forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			487 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			487 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the SSAUpdater class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/TinyPtrVector.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "ssaupdater"
 | |
| 
 | |
| typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
 | |
| static AvailableValsTy &getAvailableVals(void *AV) {
 | |
|   return *static_cast<AvailableValsTy*>(AV);
 | |
| }
 | |
| 
 | |
| SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
 | |
|   : AV(nullptr), ProtoType(nullptr), ProtoName(), InsertedPHIs(NewPHI) {}
 | |
| 
 | |
| SSAUpdater::~SSAUpdater() {
 | |
|   delete static_cast<AvailableValsTy*>(AV);
 | |
| }
 | |
| 
 | |
| void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
 | |
|   if (!AV)
 | |
|     AV = new AvailableValsTy();
 | |
|   else
 | |
|     getAvailableVals(AV).clear();
 | |
|   ProtoType = Ty;
 | |
|   ProtoName = Name;
 | |
| }
 | |
| 
 | |
| bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
 | |
|   return getAvailableVals(AV).count(BB);
 | |
| }
 | |
| 
 | |
| void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
 | |
|   assert(ProtoType && "Need to initialize SSAUpdater");
 | |
|   assert(ProtoType == V->getType() &&
 | |
|          "All rewritten values must have the same type");
 | |
|   getAvailableVals(AV)[BB] = V;
 | |
| }
 | |
| 
 | |
| static bool IsEquivalentPHI(PHINode *PHI,
 | |
|                           SmallDenseMap<BasicBlock*, Value*, 8> &ValueMapping) {
 | |
|   unsigned PHINumValues = PHI->getNumIncomingValues();
 | |
|   if (PHINumValues != ValueMapping.size())
 | |
|     return false;
 | |
| 
 | |
|   // Scan the phi to see if it matches.
 | |
|   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
 | |
|     if (ValueMapping[PHI->getIncomingBlock(i)] !=
 | |
|         PHI->getIncomingValue(i)) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
 | |
|   Value *Res = GetValueAtEndOfBlockInternal(BB);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
 | |
|   // If there is no definition of the renamed variable in this block, just use
 | |
|   // GetValueAtEndOfBlock to do our work.
 | |
|   if (!HasValueForBlock(BB))
 | |
|     return GetValueAtEndOfBlock(BB);
 | |
| 
 | |
|   // Otherwise, we have the hard case.  Get the live-in values for each
 | |
|   // predecessor.
 | |
|   SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
 | |
|   Value *SingularValue = nullptr;
 | |
| 
 | |
|   // We can get our predecessor info by walking the pred_iterator list, but it
 | |
|   // is relatively slow.  If we already have PHI nodes in this block, walk one
 | |
|   // of them to get the predecessor list instead.
 | |
|   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
 | |
|     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
 | |
|       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
 | |
|       Value *PredVal = GetValueAtEndOfBlock(PredBB);
 | |
|       PredValues.push_back(std::make_pair(PredBB, PredVal));
 | |
| 
 | |
|       // Compute SingularValue.
 | |
|       if (i == 0)
 | |
|         SingularValue = PredVal;
 | |
|       else if (PredVal != SingularValue)
 | |
|         SingularValue = nullptr;
 | |
|     }
 | |
|   } else {
 | |
|     bool isFirstPred = true;
 | |
|     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|       BasicBlock *PredBB = *PI;
 | |
|       Value *PredVal = GetValueAtEndOfBlock(PredBB);
 | |
|       PredValues.push_back(std::make_pair(PredBB, PredVal));
 | |
| 
 | |
|       // Compute SingularValue.
 | |
|       if (isFirstPred) {
 | |
|         SingularValue = PredVal;
 | |
|         isFirstPred = false;
 | |
|       } else if (PredVal != SingularValue)
 | |
|         SingularValue = nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are no predecessors, just return undef.
 | |
|   if (PredValues.empty())
 | |
|     return UndefValue::get(ProtoType);
 | |
| 
 | |
|   // Otherwise, if all the merged values are the same, just use it.
 | |
|   if (SingularValue)
 | |
|     return SingularValue;
 | |
| 
 | |
|   // Otherwise, we do need a PHI: check to see if we already have one available
 | |
|   // in this block that produces the right value.
 | |
|   if (isa<PHINode>(BB->begin())) {
 | |
|     SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(),
 | |
|                                                        PredValues.end());
 | |
|     PHINode *SomePHI;
 | |
|     for (BasicBlock::iterator It = BB->begin();
 | |
|          (SomePHI = dyn_cast<PHINode>(It)); ++It) {
 | |
|       if (IsEquivalentPHI(SomePHI, ValueMapping))
 | |
|         return SomePHI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ok, we have no way out, insert a new one now.
 | |
|   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
 | |
|                                          ProtoName, &BB->front());
 | |
| 
 | |
|   // Fill in all the predecessors of the PHI.
 | |
|   for (const auto &PredValue : PredValues)
 | |
|     InsertedPHI->addIncoming(PredValue.second, PredValue.first);
 | |
| 
 | |
|   // See if the PHI node can be merged to a single value.  This can happen in
 | |
|   // loop cases when we get a PHI of itself and one other value.
 | |
|   if (Value *V =
 | |
|           SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
 | |
|     InsertedPHI->eraseFromParent();
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   // Set the DebugLoc of the inserted PHI, if available.
 | |
|   DebugLoc DL;
 | |
|   if (const Instruction *I = BB->getFirstNonPHI())
 | |
|       DL = I->getDebugLoc();
 | |
|   InsertedPHI->setDebugLoc(DL);
 | |
| 
 | |
|   // If the client wants to know about all new instructions, tell it.
 | |
|   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
 | |
| 
 | |
|   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
 | |
|   return InsertedPHI;
 | |
| }
 | |
| 
 | |
| void SSAUpdater::RewriteUse(Use &U) {
 | |
|   Instruction *User = cast<Instruction>(U.getUser());
 | |
| 
 | |
|   Value *V;
 | |
|   if (PHINode *UserPN = dyn_cast<PHINode>(User))
 | |
|     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
 | |
|   else
 | |
|     V = GetValueInMiddleOfBlock(User->getParent());
 | |
| 
 | |
|   // Notify that users of the existing value that it is being replaced.
 | |
|   Value *OldVal = U.get();
 | |
|   if (OldVal != V && OldVal->hasValueHandle())
 | |
|     ValueHandleBase::ValueIsRAUWd(OldVal, V);
 | |
| 
 | |
|   U.set(V);
 | |
| }
 | |
| 
 | |
| void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
 | |
|   Instruction *User = cast<Instruction>(U.getUser());
 | |
|   
 | |
|   Value *V;
 | |
|   if (PHINode *UserPN = dyn_cast<PHINode>(User))
 | |
|     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
 | |
|   else
 | |
|     V = GetValueAtEndOfBlock(User->getParent());
 | |
|   
 | |
|   U.set(V);
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template<>
 | |
| class SSAUpdaterTraits<SSAUpdater> {
 | |
| public:
 | |
|   typedef BasicBlock BlkT;
 | |
|   typedef Value *ValT;
 | |
|   typedef PHINode PhiT;
 | |
| 
 | |
|   typedef succ_iterator BlkSucc_iterator;
 | |
|   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
 | |
|   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
 | |
| 
 | |
|   class PHI_iterator {
 | |
|   private:
 | |
|     PHINode *PHI;
 | |
|     unsigned idx;
 | |
| 
 | |
|   public:
 | |
|     explicit PHI_iterator(PHINode *P) // begin iterator
 | |
|       : PHI(P), idx(0) {}
 | |
|     PHI_iterator(PHINode *P, bool) // end iterator
 | |
|       : PHI(P), idx(PHI->getNumIncomingValues()) {}
 | |
| 
 | |
|     PHI_iterator &operator++() { ++idx; return *this; } 
 | |
|     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
 | |
|     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
 | |
|     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
 | |
|     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
 | |
|   };
 | |
| 
 | |
|   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
 | |
|   static PHI_iterator PHI_end(PhiT *PHI) {
 | |
|     return PHI_iterator(PHI, true);
 | |
|   }
 | |
| 
 | |
|   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
 | |
|   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
 | |
|   static void FindPredecessorBlocks(BasicBlock *BB,
 | |
|                                     SmallVectorImpl<BasicBlock*> *Preds) {
 | |
|     // We can get our predecessor info by walking the pred_iterator list,
 | |
|     // but it is relatively slow.  If we already have PHI nodes in this
 | |
|     // block, walk one of them to get the predecessor list instead.
 | |
|     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
 | |
|       Preds->append(SomePhi->block_begin(), SomePhi->block_end());
 | |
|     } else {
 | |
|       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|         Preds->push_back(*PI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// GetUndefVal - Get an undefined value of the same type as the value
 | |
|   /// being handled.
 | |
|   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
 | |
|     return UndefValue::get(Updater->ProtoType);
 | |
|   }
 | |
| 
 | |
|   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
 | |
|   /// Reserve space for the operands but do not fill them in yet.
 | |
|   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
 | |
|                                SSAUpdater *Updater) {
 | |
|     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
 | |
|                                    Updater->ProtoName, &BB->front());
 | |
|     return PHI;
 | |
|   }
 | |
| 
 | |
|   /// AddPHIOperand - Add the specified value as an operand of the PHI for
 | |
|   /// the specified predecessor block.
 | |
|   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
 | |
|     PHI->addIncoming(Val, Pred);
 | |
|   }
 | |
| 
 | |
|   /// InstrIsPHI - Check if an instruction is a PHI.
 | |
|   ///
 | |
|   static PHINode *InstrIsPHI(Instruction *I) {
 | |
|     return dyn_cast<PHINode>(I);
 | |
|   }
 | |
| 
 | |
|   /// ValueIsPHI - Check if a value is a PHI.
 | |
|   ///
 | |
|   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
 | |
|     return dyn_cast<PHINode>(Val);
 | |
|   }
 | |
| 
 | |
|   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
 | |
|   /// operands, i.e., it was just added.
 | |
|   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
 | |
|     PHINode *PHI = ValueIsPHI(Val, Updater);
 | |
|     if (PHI && PHI->getNumIncomingValues() == 0)
 | |
|       return PHI;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   /// GetPHIValue - For the specified PHI instruction, return the value
 | |
|   /// that it defines.
 | |
|   static Value *GetPHIValue(PHINode *PHI) {
 | |
|     return PHI;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| /// Check to see if AvailableVals has an entry for the specified BB and if so,
 | |
| /// return it.  If not, construct SSA form by first calculating the required
 | |
| /// placement of PHIs and then inserting new PHIs where needed.
 | |
| Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
 | |
|   AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | |
|   if (Value *V = AvailableVals[BB])
 | |
|     return V;
 | |
| 
 | |
|   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
 | |
|   return Impl.GetValue(BB);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoadAndStorePromoter Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| LoadAndStorePromoter::
 | |
| LoadAndStorePromoter(ArrayRef<const Instruction*> Insts,
 | |
|                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
 | |
|   if (Insts.empty()) return;
 | |
|   
 | |
|   const Value *SomeVal;
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
 | |
|     SomeVal = LI;
 | |
|   else
 | |
|     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
 | |
| 
 | |
|   if (BaseName.empty())
 | |
|     BaseName = SomeVal->getName();
 | |
|   SSA.Initialize(SomeVal->getType(), BaseName);
 | |
| }
 | |
| 
 | |
| 
 | |
| void LoadAndStorePromoter::
 | |
| run(const SmallVectorImpl<Instruction*> &Insts) const {
 | |
|   
 | |
|   // First step: bucket up uses of the alloca by the block they occur in.
 | |
|   // This is important because we have to handle multiple defs/uses in a block
 | |
|   // ourselves: SSAUpdater is purely for cross-block references.
 | |
|   DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
 | |
| 
 | |
|   for (Instruction *User : Insts)
 | |
|     UsesByBlock[User->getParent()].push_back(User);
 | |
|   
 | |
|   // Okay, now we can iterate over all the blocks in the function with uses,
 | |
|   // processing them.  Keep track of which loads are loading a live-in value.
 | |
|   // Walk the uses in the use-list order to be determinstic.
 | |
|   SmallVector<LoadInst*, 32> LiveInLoads;
 | |
|   DenseMap<Value*, Value*> ReplacedLoads;
 | |
| 
 | |
|   for (Instruction *User : Insts) {
 | |
|     BasicBlock *BB = User->getParent();
 | |
|     TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
 | |
|     
 | |
|     // If this block has already been processed, ignore this repeat use.
 | |
|     if (BlockUses.empty()) continue;
 | |
|     
 | |
|     // Okay, this is the first use in the block.  If this block just has a
 | |
|     // single user in it, we can rewrite it trivially.
 | |
|     if (BlockUses.size() == 1) {
 | |
|       // If it is a store, it is a trivial def of the value in the block.
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|         updateDebugInfo(SI);
 | |
|         SSA.AddAvailableValue(BB, SI->getOperand(0));
 | |
|       } else 
 | |
|         // Otherwise it is a load, queue it to rewrite as a live-in load.
 | |
|         LiveInLoads.push_back(cast<LoadInst>(User));
 | |
|       BlockUses.clear();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, check to see if this block is all loads.
 | |
|     bool HasStore = false;
 | |
|     for (Instruction *I : BlockUses) {
 | |
|       if (isa<StoreInst>(I)) {
 | |
|         HasStore = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If so, we can queue them all as live in loads.  We don't have an
 | |
|     // efficient way to tell which on is first in the block and don't want to
 | |
|     // scan large blocks, so just add all loads as live ins.
 | |
|     if (!HasStore) {
 | |
|       for (Instruction *I : BlockUses)
 | |
|         LiveInLoads.push_back(cast<LoadInst>(I));
 | |
|       BlockUses.clear();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
 | |
|     // Since SSAUpdater is purely for cross-block values, we need to determine
 | |
|     // the order of these instructions in the block.  If the first use in the
 | |
|     // block is a load, then it uses the live in value.  The last store defines
 | |
|     // the live out value.  We handle this by doing a linear scan of the block.
 | |
|     Value *StoredValue = nullptr;
 | |
|     for (Instruction &I : *BB) {
 | |
|       if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
 | |
|         // If this is a load from an unrelated pointer, ignore it.
 | |
|         if (!isInstInList(L, Insts)) continue;
 | |
|         
 | |
|         // If we haven't seen a store yet, this is a live in use, otherwise
 | |
|         // use the stored value.
 | |
|         if (StoredValue) {
 | |
|           replaceLoadWithValue(L, StoredValue);
 | |
|           L->replaceAllUsesWith(StoredValue);
 | |
|           ReplacedLoads[L] = StoredValue;
 | |
|         } else {
 | |
|           LiveInLoads.push_back(L);
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
 | |
|         // If this is a store to an unrelated pointer, ignore it.
 | |
|         if (!isInstInList(SI, Insts)) continue;
 | |
|         updateDebugInfo(SI);
 | |
| 
 | |
|         // Remember that this is the active value in the block.
 | |
|         StoredValue = SI->getOperand(0);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // The last stored value that happened is the live-out for the block.
 | |
|     assert(StoredValue && "Already checked that there is a store in block");
 | |
|     SSA.AddAvailableValue(BB, StoredValue);
 | |
|     BlockUses.clear();
 | |
|   }
 | |
|   
 | |
|   // Okay, now we rewrite all loads that use live-in values in the loop,
 | |
|   // inserting PHI nodes as necessary.
 | |
|   for (LoadInst *ALoad : LiveInLoads) {
 | |
|     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
 | |
|     replaceLoadWithValue(ALoad, NewVal);
 | |
| 
 | |
|     // Avoid assertions in unreachable code.
 | |
|     if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
 | |
|     ALoad->replaceAllUsesWith(NewVal);
 | |
|     ReplacedLoads[ALoad] = NewVal;
 | |
|   }
 | |
|   
 | |
|   // Allow the client to do stuff before we start nuking things.
 | |
|   doExtraRewritesBeforeFinalDeletion();
 | |
|   
 | |
|   // Now that everything is rewritten, delete the old instructions from the
 | |
|   // function.  They should all be dead now.
 | |
|   for (Instruction *User : Insts) {
 | |
|     // If this is a load that still has uses, then the load must have been added
 | |
|     // as a live value in the SSAUpdate data structure for a block (e.g. because
 | |
|     // the loaded value was stored later).  In this case, we need to recursively
 | |
|     // propagate the updates until we get to the real value.
 | |
|     if (!User->use_empty()) {
 | |
|       Value *NewVal = ReplacedLoads[User];
 | |
|       assert(NewVal && "not a replaced load?");
 | |
|       
 | |
|       // Propagate down to the ultimate replacee.  The intermediately loads
 | |
|       // could theoretically already have been deleted, so we don't want to
 | |
|       // dereference the Value*'s.
 | |
|       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
 | |
|       while (RLI != ReplacedLoads.end()) {
 | |
|         NewVal = RLI->second;
 | |
|         RLI = ReplacedLoads.find(NewVal);
 | |
|       }
 | |
|       
 | |
|       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
 | |
|       User->replaceAllUsesWith(NewVal);
 | |
|     }
 | |
|     
 | |
|     instructionDeleted(User);
 | |
|     User->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| LoadAndStorePromoter::isInstInList(Instruction *I,
 | |
|                                    const SmallVectorImpl<Instruction*> &Insts)
 | |
|                                    const {
 | |
|   return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
 | |
| }
 |