruction::SDiv ||
 | |
|           Div->getOpcode() == Instruction::UDiv) &&
 | |
|          "Trying to expand division from a non-division function");
 | |
| 
 | |
|   IRBuilder<> Builder(Div);
 | |
| 
 | |
|   assert(!Div->getType()->isVectorTy() && "Div over vectors not supported");
 | |
|   assert((Div->getType()->getIntegerBitWidth() == 32 ||
 | |
|           Div->getType()->getIntegerBitWidth() == 64) &&
 | |
|          "Div of bitwidth other than 32 or 64 not supported");
 | |
| 
 | |
|   // First prepare the sign if it's a signed division
 | |
|   if (Div->getOpcode() == Instruction::SDiv) {
 | |
|     // Lower the code to unsigned division, and reset Div to point to the udiv.
 | |
|     Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
 | |
|                                                  Div->getOperand(1), Builder);
 | |
| 
 | |
|     // Check whether this is the insert point while Div is still valid.
 | |
|     bool IsInsertPoint = Div->getIterator() == Builder.GetInsertPoint();
 | |
|     Div->replaceAllUsesWith(Quotient);
 | |
|     Div->dropAllReferences();
 | |
|     Div->eraseFromParent();
 | |
| 
 | |
|     // If we didn't actually generate an udiv instruction, we're done
 | |
|     // This happens for example if the input were constant. In this case the
 | |
|     // Builder insertion point was unchanged
 | |
|     if (IsInsertPoint)
 | |
|       return true;
 | |
| 
 | |
|     BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
 | |
|     Div = BO;
 | |
|   }
 | |
| 
 | |
|   // Insert the unsigned division code
 | |
|   Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
 | |
|                                                  Div->getOperand(1),
 | |
|                                                  Builder);
 | |
|   Div->replaceAllUsesWith(Quotient);
 | |
|   Div->dropAllReferences();
 | |
|   Div->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Generate code to compute the remainder of two integers of bitwidth up to 
 | |
| /// 32 bits. Uses the above routines and extends the inputs/truncates the
 | |
| /// outputs to operate in 32 bits; that is, these routines are good for targets
 | |
| /// that have no or very little suppport for smaller than 32 bit integer 
 | |
| /// arithmetic.
 | |
| ///
 | |
| /// @brief Replace Rem with emulation code.
 | |
| bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
 | |
|   assert((Rem->getOpcode() == Instruction::SRem ||
 | |
|           Rem->getOpcode() == Instruction::URem) &&
 | |
|           "Trying to expand remainder from a non-remainder function");
 | |
| 
 | |
|   Type *RemTy = Rem->getType();
 | |
|   assert(!RemTy->isVectorTy() && "Div over vectors not supported");
 | |
| 
 | |
|   unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
 | |
| 
 | |
|   assert(RemTyBitWidth <= 32 &&
 | |
|          "Div of bitwidth greater than 32 not supported");
 | |
| 
 | |
|   if (RemTyBitWidth == 32)
 | |
|     return expandRemainder(Rem);
 | |
| 
 | |
|   // If bitwidth smaller than 32 extend inputs, extend output and proceed
 | |
|   // with 32 bit division.
 | |
|   IRBuilder<> Builder(Rem);
 | |
| 
 | |
|   Value *ExtDividend;
 | |
|   Value *ExtDivisor;
 | |
|   Value *ExtRem;
 | |
|   Value *Trunc;
 | |
|   Type *Int32Ty = Builder.getInt32Ty();
 | |
| 
 | |
|   if (Rem->getOpcode() == Instruction::SRem) {
 | |
|     ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
 | |
|     ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
 | |
|     ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
 | |
|   } else {
 | |
|     ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
 | |
|     ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
 | |
|     ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
 | |
|   }
 | |
|   Trunc = Builder.CreateTrunc(ExtRem, RemTy);
 | |
| 
 | |
|   Rem->replaceAllUsesWith(Trunc);
 | |
|   Rem->dropAllReferences();
 | |
|   Rem->eraseFromParent();
 | |
| 
 | |
|   return expandRemainder(cast<BinaryOperator>(ExtRem));
 | |
| }
 | |
| 
 | |
| /// Generate code to compute the remainder of two integers of bitwidth up to 
 | |
| /// 64 bits. Uses the above routines and extends the inputs/truncates the
 | |
| /// outputs to operate in 64 bits.
 | |
| ///
 | |
| /// @brief Replace Rem with emulation code.
 | |
| bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
 | |
|   assert((Rem->getOpcode() == Instruction::SRem ||
 | |
|           Rem->getOpcode() == Instruction::URem) &&
 | |
|           "Trying to expand remainder from a non-remainder function");
 | |
| 
 | |
|   Type *RemTy = Rem->getType();
 | |
|   assert(!RemTy->isVectorTy() && "Div over vectors not supported");
 | |
| 
 | |
|   unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
 | |
| 
 | |
|   assert(RemTyBitWidth <= 64 && "Div of bitwidth greater than 64 not supported");
 | |
| 
 | |
|   if (RemTyBitWidth == 64)
 | |
|     return expandRemainder(Rem);
 | |
| 
 | |
|   // If bitwidth smaller than 64 extend inputs, extend output and proceed
 | |
|   // with 64 bit division.
 | |
|   IRBuilder<> Builder(Rem);
 | |
| 
 | |
|   Value *ExtDividend;
 | |
|   Value *ExtDivisor;
 | |
|   Value *ExtRem;
 | |
|   Value *Trunc;
 | |
|   Type *Int64Ty = Builder.getInt64Ty();
 | |
| 
 | |
|   if (Rem->getOpcode() == Instruction::SRem) {
 | |
|     ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
 | |
|     ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
 | |
|     ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
 | |
|   } else {
 | |
|     ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
 | |
|     ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
 | |
|     ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
 | |
|   }
 | |
|   Trunc = Builder.CreateTrunc(ExtRem, RemTy);
 | |
| 
 | |
|   Rem->replaceAllUsesWith(Trunc);
 | |
|   Rem->dropAllReferences();
 | |
|   Rem->eraseFromParent();
 | |
| 
 | |
|   return expandRemainder(cast<BinaryOperator>(ExtRem));
 | |
| }
 | |
| 
 | |
| /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
 | |
| /// above routines and extends the inputs/truncates the outputs to operate
 | |
| /// in 32 bits; that is, these routines are good for targets that have no
 | |
| /// or very little support for smaller than 32 bit integer arithmetic.
 | |
| ///
 | |
| /// @brief Replace Div with emulation code.
 | |
| bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
 | |
|   assert((Div->getOpcode() == Instruction::SDiv ||
 | |
|           Div->getOpcode() == Instruction::UDiv) &&
 | |
|           "Trying to expand division from a non-division function");
 | |
| 
 | |
|   Type *DivTy = Div->getType();
 | |
|   assert(!DivTy->isVectorTy() && "Div over vectors not supported");
 | |
| 
 | |
|   unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
 | |
| 
 | |
|   assert(DivTyBitWidth <= 32 && "Div of bitwidth greater than 32 not supported");
 | |
| 
 | |
|   if (DivTyBitWidth == 32)
 | |
|     return expandDivision(Div);
 | |
| 
 | |
|   // If bitwidth smaller than 32 extend inputs, extend output and proceed
 | |
|   // with 32 bit division.
 | |
|   IRBuilder<> Builder(Div);
 | |
| 
 | |
|   Value *ExtDividend;
 | |
|   Value *ExtDivisor;
 | |
|   Value *ExtDiv;
 | |
|   Value *Trunc;
 | |
|   Type *Int32Ty = Builder.getInt32Ty();
 | |
| 
 | |
|   if (Div->getOpcode() == Instruction::SDiv) {
 | |
|     ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
 | |
|     ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
 | |
|     ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
 | |
|   } else {
 | |
|     ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
 | |
|     ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
 | |
|     ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);  
 | |
|   }
 | |
|   Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
 | |
| 
 | |
|   Div->replaceAllUsesWith(Trunc);
 | |
|   Div->dropAllReferences();
 | |
|   Div->eraseFromParent();
 | |
| 
 | |
|   return expandDivision(cast<BinaryOperator>(ExtDiv));
 | |
| }
 | |
| 
 | |
| /// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
 | |
| /// above routines and extends the inputs/truncates the outputs to operate
 | |
| /// in 64 bits.
 | |
| ///
 | |
| /// @brief Replace Div with emulation code.
 | |
| bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
 | |
|   assert((Div->getOpcode() == Instruction::SDiv ||
 | |
|           Div->getOpcode() == Instruction::UDiv) &&
 | |
|           "Trying to expand division from a non-division function");
 | |
| 
 | |
|   Type *DivTy = Div->getType();
 | |
|   assert(!DivTy->isVectorTy() && "Div over vectors not supported");
 | |
| 
 | |
|   unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
 | |
| 
 | |
|   assert(DivTyBitWidth <= 64 &&
 | |
|          "Div of bitwidth greater than 64 not supported");
 | |
| 
 | |
|   if (DivTyBitWidth == 64)
 | |
|     return expandDivision(Div);
 | |
| 
 | |
|   // If bitwidth smaller than 64 extend inputs, extend output and proceed
 | |
|   // with 64 bit division.
 | |
|   IRBuilder<> Builder(Div);
 | |
| 
 | |
|   Value *ExtDividend;
 | |
|   Value *ExtDivisor;
 | |
|   Value *ExtDiv;
 | |
|   Value *Trunc;
 | |
|   Type *Int64Ty = Builder.getInt64Ty();
 | |
| 
 | |
|   if (Div->getOpcode() == Instruction::SDiv) {
 | |
|     ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
 | |
|     ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
 | |
|     ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
 | |
|   } else {
 | |
|     ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
 | |
|     ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
 | |
|     ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);  
 | |
|   }
 | |
|   Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
 | |
| 
 | |
|   Div->replaceAllUsesWith(Trunc);
 | |
|   Div->dropAllReferences();
 | |
|   Div->eraseFromParent();
 | |
| 
 | |
|   return expandDivision(cast<BinaryOperator>(ExtDiv));
 | |
| }
 |