forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			5465 lines
		
	
	
		
			208 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5465 lines
		
	
	
		
			208 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Peephole optimize the CFG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/EHPersonalities.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/NoFolder.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "simplifycfg"
 | |
| 
 | |
| // Chosen as 2 so as to be cheap, but still to have enough power to fold
 | |
| // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
 | |
| // To catch this, we need to fold a compare and a select, hence '2' being the
 | |
| // minimum reasonable default.
 | |
| static cl::opt<unsigned> PHINodeFoldingThreshold(
 | |
|     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
 | |
|     cl::desc(
 | |
|         "Control the amount of phi node folding to perform (default = 2)"));
 | |
| 
 | |
| static cl::opt<bool> DupRet(
 | |
|     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Duplicate return instructions into unconditional branches"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
 | |
|                cl::desc("Sink common instructions down to the end block"));
 | |
| 
 | |
| static cl::opt<bool> HoistCondStores(
 | |
|     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
 | |
|     cl::desc("Hoist conditional stores if an unconditional store precedes"));
 | |
| 
 | |
| static cl::opt<bool> MergeCondStores(
 | |
|     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
 | |
|     cl::desc("Hoist conditional stores even if an unconditional store does not "
 | |
|              "precede - hoist multiple conditional stores into a single "
 | |
|              "predicated store"));
 | |
| 
 | |
| static cl::opt<bool> MergeCondStoresAggressively(
 | |
|     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
 | |
|     cl::desc("When merging conditional stores, do so even if the resultant "
 | |
|              "basic blocks are unlikely to be if-converted as a result"));
 | |
| 
 | |
| static cl::opt<bool> SpeculateOneExpensiveInst(
 | |
|     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
 | |
|     cl::desc("Allow exactly one expensive instruction to be speculatively "
 | |
|              "executed"));
 | |
| 
 | |
| static cl::opt<unsigned> MaxSpeculationDepth(
 | |
|     "max-speculation-depth", cl::Hidden, cl::init(10),
 | |
|     cl::desc("Limit maximum recursion depth when calculating costs of "
 | |
|              "speculatively executed instructions"));
 | |
| 
 | |
| STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
 | |
| STATISTIC(NumLinearMaps,
 | |
|           "Number of switch instructions turned into linear mapping");
 | |
| STATISTIC(NumLookupTables,
 | |
|           "Number of switch instructions turned into lookup tables");
 | |
| STATISTIC(
 | |
|     NumLookupTablesHoles,
 | |
|     "Number of switch instructions turned into lookup tables (holes checked)");
 | |
| STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
 | |
| STATISTIC(NumSinkCommons,
 | |
|           "Number of common instructions sunk down to the end block");
 | |
| STATISTIC(NumSpeculations, "Number of speculative executed instructions");
 | |
| 
 | |
| namespace {
 | |
| // The first field contains the value that the switch produces when a certain
 | |
| // case group is selected, and the second field is a vector containing the
 | |
| // cases composing the case group.
 | |
| typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
 | |
|     SwitchCaseResultVectorTy;
 | |
| // The first field contains the phi node that generates a result of the switch
 | |
| // and the second field contains the value generated for a certain case in the
 | |
| // switch for that PHI.
 | |
| typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
 | |
| 
 | |
| /// ValueEqualityComparisonCase - Represents a case of a switch.
 | |
| struct ValueEqualityComparisonCase {
 | |
|   ConstantInt *Value;
 | |
|   BasicBlock *Dest;
 | |
| 
 | |
|   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
 | |
|       : Value(Value), Dest(Dest) {}
 | |
| 
 | |
|   bool operator<(ValueEqualityComparisonCase RHS) const {
 | |
|     // Comparing pointers is ok as we only rely on the order for uniquing.
 | |
|     return Value < RHS.Value;
 | |
|   }
 | |
| 
 | |
|   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
 | |
| };
 | |
| 
 | |
| class SimplifyCFGOpt {
 | |
|   const TargetTransformInfo &TTI;
 | |
|   const DataLayout &DL;
 | |
|   unsigned BonusInstThreshold;
 | |
|   AssumptionCache *AC;
 | |
|   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
 | |
|   Value *isValueEqualityComparison(TerminatorInst *TI);
 | |
|   BasicBlock *GetValueEqualityComparisonCases(
 | |
|       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
 | |
|   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
 | |
|                                                      BasicBlock *Pred,
 | |
|                                                      IRBuilder<> &Builder);
 | |
|   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
 | |
|                                            IRBuilder<> &Builder);
 | |
| 
 | |
|   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
 | |
|   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
 | |
|   bool SimplifySingleResume(ResumeInst *RI);
 | |
|   bool SimplifyCommonResume(ResumeInst *RI);
 | |
|   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
 | |
|   bool SimplifyUnreachable(UnreachableInst *UI);
 | |
|   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
 | |
|   bool SimplifyIndirectBr(IndirectBrInst *IBI);
 | |
|   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
 | |
|   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
 | |
| 
 | |
| public:
 | |
|   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
 | |
|                  unsigned BonusInstThreshold, AssumptionCache *AC,
 | |
|                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
 | |
|       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
 | |
|         LoopHeaders(LoopHeaders) {}
 | |
|   bool run(BasicBlock *BB);
 | |
| };
 | |
| }
 | |
| 
 | |
| /// Return true if it is safe to merge these two
 | |
| /// terminator instructions together.
 | |
| static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
 | |
|   if (SI1 == SI2)
 | |
|     return false; // Can't merge with self!
 | |
| 
 | |
|   // It is not safe to merge these two switch instructions if they have a common
 | |
|   // successor, and if that successor has a PHI node, and if *that* PHI node has
 | |
|   // conflicting incoming values from the two switch blocks.
 | |
|   BasicBlock *SI1BB = SI1->getParent();
 | |
|   BasicBlock *SI2BB = SI2->getParent();
 | |
|   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
 | |
| 
 | |
|   for (BasicBlock *Succ : successors(SI2BB))
 | |
|     if (SI1Succs.count(Succ))
 | |
|       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
 | |
|         PHINode *PN = cast<PHINode>(BBI);
 | |
|         if (PN->getIncomingValueForBlock(SI1BB) !=
 | |
|             PN->getIncomingValueForBlock(SI2BB))
 | |
|           return false;
 | |
|       }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if it is safe and profitable to merge these two terminator
 | |
| /// instructions together, where SI1 is an unconditional branch. PhiNodes will
 | |
| /// store all PHI nodes in common successors.
 | |
| static bool
 | |
| isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
 | |
|                                 Instruction *Cond,
 | |
|                                 SmallVectorImpl<PHINode *> &PhiNodes) {
 | |
|   if (SI1 == SI2)
 | |
|     return false; // Can't merge with self!
 | |
|   assert(SI1->isUnconditional() && SI2->isConditional());
 | |
| 
 | |
|   // We fold the unconditional branch if we can easily update all PHI nodes in
 | |
|   // common successors:
 | |
|   // 1> We have a constant incoming value for the conditional branch;
 | |
|   // 2> We have "Cond" as the incoming value for the unconditional branch;
 | |
|   // 3> SI2->getCondition() and Cond have same operands.
 | |
|   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
 | |
|   if (!Ci2)
 | |
|     return false;
 | |
|   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
 | |
|         Cond->getOperand(1) == Ci2->getOperand(1)) &&
 | |
|       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
 | |
|         Cond->getOperand(1) == Ci2->getOperand(0)))
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *SI1BB = SI1->getParent();
 | |
|   BasicBlock *SI2BB = SI2->getParent();
 | |
|   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
 | |
|   for (BasicBlock *Succ : successors(SI2BB))
 | |
|     if (SI1Succs.count(Succ))
 | |
|       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
 | |
|         PHINode *PN = cast<PHINode>(BBI);
 | |
|         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
 | |
|             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
 | |
|           return false;
 | |
|         PhiNodes.push_back(PN);
 | |
|       }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Update PHI nodes in Succ to indicate that there will now be entries in it
 | |
| /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
 | |
| /// will be the same as those coming in from ExistPred, an existing predecessor
 | |
| /// of Succ.
 | |
| static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
 | |
|                                   BasicBlock *ExistPred) {
 | |
|   if (!isa<PHINode>(Succ->begin()))
 | |
|     return; // Quick exit if nothing to do
 | |
| 
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
 | |
|     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
 | |
| }
 | |
| 
 | |
| /// Compute an abstract "cost" of speculating the given instruction,
 | |
| /// which is assumed to be safe to speculate. TCC_Free means cheap,
 | |
| /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
 | |
| /// expensive.
 | |
| static unsigned ComputeSpeculationCost(const User *I,
 | |
|                                        const TargetTransformInfo &TTI) {
 | |
|   assert(isSafeToSpeculativelyExecute(I) &&
 | |
|          "Instruction is not safe to speculatively execute!");
 | |
|   return TTI.getUserCost(I);
 | |
| }
 | |
| 
 | |
| /// If we have a merge point of an "if condition" as accepted above,
 | |
| /// return true if the specified value dominates the block.  We
 | |
| /// don't handle the true generality of domination here, just a special case
 | |
| /// which works well enough for us.
 | |
| ///
 | |
| /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
 | |
| /// see if V (which must be an instruction) and its recursive operands
 | |
| /// that do not dominate BB have a combined cost lower than CostRemaining and
 | |
| /// are non-trapping.  If both are true, the instruction is inserted into the
 | |
| /// set and true is returned.
 | |
| ///
 | |
| /// The cost for most non-trapping instructions is defined as 1 except for
 | |
| /// Select whose cost is 2.
 | |
| ///
 | |
| /// After this function returns, CostRemaining is decreased by the cost of
 | |
| /// V plus its non-dominating operands.  If that cost is greater than
 | |
| /// CostRemaining, false is returned and CostRemaining is undefined.
 | |
| static bool DominatesMergePoint(Value *V, BasicBlock *BB,
 | |
|                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
 | |
|                                 unsigned &CostRemaining,
 | |
|                                 const TargetTransformInfo &TTI,
 | |
|                                 unsigned Depth = 0) {
 | |
|   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
 | |
|   // so limit the recursion depth.
 | |
|   // TODO: While this recursion limit does prevent pathological behavior, it
 | |
|   // would be better to track visited instructions to avoid cycles.
 | |
|   if (Depth == MaxSpeculationDepth)
 | |
|     return false;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) {
 | |
|     // Non-instructions all dominate instructions, but not all constantexprs
 | |
|     // can be executed unconditionally.
 | |
|     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
 | |
|       if (C->canTrap())
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   BasicBlock *PBB = I->getParent();
 | |
| 
 | |
|   // We don't want to allow weird loops that might have the "if condition" in
 | |
|   // the bottom of this block.
 | |
|   if (PBB == BB)
 | |
|     return false;
 | |
| 
 | |
|   // If this instruction is defined in a block that contains an unconditional
 | |
|   // branch to BB, then it must be in the 'conditional' part of the "if
 | |
|   // statement".  If not, it definitely dominates the region.
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
 | |
|   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
 | |
|     return true;
 | |
| 
 | |
|   // If we aren't allowing aggressive promotion anymore, then don't consider
 | |
|   // instructions in the 'if region'.
 | |
|   if (!AggressiveInsts)
 | |
|     return false;
 | |
| 
 | |
|   // If we have seen this instruction before, don't count it again.
 | |
|   if (AggressiveInsts->count(I))
 | |
|     return true;
 | |
| 
 | |
|   // Okay, it looks like the instruction IS in the "condition".  Check to
 | |
|   // see if it's a cheap instruction to unconditionally compute, and if it
 | |
|   // only uses stuff defined outside of the condition.  If so, hoist it out.
 | |
|   if (!isSafeToSpeculativelyExecute(I))
 | |
|     return false;
 | |
| 
 | |
|   unsigned Cost = ComputeSpeculationCost(I, TTI);
 | |
| 
 | |
|   // Allow exactly one instruction to be speculated regardless of its cost
 | |
|   // (as long as it is safe to do so).
 | |
|   // This is intended to flatten the CFG even if the instruction is a division
 | |
|   // or other expensive operation. The speculation of an expensive instruction
 | |
|   // is expected to be undone in CodeGenPrepare if the speculation has not
 | |
|   // enabled further IR optimizations.
 | |
|   if (Cost > CostRemaining &&
 | |
|       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
 | |
|     return false;
 | |
| 
 | |
|   // Avoid unsigned wrap.
 | |
|   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
 | |
| 
 | |
|   // Okay, we can only really hoist these out if their operands do
 | |
|   // not take us over the cost threshold.
 | |
|   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
 | |
|     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
 | |
|                              Depth + 1))
 | |
|       return false;
 | |
|   // Okay, it's safe to do this!  Remember this instruction.
 | |
|   AggressiveInsts->insert(I);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Extract ConstantInt from value, looking through IntToPtr
 | |
| /// and PointerNullValue. Return NULL if value is not a constant int.
 | |
| static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
 | |
|   // Normal constant int.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(V);
 | |
|   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
 | |
|     return CI;
 | |
| 
 | |
|   // This is some kind of pointer constant. Turn it into a pointer-sized
 | |
|   // ConstantInt if possible.
 | |
|   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
 | |
| 
 | |
|   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
 | |
|   if (isa<ConstantPointerNull>(V))
 | |
|     return ConstantInt::get(PtrTy, 0);
 | |
| 
 | |
|   // IntToPtr const int.
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     if (CE->getOpcode() == Instruction::IntToPtr)
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
 | |
|         // The constant is very likely to have the right type already.
 | |
|         if (CI->getType() == PtrTy)
 | |
|           return CI;
 | |
|         else
 | |
|           return cast<ConstantInt>(
 | |
|               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
 | |
|       }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Given a chain of or (||) or and (&&) comparison of a value against a
 | |
| /// constant, this will try to recover the information required for a switch
 | |
| /// structure.
 | |
| /// It will depth-first traverse the chain of comparison, seeking for patterns
 | |
| /// like %a == 12 or %a < 4 and combine them to produce a set of integer
 | |
| /// representing the different cases for the switch.
 | |
| /// Note that if the chain is composed of '||' it will build the set of elements
 | |
| /// that matches the comparisons (i.e. any of this value validate the chain)
 | |
| /// while for a chain of '&&' it will build the set elements that make the test
 | |
| /// fail.
 | |
| struct ConstantComparesGatherer {
 | |
|   const DataLayout &DL;
 | |
|   Value *CompValue; /// Value found for the switch comparison
 | |
|   Value *Extra;     /// Extra clause to be checked before the switch
 | |
|   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
 | |
|   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
 | |
| 
 | |
|   /// Construct and compute the result for the comparison instruction Cond
 | |
|   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
 | |
|       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
 | |
|     gather(Cond);
 | |
|   }
 | |
| 
 | |
|   /// Prevent copy
 | |
|   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
 | |
|   ConstantComparesGatherer &
 | |
|   operator=(const ConstantComparesGatherer &) = delete;
 | |
| 
 | |
| private:
 | |
|   /// Try to set the current value used for the comparison, it succeeds only if
 | |
|   /// it wasn't set before or if the new value is the same as the old one
 | |
|   bool setValueOnce(Value *NewVal) {
 | |
|     if (CompValue && CompValue != NewVal)
 | |
|       return false;
 | |
|     CompValue = NewVal;
 | |
|     return (CompValue != nullptr);
 | |
|   }
 | |
| 
 | |
|   /// Try to match Instruction "I" as a comparison against a constant and
 | |
|   /// populates the array Vals with the set of values that match (or do not
 | |
|   /// match depending on isEQ).
 | |
|   /// Return false on failure. On success, the Value the comparison matched
 | |
|   /// against is placed in CompValue.
 | |
|   /// If CompValue is already set, the function is expected to fail if a match
 | |
|   /// is found but the value compared to is different.
 | |
|   bool matchInstruction(Instruction *I, bool isEQ) {
 | |
|     // If this is an icmp against a constant, handle this as one of the cases.
 | |
|     ICmpInst *ICI;
 | |
|     ConstantInt *C;
 | |
|     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
 | |
|           (C = GetConstantInt(I->getOperand(1), DL)))) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Value *RHSVal;
 | |
|     ConstantInt *RHSC;
 | |
| 
 | |
|     // Pattern match a special case
 | |
|     // (x & ~2^z) == y --> x == y || x == y|2^z
 | |
|     // This undoes a transformation done by instcombine to fuse 2 compares.
 | |
|     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
 | |
|       if (match(ICI->getOperand(0),
 | |
|                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
 | |
|         APInt Not = ~RHSC->getValue();
 | |
|         if (Not.isPowerOf2() && C->getValue().isPowerOf2() &&
 | |
|             Not != C->getValue()) {
 | |
|           // If we already have a value for the switch, it has to match!
 | |
|           if (!setValueOnce(RHSVal))
 | |
|             return false;
 | |
| 
 | |
|           Vals.push_back(C);
 | |
|           Vals.push_back(
 | |
|               ConstantInt::get(C->getContext(), C->getValue() | Not));
 | |
|           UsedICmps++;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If we already have a value for the switch, it has to match!
 | |
|       if (!setValueOnce(ICI->getOperand(0)))
 | |
|         return false;
 | |
| 
 | |
|       UsedICmps++;
 | |
|       Vals.push_back(C);
 | |
|       return ICI->getOperand(0);
 | |
|     }
 | |
| 
 | |
|     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
 | |
|     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
 | |
|         ICI->getPredicate(), C->getValue());
 | |
| 
 | |
|     // Shift the range if the compare is fed by an add. This is the range
 | |
|     // compare idiom as emitted by instcombine.
 | |
|     Value *CandidateVal = I->getOperand(0);
 | |
|     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
 | |
|       Span = Span.subtract(RHSC->getValue());
 | |
|       CandidateVal = RHSVal;
 | |
|     }
 | |
| 
 | |
|     // If this is an and/!= check, then we are looking to build the set of
 | |
|     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
 | |
|     // x != 0 && x != 1.
 | |
|     if (!isEQ)
 | |
|       Span = Span.inverse();
 | |
| 
 | |
|     // If there are a ton of values, we don't want to make a ginormous switch.
 | |
|     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If we already have a value for the switch, it has to match!
 | |
|     if (!setValueOnce(CandidateVal))
 | |
|       return false;
 | |
| 
 | |
|     // Add all values from the range to the set
 | |
|     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
 | |
|       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
 | |
| 
 | |
|     UsedICmps++;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Given a potentially 'or'd or 'and'd together collection of icmp
 | |
|   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
 | |
|   /// the value being compared, and stick the list constants into the Vals
 | |
|   /// vector.
 | |
|   /// One "Extra" case is allowed to differ from the other.
 | |
|   void gather(Value *V) {
 | |
|     Instruction *I = dyn_cast<Instruction>(V);
 | |
|     bool isEQ = (I->getOpcode() == Instruction::Or);
 | |
| 
 | |
|     // Keep a stack (SmallVector for efficiency) for depth-first traversal
 | |
|     SmallVector<Value *, 8> DFT;
 | |
|     SmallPtrSet<Value *, 8> Visited;
 | |
| 
 | |
|     // Initialize
 | |
|     Visited.insert(V);
 | |
|     DFT.push_back(V);
 | |
| 
 | |
|     while (!DFT.empty()) {
 | |
|       V = DFT.pop_back_val();
 | |
| 
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|         // If it is a || (or && depending on isEQ), process the operands.
 | |
|         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
 | |
|           if (Visited.insert(I->getOperand(1)).second)
 | |
|             DFT.push_back(I->getOperand(1));
 | |
|           if (Visited.insert(I->getOperand(0)).second)
 | |
|             DFT.push_back(I->getOperand(0));
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Try to match the current instruction
 | |
|         if (matchInstruction(I, isEQ))
 | |
|           // Match succeed, continue the loop
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       // One element of the sequence of || (or &&) could not be match as a
 | |
|       // comparison against the same value as the others.
 | |
|       // We allow only one "Extra" case to be checked before the switch
 | |
|       if (!Extra) {
 | |
|         Extra = V;
 | |
|         continue;
 | |
|       }
 | |
|       // Failed to parse a proper sequence, abort now
 | |
|       CompValue = nullptr;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
 | |
|   Instruction *Cond = nullptr;
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     Cond = dyn_cast<Instruction>(SI->getCondition());
 | |
|   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|     if (BI->isConditional())
 | |
|       Cond = dyn_cast<Instruction>(BI->getCondition());
 | |
|   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
 | |
|     Cond = dyn_cast<Instruction>(IBI->getAddress());
 | |
|   }
 | |
| 
 | |
|   TI->eraseFromParent();
 | |
|   if (Cond)
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(Cond);
 | |
| }
 | |
| 
 | |
| /// Return true if the specified terminator checks
 | |
| /// to see if a value is equal to constant integer value.
 | |
| Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
 | |
|   Value *CV = nullptr;
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     // Do not permit merging of large switch instructions into their
 | |
|     // predecessors unless there is only one predecessor.
 | |
|     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
 | |
|                                                pred_end(SI->getParent())) <=
 | |
|         128)
 | |
|       CV = SI->getCondition();
 | |
|   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | |
|     if (BI->isConditional() && BI->getCondition()->hasOneUse())
 | |
|       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
 | |
|         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
 | |
|           CV = ICI->getOperand(0);
 | |
|       }
 | |
| 
 | |
|   // Unwrap any lossless ptrtoint cast.
 | |
|   if (CV) {
 | |
|     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
 | |
|       Value *Ptr = PTII->getPointerOperand();
 | |
|       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
 | |
|         CV = Ptr;
 | |
|     }
 | |
|   }
 | |
|   return CV;
 | |
| }
 | |
| 
 | |
| /// Given a value comparison instruction,
 | |
| /// decode all of the 'cases' that it represents and return the 'default' block.
 | |
| BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
 | |
|     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     Cases.reserve(SI->getNumCases());
 | |
|     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
 | |
|          ++i)
 | |
|       Cases.push_back(
 | |
|           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
 | |
|     return SI->getDefaultDest();
 | |
|   }
 | |
| 
 | |
|   BranchInst *BI = cast<BranchInst>(TI);
 | |
|   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
 | |
|   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
 | |
|   Cases.push_back(ValueEqualityComparisonCase(
 | |
|       GetConstantInt(ICI->getOperand(1), DL), Succ));
 | |
|   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
 | |
| }
 | |
| 
 | |
| /// Given a vector of bb/value pairs, remove any entries
 | |
| /// in the list that match the specified block.
 | |
| static void
 | |
| EliminateBlockCases(BasicBlock *BB,
 | |
|                     std::vector<ValueEqualityComparisonCase> &Cases) {
 | |
|   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
 | |
| }
 | |
| 
 | |
| /// Return true if there are any keys in C1 that exist in C2 as well.
 | |
| static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
 | |
|                           std::vector<ValueEqualityComparisonCase> &C2) {
 | |
|   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
 | |
| 
 | |
|   // Make V1 be smaller than V2.
 | |
|   if (V1->size() > V2->size())
 | |
|     std::swap(V1, V2);
 | |
| 
 | |
|   if (V1->size() == 0)
 | |
|     return false;
 | |
|   if (V1->size() == 1) {
 | |
|     // Just scan V2.
 | |
|     ConstantInt *TheVal = (*V1)[0].Value;
 | |
|     for (unsigned i = 0, e = V2->size(); i != e; ++i)
 | |
|       if (TheVal == (*V2)[i].Value)
 | |
|         return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, just sort both lists and compare element by element.
 | |
|   array_pod_sort(V1->begin(), V1->end());
 | |
|   array_pod_sort(V2->begin(), V2->end());
 | |
|   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
 | |
|   while (i1 != e1 && i2 != e2) {
 | |
|     if ((*V1)[i1].Value == (*V2)[i2].Value)
 | |
|       return true;
 | |
|     if ((*V1)[i1].Value < (*V2)[i2].Value)
 | |
|       ++i1;
 | |
|     else
 | |
|       ++i2;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// If TI is known to be a terminator instruction and its block is known to
 | |
| /// only have a single predecessor block, check to see if that predecessor is
 | |
| /// also a value comparison with the same value, and if that comparison
 | |
| /// determines the outcome of this comparison. If so, simplify TI. This does a
 | |
| /// very limited form of jump threading.
 | |
| bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
 | |
|     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
 | |
|   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
 | |
|   if (!PredVal)
 | |
|     return false; // Not a value comparison in predecessor.
 | |
| 
 | |
|   Value *ThisVal = isValueEqualityComparison(TI);
 | |
|   assert(ThisVal && "This isn't a value comparison!!");
 | |
|   if (ThisVal != PredVal)
 | |
|     return false; // Different predicates.
 | |
| 
 | |
|   // TODO: Preserve branch weight metadata, similarly to how
 | |
|   // FoldValueComparisonIntoPredecessors preserves it.
 | |
| 
 | |
|   // Find out information about when control will move from Pred to TI's block.
 | |
|   std::vector<ValueEqualityComparisonCase> PredCases;
 | |
|   BasicBlock *PredDef =
 | |
|       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
 | |
|   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
 | |
| 
 | |
|   // Find information about how control leaves this block.
 | |
|   std::vector<ValueEqualityComparisonCase> ThisCases;
 | |
|   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
 | |
|   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
 | |
| 
 | |
|   // If TI's block is the default block from Pred's comparison, potentially
 | |
|   // simplify TI based on this knowledge.
 | |
|   if (PredDef == TI->getParent()) {
 | |
|     // If we are here, we know that the value is none of those cases listed in
 | |
|     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
 | |
|     // can simplify TI.
 | |
|     if (!ValuesOverlap(PredCases, ThisCases))
 | |
|       return false;
 | |
| 
 | |
|     if (isa<BranchInst>(TI)) {
 | |
|       // Okay, one of the successors of this condbr is dead.  Convert it to a
 | |
|       // uncond br.
 | |
|       assert(ThisCases.size() == 1 && "Branch can only have one case!");
 | |
|       // Insert the new branch.
 | |
|       Instruction *NI = Builder.CreateBr(ThisDef);
 | |
|       (void)NI;
 | |
| 
 | |
|       // Remove PHI node entries for the dead edge.
 | |
|       ThisCases[0].Dest->removePredecessor(TI->getParent());
 | |
| 
 | |
|       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
 | |
|                    << "Through successor TI: " << *TI << "Leaving: " << *NI
 | |
|                    << "\n");
 | |
| 
 | |
|       EraseTerminatorInstAndDCECond(TI);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     SwitchInst *SI = cast<SwitchInst>(TI);
 | |
|     // Okay, TI has cases that are statically dead, prune them away.
 | |
|     SmallPtrSet<Constant *, 16> DeadCases;
 | |
|     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|       DeadCases.insert(PredCases[i].Value);
 | |
| 
 | |
|     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
 | |
|                  << "Through successor TI: " << *TI);
 | |
| 
 | |
|     // Collect branch weights into a vector.
 | |
|     SmallVector<uint32_t, 8> Weights;
 | |
|     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
 | |
|     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
 | |
|     if (HasWeight)
 | |
|       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
 | |
|            ++MD_i) {
 | |
|         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
 | |
|         Weights.push_back(CI->getValue().getZExtValue());
 | |
|       }
 | |
|     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
 | |
|       --i;
 | |
|       if (DeadCases.count(i.getCaseValue())) {
 | |
|         if (HasWeight) {
 | |
|           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
 | |
|           Weights.pop_back();
 | |
|         }
 | |
|         i.getCaseSuccessor()->removePredecessor(TI->getParent());
 | |
|         SI->removeCase(i);
 | |
|       }
 | |
|     }
 | |
|     if (HasWeight && Weights.size() >= 2)
 | |
|       SI->setMetadata(LLVMContext::MD_prof,
 | |
|                       MDBuilder(SI->getParent()->getContext())
 | |
|                           .createBranchWeights(Weights));
 | |
| 
 | |
|     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, TI's block must correspond to some matched value.  Find out
 | |
|   // which value (or set of values) this is.
 | |
|   ConstantInt *TIV = nullptr;
 | |
|   BasicBlock *TIBB = TI->getParent();
 | |
|   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|     if (PredCases[i].Dest == TIBB) {
 | |
|       if (TIV)
 | |
|         return false; // Cannot handle multiple values coming to this block.
 | |
|       TIV = PredCases[i].Value;
 | |
|     }
 | |
|   assert(TIV && "No edge from pred to succ?");
 | |
| 
 | |
|   // Okay, we found the one constant that our value can be if we get into TI's
 | |
|   // BB.  Find out which successor will unconditionally be branched to.
 | |
|   BasicBlock *TheRealDest = nullptr;
 | |
|   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
 | |
|     if (ThisCases[i].Value == TIV) {
 | |
|       TheRealDest = ThisCases[i].Dest;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // If not handled by any explicit cases, it is handled by the default case.
 | |
|   if (!TheRealDest)
 | |
|     TheRealDest = ThisDef;
 | |
| 
 | |
|   // Remove PHI node entries for dead edges.
 | |
|   BasicBlock *CheckEdge = TheRealDest;
 | |
|   for (BasicBlock *Succ : successors(TIBB))
 | |
|     if (Succ != CheckEdge)
 | |
|       Succ->removePredecessor(TIBB);
 | |
|     else
 | |
|       CheckEdge = nullptr;
 | |
| 
 | |
|   // Insert the new branch.
 | |
|   Instruction *NI = Builder.CreateBr(TheRealDest);
 | |
|   (void)NI;
 | |
| 
 | |
|   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
 | |
|                << "Through successor TI: " << *TI << "Leaving: " << *NI
 | |
|                << "\n");
 | |
| 
 | |
|   EraseTerminatorInstAndDCECond(TI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// This class implements a stable ordering of constant
 | |
| /// integers that does not depend on their address.  This is important for
 | |
| /// applications that sort ConstantInt's to ensure uniqueness.
 | |
| struct ConstantIntOrdering {
 | |
|   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
 | |
|     return LHS->getValue().ult(RHS->getValue());
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static int ConstantIntSortPredicate(ConstantInt *const *P1,
 | |
|                                     ConstantInt *const *P2) {
 | |
|   const ConstantInt *LHS = *P1;
 | |
|   const ConstantInt *RHS = *P2;
 | |
|   if (LHS == RHS)
 | |
|     return 0;
 | |
|   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
 | |
| }
 | |
| 
 | |
| static inline bool HasBranchWeights(const Instruction *I) {
 | |
|   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
 | |
|   if (ProfMD && ProfMD->getOperand(0))
 | |
|     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
 | |
|       return MDS->getString().equals("branch_weights");
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Get Weights of a given TerminatorInst, the default weight is at the front
 | |
| /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
 | |
| /// metadata.
 | |
| static void GetBranchWeights(TerminatorInst *TI,
 | |
|                              SmallVectorImpl<uint64_t> &Weights) {
 | |
|   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
 | |
|   assert(MD);
 | |
|   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
 | |
|     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
 | |
|     Weights.push_back(CI->getValue().getZExtValue());
 | |
|   }
 | |
| 
 | |
|   // If TI is a conditional eq, the default case is the false case,
 | |
|   // and the corresponding branch-weight data is at index 2. We swap the
 | |
|   // default weight to be the first entry.
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|     assert(Weights.size() == 2);
 | |
|     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
 | |
|     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | |
|       std::swap(Weights.front(), Weights.back());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Keep halving the weights until all can fit in uint32_t.
 | |
| static void FitWeights(MutableArrayRef<uint64_t> Weights) {
 | |
|   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
 | |
|   if (Max > UINT_MAX) {
 | |
|     unsigned Offset = 32 - countLeadingZeros(Max);
 | |
|     for (uint64_t &I : Weights)
 | |
|       I >>= Offset;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// The specified terminator is a value equality comparison instruction
 | |
| /// (either a switch or a branch on "X == c").
 | |
| /// See if any of the predecessors of the terminator block are value comparisons
 | |
| /// on the same value.  If so, and if safe to do so, fold them together.
 | |
| bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
 | |
|                                                          IRBuilder<> &Builder) {
 | |
|   BasicBlock *BB = TI->getParent();
 | |
|   Value *CV = isValueEqualityComparison(TI); // CondVal
 | |
|   assert(CV && "Not a comparison?");
 | |
|   bool Changed = false;
 | |
| 
 | |
|   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
 | |
|   while (!Preds.empty()) {
 | |
|     BasicBlock *Pred = Preds.pop_back_val();
 | |
| 
 | |
|     // See if the predecessor is a comparison with the same value.
 | |
|     TerminatorInst *PTI = Pred->getTerminator();
 | |
|     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
 | |
| 
 | |
|     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
 | |
|       // Figure out which 'cases' to copy from SI to PSI.
 | |
|       std::vector<ValueEqualityComparisonCase> BBCases;
 | |
|       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
 | |
| 
 | |
|       std::vector<ValueEqualityComparisonCase> PredCases;
 | |
|       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
 | |
| 
 | |
|       // Based on whether the default edge from PTI goes to BB or not, fill in
 | |
|       // PredCases and PredDefault with the new switch cases we would like to
 | |
|       // build.
 | |
|       SmallVector<BasicBlock *, 8> NewSuccessors;
 | |
| 
 | |
|       // Update the branch weight metadata along the way
 | |
|       SmallVector<uint64_t, 8> Weights;
 | |
|       bool PredHasWeights = HasBranchWeights(PTI);
 | |
|       bool SuccHasWeights = HasBranchWeights(TI);
 | |
| 
 | |
|       if (PredHasWeights) {
 | |
|         GetBranchWeights(PTI, Weights);
 | |
|         // branch-weight metadata is inconsistent here.
 | |
|         if (Weights.size() != 1 + PredCases.size())
 | |
|           PredHasWeights = SuccHasWeights = false;
 | |
|       } else if (SuccHasWeights)
 | |
|         // If there are no predecessor weights but there are successor weights,
 | |
|         // populate Weights with 1, which will later be scaled to the sum of
 | |
|         // successor's weights
 | |
|         Weights.assign(1 + PredCases.size(), 1);
 | |
| 
 | |
|       SmallVector<uint64_t, 8> SuccWeights;
 | |
|       if (SuccHasWeights) {
 | |
|         GetBranchWeights(TI, SuccWeights);
 | |
|         // branch-weight metadata is inconsistent here.
 | |
|         if (SuccWeights.size() != 1 + BBCases.size())
 | |
|           PredHasWeights = SuccHasWeights = false;
 | |
|       } else if (PredHasWeights)
 | |
|         SuccWeights.assign(1 + BBCases.size(), 1);
 | |
| 
 | |
|       if (PredDefault == BB) {
 | |
|         // If this is the default destination from PTI, only the edges in TI
 | |
|         // that don't occur in PTI, or that branch to BB will be activated.
 | |
|         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
 | |
|         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|           if (PredCases[i].Dest != BB)
 | |
|             PTIHandled.insert(PredCases[i].Value);
 | |
|           else {
 | |
|             // The default destination is BB, we don't need explicit targets.
 | |
|             std::swap(PredCases[i], PredCases.back());
 | |
| 
 | |
|             if (PredHasWeights || SuccHasWeights) {
 | |
|               // Increase weight for the default case.
 | |
|               Weights[0] += Weights[i + 1];
 | |
|               std::swap(Weights[i + 1], Weights.back());
 | |
|               Weights.pop_back();
 | |
|             }
 | |
| 
 | |
|             PredCases.pop_back();
 | |
|             --i;
 | |
|             --e;
 | |
|           }
 | |
| 
 | |
|         // Reconstruct the new switch statement we will be building.
 | |
|         if (PredDefault != BBDefault) {
 | |
|           PredDefault->removePredecessor(Pred);
 | |
|           PredDefault = BBDefault;
 | |
|           NewSuccessors.push_back(BBDefault);
 | |
|         }
 | |
| 
 | |
|         unsigned CasesFromPred = Weights.size();
 | |
|         uint64_t ValidTotalSuccWeight = 0;
 | |
|         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | |
|           if (!PTIHandled.count(BBCases[i].Value) &&
 | |
|               BBCases[i].Dest != BBDefault) {
 | |
|             PredCases.push_back(BBCases[i]);
 | |
|             NewSuccessors.push_back(BBCases[i].Dest);
 | |
|             if (SuccHasWeights || PredHasWeights) {
 | |
|               // The default weight is at index 0, so weight for the ith case
 | |
|               // should be at index i+1. Scale the cases from successor by
 | |
|               // PredDefaultWeight (Weights[0]).
 | |
|               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
 | |
|               ValidTotalSuccWeight += SuccWeights[i + 1];
 | |
|             }
 | |
|           }
 | |
| 
 | |
|         if (SuccHasWeights || PredHasWeights) {
 | |
|           ValidTotalSuccWeight += SuccWeights[0];
 | |
|           // Scale the cases from predecessor by ValidTotalSuccWeight.
 | |
|           for (unsigned i = 1; i < CasesFromPred; ++i)
 | |
|             Weights[i] *= ValidTotalSuccWeight;
 | |
|           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
 | |
|           Weights[0] *= SuccWeights[0];
 | |
|         }
 | |
|       } else {
 | |
|         // If this is not the default destination from PSI, only the edges
 | |
|         // in SI that occur in PSI with a destination of BB will be
 | |
|         // activated.
 | |
|         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
 | |
|         std::map<ConstantInt *, uint64_t> WeightsForHandled;
 | |
|         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|           if (PredCases[i].Dest == BB) {
 | |
|             PTIHandled.insert(PredCases[i].Value);
 | |
| 
 | |
|             if (PredHasWeights || SuccHasWeights) {
 | |
|               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
 | |
|               std::swap(Weights[i + 1], Weights.back());
 | |
|               Weights.pop_back();
 | |
|             }
 | |
| 
 | |
|             std::swap(PredCases[i], PredCases.back());
 | |
|             PredCases.pop_back();
 | |
|             --i;
 | |
|             --e;
 | |
|           }
 | |
| 
 | |
|         // Okay, now we know which constants were sent to BB from the
 | |
|         // predecessor.  Figure out where they will all go now.
 | |
|         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | |
|           if (PTIHandled.count(BBCases[i].Value)) {
 | |
|             // If this is one we are capable of getting...
 | |
|             if (PredHasWeights || SuccHasWeights)
 | |
|               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
 | |
|             PredCases.push_back(BBCases[i]);
 | |
|             NewSuccessors.push_back(BBCases[i].Dest);
 | |
|             PTIHandled.erase(
 | |
|                 BBCases[i].Value); // This constant is taken care of
 | |
|           }
 | |
| 
 | |
|         // If there are any constants vectored to BB that TI doesn't handle,
 | |
|         // they must go to the default destination of TI.
 | |
|         for (std::set<ConstantInt *, ConstantIntOrdering>::iterator
 | |
|                  I = PTIHandled.begin(),
 | |
|                  E = PTIHandled.end();
 | |
|              I != E; ++I) {
 | |
|           if (PredHasWeights || SuccHasWeights)
 | |
|             Weights.push_back(WeightsForHandled[*I]);
 | |
|           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
 | |
|           NewSuccessors.push_back(BBDefault);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Okay, at this point, we know which new successor Pred will get.  Make
 | |
|       // sure we update the number of entries in the PHI nodes for these
 | |
|       // successors.
 | |
|       for (BasicBlock *NewSuccessor : NewSuccessors)
 | |
|         AddPredecessorToBlock(NewSuccessor, Pred, BB);
 | |
| 
 | |
|       Builder.SetInsertPoint(PTI);
 | |
|       // Convert pointer to int before we switch.
 | |
|       if (CV->getType()->isPointerTy()) {
 | |
|         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
 | |
|                                     "magicptr");
 | |
|       }
 | |
| 
 | |
|       // Now that the successors are updated, create the new Switch instruction.
 | |
|       SwitchInst *NewSI =
 | |
|           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
 | |
|       NewSI->setDebugLoc(PTI->getDebugLoc());
 | |
|       for (ValueEqualityComparisonCase &V : PredCases)
 | |
|         NewSI->addCase(V.Value, V.Dest);
 | |
| 
 | |
|       if (PredHasWeights || SuccHasWeights) {
 | |
|         // Halve the weights if any of them cannot fit in an uint32_t
 | |
|         FitWeights(Weights);
 | |
| 
 | |
|         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
 | |
| 
 | |
|         NewSI->setMetadata(
 | |
|             LLVMContext::MD_prof,
 | |
|             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
 | |
|       }
 | |
| 
 | |
|       EraseTerminatorInstAndDCECond(PTI);
 | |
| 
 | |
|       // Okay, last check.  If BB is still a successor of PSI, then we must
 | |
|       // have an infinite loop case.  If so, add an infinitely looping block
 | |
|       // to handle the case to preserve the behavior of the code.
 | |
|       BasicBlock *InfLoopBlock = nullptr;
 | |
|       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
 | |
|         if (NewSI->getSuccessor(i) == BB) {
 | |
|           if (!InfLoopBlock) {
 | |
|             // Insert it at the end of the function, because it's either code,
 | |
|             // or it won't matter if it's hot. :)
 | |
|             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
 | |
|                                               BB->getParent());
 | |
|             BranchInst::Create(InfLoopBlock, InfLoopBlock);
 | |
|           }
 | |
|           NewSI->setSuccessor(i, InfLoopBlock);
 | |
|         }
 | |
| 
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // If we would need to insert a select that uses the value of this invoke
 | |
| // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
 | |
| // can't hoist the invoke, as there is nowhere to put the select in this case.
 | |
| static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
 | |
|                                 Instruction *I1, Instruction *I2) {
 | |
|   for (BasicBlock *Succ : successors(BB1)) {
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator BBI = Succ->begin();
 | |
|          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|       Value *BB1V = PN->getIncomingValueForBlock(BB1);
 | |
|       Value *BB2V = PN->getIncomingValueForBlock(BB2);
 | |
|       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
 | |
| 
 | |
| /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
 | |
| /// in the two blocks up into the branch block. The caller of this function
 | |
| /// guarantees that BI's block dominates BB1 and BB2.
 | |
| static bool HoistThenElseCodeToIf(BranchInst *BI,
 | |
|                                   const TargetTransformInfo &TTI) {
 | |
|   // This does very trivial matching, with limited scanning, to find identical
 | |
|   // instructions in the two blocks.  In particular, we don't want to get into
 | |
|   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
 | |
|   // such, we currently just scan for obviously identical instructions in an
 | |
|   // identical order.
 | |
|   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
 | |
|   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
 | |
| 
 | |
|   BasicBlock::iterator BB1_Itr = BB1->begin();
 | |
|   BasicBlock::iterator BB2_Itr = BB2->begin();
 | |
| 
 | |
|   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
 | |
|   // Skip debug info if it is not identical.
 | |
|   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
 | |
|   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
 | |
|   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
 | |
|     while (isa<DbgInfoIntrinsic>(I1))
 | |
|       I1 = &*BB1_Itr++;
 | |
|     while (isa<DbgInfoIntrinsic>(I2))
 | |
|       I2 = &*BB2_Itr++;
 | |
|   }
 | |
|   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
 | |
|       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *BIParent = BI->getParent();
 | |
| 
 | |
|   bool Changed = false;
 | |
|   do {
 | |
|     // If we are hoisting the terminator instruction, don't move one (making a
 | |
|     // broken BB), instead clone it, and remove BI.
 | |
|     if (isa<TerminatorInst>(I1))
 | |
|       goto HoistTerminator;
 | |
| 
 | |
|     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
 | |
|       return Changed;
 | |
| 
 | |
|     // For a normal instruction, we just move one to right before the branch,
 | |
|     // then replace all uses of the other with the first.  Finally, we remove
 | |
|     // the now redundant second instruction.
 | |
|     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
 | |
|     if (!I2->use_empty())
 | |
|       I2->replaceAllUsesWith(I1);
 | |
|     I1->intersectOptionalDataWith(I2);
 | |
|     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
 | |
|                            LLVMContext::MD_range,
 | |
|                            LLVMContext::MD_fpmath,
 | |
|                            LLVMContext::MD_invariant_load,
 | |
|                            LLVMContext::MD_nonnull,
 | |
|                            LLVMContext::MD_invariant_group,
 | |
|                            LLVMContext::MD_align,
 | |
|                            LLVMContext::MD_dereferenceable,
 | |
|                            LLVMContext::MD_dereferenceable_or_null,
 | |
|                            LLVMContext::MD_mem_parallel_loop_access};
 | |
|     combineMetadata(I1, I2, KnownIDs);
 | |
|     I2->eraseFromParent();
 | |
|     Changed = true;
 | |
| 
 | |
|     I1 = &*BB1_Itr++;
 | |
|     I2 = &*BB2_Itr++;
 | |
|     // Skip debug info if it is not identical.
 | |
|     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
 | |
|     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
 | |
|     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
 | |
|       while (isa<DbgInfoIntrinsic>(I1))
 | |
|         I1 = &*BB1_Itr++;
 | |
|       while (isa<DbgInfoIntrinsic>(I2))
 | |
|         I2 = &*BB2_Itr++;
 | |
|     }
 | |
|   } while (I1->isIdenticalToWhenDefined(I2));
 | |
| 
 | |
|   return true;
 | |
| 
 | |
| HoistTerminator:
 | |
|   // It may not be possible to hoist an invoke.
 | |
|   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
 | |
|     return Changed;
 | |
| 
 | |
|   for (BasicBlock *Succ : successors(BB1)) {
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator BBI = Succ->begin();
 | |
|          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|       Value *BB1V = PN->getIncomingValueForBlock(BB1);
 | |
|       Value *BB2V = PN->getIncomingValueForBlock(BB2);
 | |
|       if (BB1V == BB2V)
 | |
|         continue;
 | |
| 
 | |
|       // Check for passingValueIsAlwaysUndefined here because we would rather
 | |
|       // eliminate undefined control flow then converting it to a select.
 | |
|       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
 | |
|           passingValueIsAlwaysUndefined(BB2V, PN))
 | |
|         return Changed;
 | |
| 
 | |
|       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
 | |
|         return Changed;
 | |
|       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
 | |
|         return Changed;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, it is safe to hoist the terminator.
 | |
|   Instruction *NT = I1->clone();
 | |
|   BIParent->getInstList().insert(BI->getIterator(), NT);
 | |
|   if (!NT->getType()->isVoidTy()) {
 | |
|     I1->replaceAllUsesWith(NT);
 | |
|     I2->replaceAllUsesWith(NT);
 | |
|     NT->takeName(I1);
 | |
|   }
 | |
| 
 | |
|   IRBuilder<NoFolder> Builder(NT);
 | |
|   // Hoisting one of the terminators from our successor is a great thing.
 | |
|   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
 | |
|   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
 | |
|   // nodes, so we insert select instruction to compute the final result.
 | |
|   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
 | |
|   for (BasicBlock *Succ : successors(BB1)) {
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator BBI = Succ->begin();
 | |
|          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|       Value *BB1V = PN->getIncomingValueForBlock(BB1);
 | |
|       Value *BB2V = PN->getIncomingValueForBlock(BB2);
 | |
|       if (BB1V == BB2V)
 | |
|         continue;
 | |
| 
 | |
|       // These values do not agree.  Insert a select instruction before NT
 | |
|       // that determines the right value.
 | |
|       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
 | |
|       if (!SI)
 | |
|         SI = cast<SelectInst>(
 | |
|             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
 | |
|                                  BB1V->getName() + "." + BB2V->getName(), BI));
 | |
| 
 | |
|       // Make the PHI node use the select for all incoming values for BB1/BB2
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
 | |
|           PN->setIncomingValue(i, SI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update any PHI nodes in our new successors.
 | |
|   for (BasicBlock *Succ : successors(BB1))
 | |
|     AddPredecessorToBlock(Succ, BIParent, BB1);
 | |
| 
 | |
|   EraseTerminatorInstAndDCECond(BI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Given an unconditional branch that goes to BBEnd,
 | |
| /// check whether BBEnd has only two predecessors and the other predecessor
 | |
| /// ends with an unconditional branch. If it is true, sink any common code
 | |
| /// in the two predecessors to BBEnd.
 | |
| static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
 | |
|   assert(BI1->isUnconditional());
 | |
|   BasicBlock *BB1 = BI1->getParent();
 | |
|   BasicBlock *BBEnd = BI1->getSuccessor(0);
 | |
| 
 | |
|   // Check that BBEnd has two predecessors and the other predecessor ends with
 | |
|   // an unconditional branch.
 | |
|   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
 | |
|   BasicBlock *Pred0 = *PI++;
 | |
|   if (PI == PE) // Only one predecessor.
 | |
|     return false;
 | |
|   BasicBlock *Pred1 = *PI++;
 | |
|   if (PI != PE) // More than two predecessors.
 | |
|     return false;
 | |
|   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
 | |
|   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
 | |
|   if (!BI2 || !BI2->isUnconditional())
 | |
|     return false;
 | |
| 
 | |
|   // Gather the PHI nodes in BBEnd.
 | |
|   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
 | |
|   Instruction *FirstNonPhiInBBEnd = nullptr;
 | |
|   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|       Value *BB1V = PN->getIncomingValueForBlock(BB1);
 | |
|       Value *BB2V = PN->getIncomingValueForBlock(BB2);
 | |
|       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
 | |
|     } else {
 | |
|       FirstNonPhiInBBEnd = &*I;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!FirstNonPhiInBBEnd)
 | |
|     return false;
 | |
| 
 | |
|   // This does very trivial matching, with limited scanning, to find identical
 | |
|   // instructions in the two blocks.  We scan backward for obviously identical
 | |
|   // instructions in an identical order.
 | |
|   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
 | |
|                                              RE1 = BB1->getInstList().rend(),
 | |
|                                              RI2 = BB2->getInstList().rbegin(),
 | |
|                                              RE2 = BB2->getInstList().rend();
 | |
|   // Skip debug info.
 | |
|   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
 | |
|     ++RI1;
 | |
|   if (RI1 == RE1)
 | |
|     return false;
 | |
|   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
 | |
|     ++RI2;
 | |
|   if (RI2 == RE2)
 | |
|     return false;
 | |
|   // Skip the unconditional branches.
 | |
|   ++RI1;
 | |
|   ++RI2;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   while (RI1 != RE1 && RI2 != RE2) {
 | |
|     // Skip debug info.
 | |
|     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
 | |
|       ++RI1;
 | |
|     if (RI1 == RE1)
 | |
|       return Changed;
 | |
|     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
 | |
|       ++RI2;
 | |
|     if (RI2 == RE2)
 | |
|       return Changed;
 | |
| 
 | |
|     Instruction *I1 = &*RI1, *I2 = &*RI2;
 | |
|     auto InstPair = std::make_pair(I1, I2);
 | |
|     // I1 and I2 should have a single use in the same PHI node, and they
 | |
|     // perform the same operation.
 | |
|     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
 | |
|     if (isa<PHINode>(I1) || isa<PHINode>(I2) || isa<TerminatorInst>(I1) ||
 | |
|         isa<TerminatorInst>(I2) || I1->isEHPad() || I2->isEHPad() ||
 | |
|         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
 | |
|         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
 | |
|         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
 | |
|         !I1->hasOneUse() || !I2->hasOneUse() || !JointValueMap.count(InstPair))
 | |
|       return Changed;
 | |
| 
 | |
|     // Check whether we should swap the operands of ICmpInst.
 | |
|     // TODO: Add support of communativity.
 | |
|     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
 | |
|     bool SwapOpnds = false;
 | |
|     if (ICmp1 && ICmp2 && ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
 | |
|         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
 | |
|         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
 | |
|          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
 | |
|       ICmp2->swapOperands();
 | |
|       SwapOpnds = true;
 | |
|     }
 | |
|     if (!I1->isSameOperationAs(I2)) {
 | |
|       if (SwapOpnds)
 | |
|         ICmp2->swapOperands();
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     // The operands should be either the same or they need to be generated
 | |
|     // with a PHI node after sinking. We only handle the case where there is
 | |
|     // a single pair of different operands.
 | |
|     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
 | |
|     unsigned Op1Idx = ~0U;
 | |
|     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
 | |
|       if (I1->getOperand(I) == I2->getOperand(I))
 | |
|         continue;
 | |
|       // Early exit if we have more-than one pair of different operands or if
 | |
|       // we need a PHI node to replace a constant.
 | |
|       if (Op1Idx != ~0U || isa<Constant>(I1->getOperand(I)) ||
 | |
|           isa<Constant>(I2->getOperand(I))) {
 | |
|         // If we can't sink the instructions, undo the swapping.
 | |
|         if (SwapOpnds)
 | |
|           ICmp2->swapOperands();
 | |
|         return Changed;
 | |
|       }
 | |
|       DifferentOp1 = I1->getOperand(I);
 | |
|       Op1Idx = I;
 | |
|       DifferentOp2 = I2->getOperand(I);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
 | |
|     DEBUG(dbgs() << "                         " << *I2 << "\n");
 | |
| 
 | |
|     // We insert the pair of different operands to JointValueMap and
 | |
|     // remove (I1, I2) from JointValueMap.
 | |
|     if (Op1Idx != ~0U) {
 | |
|       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
 | |
|       if (!NewPN) {
 | |
|         NewPN =
 | |
|             PHINode::Create(DifferentOp1->getType(), 2,
 | |
|                             DifferentOp1->getName() + ".sink", &BBEnd->front());
 | |
|         NewPN->addIncoming(DifferentOp1, BB1);
 | |
|         NewPN->addIncoming(DifferentOp2, BB2);
 | |
|         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
 | |
|       }
 | |
|       // I1 should use NewPN instead of DifferentOp1.
 | |
|       I1->setOperand(Op1Idx, NewPN);
 | |
|     }
 | |
|     PHINode *OldPN = JointValueMap[InstPair];
 | |
|     JointValueMap.erase(InstPair);
 | |
| 
 | |
|     // We need to update RE1 and RE2 if we are going to sink the first
 | |
|     // instruction in the basic block down.
 | |
|     bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front());
 | |
|     // Sink the instruction.
 | |
|     BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
 | |
|                                 BB1->getInstList(), I1);
 | |
|     if (!OldPN->use_empty())
 | |
|       OldPN->replaceAllUsesWith(I1);
 | |
|     OldPN->eraseFromParent();
 | |
| 
 | |
|     if (!I2->use_empty())
 | |
|       I2->replaceAllUsesWith(I1);
 | |
|     I1->intersectOptionalDataWith(I2);
 | |
|     // TODO: Use combineMetadata here to preserve what metadata we can
 | |
|     // (analogous to the hoisting case above).
 | |
|     I2->eraseFromParent();
 | |
| 
 | |
|     if (UpdateRE1)
 | |
|       RE1 = BB1->getInstList().rend();
 | |
|     if (UpdateRE2)
 | |
|       RE2 = BB2->getInstList().rend();
 | |
|     FirstNonPhiInBBEnd = &*I1;
 | |
|     NumSinkCommons++;
 | |
|     Changed = true;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// \brief Determine if we can hoist sink a sole store instruction out of a
 | |
| /// conditional block.
 | |
| ///
 | |
| /// We are looking for code like the following:
 | |
| ///   BrBB:
 | |
| ///     store i32 %add, i32* %arrayidx2
 | |
| ///     ... // No other stores or function calls (we could be calling a memory
 | |
| ///     ... // function).
 | |
| ///     %cmp = icmp ult %x, %y
 | |
| ///     br i1 %cmp, label %EndBB, label %ThenBB
 | |
| ///   ThenBB:
 | |
| ///     store i32 %add5, i32* %arrayidx2
 | |
| ///     br label EndBB
 | |
| ///   EndBB:
 | |
| ///     ...
 | |
| ///   We are going to transform this into:
 | |
| ///   BrBB:
 | |
| ///     store i32 %add, i32* %arrayidx2
 | |
| ///     ... //
 | |
| ///     %cmp = icmp ult %x, %y
 | |
| ///     %add.add5 = select i1 %cmp, i32 %add, %add5
 | |
| ///     store i32 %add.add5, i32* %arrayidx2
 | |
| ///     ...
 | |
| ///
 | |
| /// \return The pointer to the value of the previous store if the store can be
 | |
| ///         hoisted into the predecessor block. 0 otherwise.
 | |
| static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
 | |
|                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
 | |
|   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
 | |
|   if (!StoreToHoist)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Volatile or atomic.
 | |
|   if (!StoreToHoist->isSimple())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *StorePtr = StoreToHoist->getPointerOperand();
 | |
| 
 | |
|   // Look for a store to the same pointer in BrBB.
 | |
|   unsigned MaxNumInstToLookAt = 9;
 | |
|   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), RE = BrBB->rend();
 | |
|        RI != RE && MaxNumInstToLookAt; ++RI) {
 | |
|     Instruction *CurI = &*RI;
 | |
|     // Skip debug info.
 | |
|     if (isa<DbgInfoIntrinsic>(CurI))
 | |
|       continue;
 | |
|     --MaxNumInstToLookAt;
 | |
| 
 | |
|     // Could be calling an instruction that effects memory like free().
 | |
|     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
 | |
|       return nullptr;
 | |
| 
 | |
|     StoreInst *SI = dyn_cast<StoreInst>(CurI);
 | |
|     // Found the previous store make sure it stores to the same location.
 | |
|     if (SI && SI->getPointerOperand() == StorePtr)
 | |
|       // Found the previous store, return its value operand.
 | |
|       return SI->getValueOperand();
 | |
|     else if (SI)
 | |
|       return nullptr; // Unknown store.
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief Speculate a conditional basic block flattening the CFG.
 | |
| ///
 | |
| /// Note that this is a very risky transform currently. Speculating
 | |
| /// instructions like this is most often not desirable. Instead, there is an MI
 | |
| /// pass which can do it with full awareness of the resource constraints.
 | |
| /// However, some cases are "obvious" and we should do directly. An example of
 | |
| /// this is speculating a single, reasonably cheap instruction.
 | |
| ///
 | |
| /// There is only one distinct advantage to flattening the CFG at the IR level:
 | |
| /// it makes very common but simplistic optimizations such as are common in
 | |
| /// instcombine and the DAG combiner more powerful by removing CFG edges and
 | |
| /// modeling their effects with easier to reason about SSA value graphs.
 | |
| ///
 | |
| ///
 | |
| /// An illustration of this transform is turning this IR:
 | |
| /// \code
 | |
| ///   BB:
 | |
| ///     %cmp = icmp ult %x, %y
 | |
| ///     br i1 %cmp, label %EndBB, label %ThenBB
 | |
| ///   ThenBB:
 | |
| ///     %sub = sub %x, %y
 | |
| ///     br label BB2
 | |
| ///   EndBB:
 | |
| ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
 | |
| ///     ...
 | |
| /// \endcode
 | |
| ///
 | |
| /// Into this IR:
 | |
| /// \code
 | |
| ///   BB:
 | |
| ///     %cmp = icmp ult %x, %y
 | |
| ///     %sub = sub %x, %y
 | |
| ///     %cond = select i1 %cmp, 0, %sub
 | |
| ///     ...
 | |
| /// \endcode
 | |
| ///
 | |
| /// \returns true if the conditional block is removed.
 | |
| static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
 | |
|                                    const TargetTransformInfo &TTI) {
 | |
|   // Be conservative for now. FP select instruction can often be expensive.
 | |
|   Value *BrCond = BI->getCondition();
 | |
|   if (isa<FCmpInst>(BrCond))
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *BB = BI->getParent();
 | |
|   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
 | |
| 
 | |
|   // If ThenBB is actually on the false edge of the conditional branch, remember
 | |
|   // to swap the select operands later.
 | |
|   bool Invert = false;
 | |
|   if (ThenBB != BI->getSuccessor(0)) {
 | |
|     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
 | |
|     Invert = true;
 | |
|   }
 | |
|   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
 | |
| 
 | |
|   // Keep a count of how many times instructions are used within CondBB when
 | |
|   // they are candidates for sinking into CondBB. Specifically:
 | |
|   // - They are defined in BB, and
 | |
|   // - They have no side effects, and
 | |
|   // - All of their uses are in CondBB.
 | |
|   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
 | |
| 
 | |
|   unsigned SpeculationCost = 0;
 | |
|   Value *SpeculatedStoreValue = nullptr;
 | |
|   StoreInst *SpeculatedStore = nullptr;
 | |
|   for (BasicBlock::iterator BBI = ThenBB->begin(),
 | |
|                             BBE = std::prev(ThenBB->end());
 | |
|        BBI != BBE; ++BBI) {
 | |
|     Instruction *I = &*BBI;
 | |
|     // Skip debug info.
 | |
|     if (isa<DbgInfoIntrinsic>(I))
 | |
|       continue;
 | |
| 
 | |
|     // Only speculatively execute a single instruction (not counting the
 | |
|     // terminator) for now.
 | |
|     ++SpeculationCost;
 | |
|     if (SpeculationCost > 1)
 | |
|       return false;
 | |
| 
 | |
|     // Don't hoist the instruction if it's unsafe or expensive.
 | |
|     if (!isSafeToSpeculativelyExecute(I) &&
 | |
|         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
 | |
|                                   I, BB, ThenBB, EndBB))))
 | |
|       return false;
 | |
|     if (!SpeculatedStoreValue &&
 | |
|         ComputeSpeculationCost(I, TTI) >
 | |
|             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
 | |
|       return false;
 | |
| 
 | |
|     // Store the store speculation candidate.
 | |
|     if (SpeculatedStoreValue)
 | |
|       SpeculatedStore = cast<StoreInst>(I);
 | |
| 
 | |
|     // Do not hoist the instruction if any of its operands are defined but not
 | |
|     // used in BB. The transformation will prevent the operand from
 | |
|     // being sunk into the use block.
 | |
|     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
 | |
|       Instruction *OpI = dyn_cast<Instruction>(*i);
 | |
|       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
 | |
|         continue; // Not a candidate for sinking.
 | |
| 
 | |
|       ++SinkCandidateUseCounts[OpI];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Consider any sink candidates which are only used in CondBB as costs for
 | |
|   // speculation. Note, while we iterate over a DenseMap here, we are summing
 | |
|   // and so iteration order isn't significant.
 | |
|   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
 | |
|            I = SinkCandidateUseCounts.begin(),
 | |
|            E = SinkCandidateUseCounts.end();
 | |
|        I != E; ++I)
 | |
|     if (I->first->getNumUses() == I->second) {
 | |
|       ++SpeculationCost;
 | |
|       if (SpeculationCost > 1)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   // Check that the PHI nodes can be converted to selects.
 | |
|   bool HaveRewritablePHIs = false;
 | |
|   for (BasicBlock::iterator I = EndBB->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|     Value *OrigV = PN->getIncomingValueForBlock(BB);
 | |
|     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
 | |
| 
 | |
|     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
 | |
|     // Skip PHIs which are trivial.
 | |
|     if (ThenV == OrigV)
 | |
|       continue;
 | |
| 
 | |
|     // Don't convert to selects if we could remove undefined behavior instead.
 | |
|     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
 | |
|         passingValueIsAlwaysUndefined(ThenV, PN))
 | |
|       return false;
 | |
| 
 | |
|     HaveRewritablePHIs = true;
 | |
|     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
 | |
|     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
 | |
|     if (!OrigCE && !ThenCE)
 | |
|       continue; // Known safe and cheap.
 | |
| 
 | |
|     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
 | |
|         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
 | |
|       return false;
 | |
|     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
 | |
|     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
 | |
|     unsigned MaxCost =
 | |
|         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
 | |
|     if (OrigCost + ThenCost > MaxCost)
 | |
|       return false;
 | |
| 
 | |
|     // Account for the cost of an unfolded ConstantExpr which could end up
 | |
|     // getting expanded into Instructions.
 | |
|     // FIXME: This doesn't account for how many operations are combined in the
 | |
|     // constant expression.
 | |
|     ++SpeculationCost;
 | |
|     if (SpeculationCost > 1)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If there are no PHIs to process, bail early. This helps ensure idempotence
 | |
|   // as well.
 | |
|   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
 | |
|     return false;
 | |
| 
 | |
|   // If we get here, we can hoist the instruction and if-convert.
 | |
|   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
 | |
| 
 | |
|   // Insert a select of the value of the speculated store.
 | |
|   if (SpeculatedStoreValue) {
 | |
|     IRBuilder<NoFolder> Builder(BI);
 | |
|     Value *TrueV = SpeculatedStore->getValueOperand();
 | |
|     Value *FalseV = SpeculatedStoreValue;
 | |
|     if (Invert)
 | |
|       std::swap(TrueV, FalseV);
 | |
|     Value *S = Builder.CreateSelect(
 | |
|         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
 | |
|     SpeculatedStore->setOperand(0, S);
 | |
|   }
 | |
| 
 | |
|   // Metadata can be dependent on the condition we are hoisting above.
 | |
|   // Conservatively strip all metadata on the instruction.
 | |
|   for (auto &I : *ThenBB)
 | |
|     I.dropUnknownNonDebugMetadata();
 | |
| 
 | |
|   // Hoist the instructions.
 | |
|   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
 | |
|                            ThenBB->begin(), std::prev(ThenBB->end()));
 | |
| 
 | |
|   // Insert selects and rewrite the PHI operands.
 | |
|   IRBuilder<NoFolder> Builder(BI);
 | |
|   for (BasicBlock::iterator I = EndBB->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|     unsigned OrigI = PN->getBasicBlockIndex(BB);
 | |
|     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
 | |
|     Value *OrigV = PN->getIncomingValue(OrigI);
 | |
|     Value *ThenV = PN->getIncomingValue(ThenI);
 | |
| 
 | |
|     // Skip PHIs which are trivial.
 | |
|     if (OrigV == ThenV)
 | |
|       continue;
 | |
| 
 | |
|     // Create a select whose true value is the speculatively executed value and
 | |
|     // false value is the preexisting value. Swap them if the branch
 | |
|     // destinations were inverted.
 | |
|     Value *TrueV = ThenV, *FalseV = OrigV;
 | |
|     if (Invert)
 | |
|       std::swap(TrueV, FalseV);
 | |
|     Value *V = Builder.CreateSelect(
 | |
|         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
 | |
|     PN->setIncomingValue(OrigI, V);
 | |
|     PN->setIncomingValue(ThenI, V);
 | |
|   }
 | |
| 
 | |
|   ++NumSpeculations;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if we can thread a branch across this block.
 | |
| static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
 | |
|   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | |
|   unsigned Size = 0;
 | |
| 
 | |
|   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
 | |
|     if (isa<DbgInfoIntrinsic>(BBI))
 | |
|       continue;
 | |
|     if (Size > 10)
 | |
|       return false; // Don't clone large BB's.
 | |
|     ++Size;
 | |
| 
 | |
|     // We can only support instructions that do not define values that are
 | |
|     // live outside of the current basic block.
 | |
|     for (User *U : BBI->users()) {
 | |
|       Instruction *UI = cast<Instruction>(U);
 | |
|       if (UI->getParent() != BB || isa<PHINode>(UI))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Looks ok, continue checking.
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If we have a conditional branch on a PHI node value that is defined in the
 | |
| /// same block as the branch and if any PHI entries are constants, thread edges
 | |
| /// corresponding to that entry to be branches to their ultimate destination.
 | |
| static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
 | |
|   BasicBlock *BB = BI->getParent();
 | |
|   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
 | |
|   // NOTE: we currently cannot transform this case if the PHI node is used
 | |
|   // outside of the block.
 | |
|   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Degenerate case of a single entry PHI.
 | |
|   if (PN->getNumIncomingValues() == 1) {
 | |
|     FoldSingleEntryPHINodes(PN->getParent());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Now we know that this block has multiple preds and two succs.
 | |
|   if (!BlockIsSimpleEnoughToThreadThrough(BB))
 | |
|     return false;
 | |
| 
 | |
|   // Can't fold blocks that contain noduplicate or convergent calls.
 | |
|   if (llvm::any_of(*BB, [](const Instruction &I) {
 | |
|         const CallInst *CI = dyn_cast<CallInst>(&I);
 | |
|         return CI && (CI->cannotDuplicate() || CI->isConvergent());
 | |
|       }))
 | |
|     return false;
 | |
| 
 | |
|   // Okay, this is a simple enough basic block.  See if any phi values are
 | |
|   // constants.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
 | |
|     if (!CB || !CB->getType()->isIntegerTy(1))
 | |
|       continue;
 | |
| 
 | |
|     // Okay, we now know that all edges from PredBB should be revectored to
 | |
|     // branch to RealDest.
 | |
|     BasicBlock *PredBB = PN->getIncomingBlock(i);
 | |
|     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
 | |
| 
 | |
|     if (RealDest == BB)
 | |
|       continue; // Skip self loops.
 | |
|     // Skip if the predecessor's terminator is an indirect branch.
 | |
|     if (isa<IndirectBrInst>(PredBB->getTerminator()))
 | |
|       continue;
 | |
| 
 | |
|     // The dest block might have PHI nodes, other predecessors and other
 | |
|     // difficult cases.  Instead of being smart about this, just insert a new
 | |
|     // block that jumps to the destination block, effectively splitting
 | |
|     // the edge we are about to create.
 | |
|     BasicBlock *EdgeBB =
 | |
|         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
 | |
|                            RealDest->getParent(), RealDest);
 | |
|     BranchInst::Create(RealDest, EdgeBB);
 | |
| 
 | |
|     // Update PHI nodes.
 | |
|     AddPredecessorToBlock(RealDest, EdgeBB, BB);
 | |
| 
 | |
|     // BB may have instructions that are being threaded over.  Clone these
 | |
|     // instructions into EdgeBB.  We know that there will be no uses of the
 | |
|     // cloned instructions outside of EdgeBB.
 | |
|     BasicBlock::iterator InsertPt = EdgeBB->begin();
 | |
|     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
 | |
|     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
 | |
|         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
 | |
|         continue;
 | |
|       }
 | |
|       // Clone the instruction.
 | |
|       Instruction *N = BBI->clone();
 | |
|       if (BBI->hasName())
 | |
|         N->setName(BBI->getName() + ".c");
 | |
| 
 | |
|       // Update operands due to translation.
 | |
|       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
 | |
|         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
 | |
|         if (PI != TranslateMap.end())
 | |
|           *i = PI->second;
 | |
|       }
 | |
| 
 | |
|       // Check for trivial simplification.
 | |
|       if (Value *V = SimplifyInstruction(N, DL)) {
 | |
|         TranslateMap[&*BBI] = V;
 | |
|         delete N; // Instruction folded away, don't need actual inst
 | |
|       } else {
 | |
|         // Insert the new instruction into its new home.
 | |
|         EdgeBB->getInstList().insert(InsertPt, N);
 | |
|         if (!BBI->use_empty())
 | |
|           TranslateMap[&*BBI] = N;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the edges from PredBB to BB, changing them to branch
 | |
|     // to EdgeBB instead.
 | |
|     TerminatorInst *PredBBTI = PredBB->getTerminator();
 | |
|     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
 | |
|       if (PredBBTI->getSuccessor(i) == BB) {
 | |
|         BB->removePredecessor(PredBB);
 | |
|         PredBBTI->setSuccessor(i, EdgeBB);
 | |
|       }
 | |
| 
 | |
|     // Recurse, simplifying any other constants.
 | |
|     return FoldCondBranchOnPHI(BI, DL) | true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given a BB that starts with the specified two-entry PHI node,
 | |
| /// see if we can eliminate it.
 | |
| static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
 | |
|                                 const DataLayout &DL) {
 | |
|   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
 | |
|   // statement", which has a very simple dominance structure.  Basically, we
 | |
|   // are trying to find the condition that is being branched on, which
 | |
|   // subsequently causes this merge to happen.  We really want control
 | |
|   // dependence information for this check, but simplifycfg can't keep it up
 | |
|   // to date, and this catches most of the cases we care about anyway.
 | |
|   BasicBlock *BB = PN->getParent();
 | |
|   BasicBlock *IfTrue, *IfFalse;
 | |
|   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
 | |
|   if (!IfCond ||
 | |
|       // Don't bother if the branch will be constant folded trivially.
 | |
|       isa<ConstantInt>(IfCond))
 | |
|     return false;
 | |
| 
 | |
|   // Okay, we found that we can merge this two-entry phi node into a select.
 | |
|   // Doing so would require us to fold *all* two entry phi nodes in this block.
 | |
|   // At some point this becomes non-profitable (particularly if the target
 | |
|   // doesn't support cmov's).  Only do this transformation if there are two or
 | |
|   // fewer PHI nodes in this block.
 | |
|   unsigned NumPhis = 0;
 | |
|   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
 | |
|     if (NumPhis > 2)
 | |
|       return false;
 | |
| 
 | |
|   // Loop over the PHI's seeing if we can promote them all to select
 | |
|   // instructions.  While we are at it, keep track of the instructions
 | |
|   // that need to be moved to the dominating block.
 | |
|   SmallPtrSet<Instruction *, 4> AggressiveInsts;
 | |
|   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
 | |
|            MaxCostVal1 = PHINodeFoldingThreshold;
 | |
|   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
 | |
|   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
 | |
| 
 | |
|   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
 | |
|     PHINode *PN = cast<PHINode>(II++);
 | |
|     if (Value *V = SimplifyInstruction(PN, DL)) {
 | |
|       PN->replaceAllUsesWith(V);
 | |
|       PN->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
 | |
|                              MaxCostVal0, TTI) ||
 | |
|         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
 | |
|                              MaxCostVal1, TTI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
 | |
|   // we ran out of PHIs then we simplified them all.
 | |
|   PN = dyn_cast<PHINode>(BB->begin());
 | |
|   if (!PN)
 | |
|     return true;
 | |
| 
 | |
|   // Don't fold i1 branches on PHIs which contain binary operators.  These can
 | |
|   // often be turned into switches and other things.
 | |
|   if (PN->getType()->isIntegerTy(1) &&
 | |
|       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
 | |
|        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
 | |
|        isa<BinaryOperator>(IfCond)))
 | |
|     return false;
 | |
| 
 | |
|   // If all PHI nodes are promotable, check to make sure that all instructions
 | |
|   // in the predecessor blocks can be promoted as well. If not, we won't be able
 | |
|   // to get rid of the control flow, so it's not worth promoting to select
 | |
|   // instructions.
 | |
|   BasicBlock *DomBlock = nullptr;
 | |
|   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
 | |
|   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
 | |
|   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
 | |
|     IfBlock1 = nullptr;
 | |
|   } else {
 | |
|     DomBlock = *pred_begin(IfBlock1);
 | |
|     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
 | |
|          ++I)
 | |
|       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
 | |
|         // This is not an aggressive instruction that we can promote.
 | |
|         // Because of this, we won't be able to get rid of the control flow, so
 | |
|         // the xform is not worth it.
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
 | |
|     IfBlock2 = nullptr;
 | |
|   } else {
 | |
|     DomBlock = *pred_begin(IfBlock2);
 | |
|     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
 | |
|          ++I)
 | |
|       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
 | |
|         // This is not an aggressive instruction that we can promote.
 | |
|         // Because of this, we won't be able to get rid of the control flow, so
 | |
|         // the xform is not worth it.
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
 | |
|                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
 | |
| 
 | |
|   // If we can still promote the PHI nodes after this gauntlet of tests,
 | |
|   // do all of the PHI's now.
 | |
|   Instruction *InsertPt = DomBlock->getTerminator();
 | |
|   IRBuilder<NoFolder> Builder(InsertPt);
 | |
| 
 | |
|   // Move all 'aggressive' instructions, which are defined in the
 | |
|   // conditional parts of the if's up to the dominating block.
 | |
|   if (IfBlock1)
 | |
|     DomBlock->getInstList().splice(InsertPt->getIterator(),
 | |
|                                    IfBlock1->getInstList(), IfBlock1->begin(),
 | |
|                                    IfBlock1->getTerminator()->getIterator());
 | |
|   if (IfBlock2)
 | |
|     DomBlock->getInstList().splice(InsertPt->getIterator(),
 | |
|                                    IfBlock2->getInstList(), IfBlock2->begin(),
 | |
|                                    IfBlock2->getTerminator()->getIterator());
 | |
| 
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     // Change the PHI node into a select instruction.
 | |
|     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
 | |
|     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
 | |
| 
 | |
|     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
 | |
|     PN->replaceAllUsesWith(Sel);
 | |
|     Sel->takeName(PN);
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
 | |
|   // has been flattened.  Change DomBlock to jump directly to our new block to
 | |
|   // avoid other simplifycfg's kicking in on the diamond.
 | |
|   TerminatorInst *OldTI = DomBlock->getTerminator();
 | |
|   Builder.SetInsertPoint(OldTI);
 | |
|   Builder.CreateBr(BB);
 | |
|   OldTI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// If we found a conditional branch that goes to two returning blocks,
 | |
| /// try to merge them together into one return,
 | |
| /// introducing a select if the return values disagree.
 | |
| static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
 | |
|                                            IRBuilder<> &Builder) {
 | |
|   assert(BI->isConditional() && "Must be a conditional branch");
 | |
|   BasicBlock *TrueSucc = BI->getSuccessor(0);
 | |
|   BasicBlock *FalseSucc = BI->getSuccessor(1);
 | |
|   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
 | |
|   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
 | |
| 
 | |
|   // Check to ensure both blocks are empty (just a return) or optionally empty
 | |
|   // with PHI nodes.  If there are other instructions, merging would cause extra
 | |
|   // computation on one path or the other.
 | |
|   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
 | |
|     return false;
 | |
|   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
 | |
|     return false;
 | |
| 
 | |
|   Builder.SetInsertPoint(BI);
 | |
|   // Okay, we found a branch that is going to two return nodes.  If
 | |
|   // there is no return value for this function, just change the
 | |
|   // branch into a return.
 | |
|   if (FalseRet->getNumOperands() == 0) {
 | |
|     TrueSucc->removePredecessor(BI->getParent());
 | |
|     FalseSucc->removePredecessor(BI->getParent());
 | |
|     Builder.CreateRetVoid();
 | |
|     EraseTerminatorInstAndDCECond(BI);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, figure out what the true and false return values are
 | |
|   // so we can insert a new select instruction.
 | |
|   Value *TrueValue = TrueRet->getReturnValue();
 | |
|   Value *FalseValue = FalseRet->getReturnValue();
 | |
| 
 | |
|   // Unwrap any PHI nodes in the return blocks.
 | |
|   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
 | |
|     if (TVPN->getParent() == TrueSucc)
 | |
|       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
 | |
|   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
 | |
|     if (FVPN->getParent() == FalseSucc)
 | |
|       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
 | |
| 
 | |
|   // In order for this transformation to be safe, we must be able to
 | |
|   // unconditionally execute both operands to the return.  This is
 | |
|   // normally the case, but we could have a potentially-trapping
 | |
|   // constant expression that prevents this transformation from being
 | |
|   // safe.
 | |
|   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
 | |
|     if (TCV->canTrap())
 | |
|       return false;
 | |
|   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
 | |
|     if (FCV->canTrap())
 | |
|       return false;
 | |
| 
 | |
|   // Okay, we collected all the mapped values and checked them for sanity, and
 | |
|   // defined to really do this transformation.  First, update the CFG.
 | |
|   TrueSucc->removePredecessor(BI->getParent());
 | |
|   FalseSucc->removePredecessor(BI->getParent());
 | |
| 
 | |
|   // Insert select instructions where needed.
 | |
|   Value *BrCond = BI->getCondition();
 | |
|   if (TrueValue) {
 | |
|     // Insert a select if the results differ.
 | |
|     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
 | |
|     } else if (isa<UndefValue>(TrueValue)) {
 | |
|       TrueValue = FalseValue;
 | |
|     } else {
 | |
|       TrueValue =
 | |
|           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value *RI =
 | |
|       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
 | |
| 
 | |
|   (void)RI;
 | |
| 
 | |
|   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
 | |
|                << "\n  " << *BI << "NewRet = " << *RI
 | |
|                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
 | |
| 
 | |
|   EraseTerminatorInstAndDCECond(BI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if the given instruction is available
 | |
| /// in its predecessor block. If yes, the instruction will be removed.
 | |
| static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
 | |
|   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
 | |
|     return false;
 | |
|   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
 | |
|     Instruction *PBI = &*I;
 | |
|     // Check whether Inst and PBI generate the same value.
 | |
|     if (Inst->isIdenticalTo(PBI)) {
 | |
|       Inst->replaceAllUsesWith(PBI);
 | |
|       Inst->eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if either PBI or BI has branch weight available, and store
 | |
| /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
 | |
| /// not have branch weight, use 1:1 as its weight.
 | |
| static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
 | |
|                                    uint64_t &PredTrueWeight,
 | |
|                                    uint64_t &PredFalseWeight,
 | |
|                                    uint64_t &SuccTrueWeight,
 | |
|                                    uint64_t &SuccFalseWeight) {
 | |
|   bool PredHasWeights =
 | |
|       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
 | |
|   bool SuccHasWeights =
 | |
|       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
 | |
|   if (PredHasWeights || SuccHasWeights) {
 | |
|     if (!PredHasWeights)
 | |
|       PredTrueWeight = PredFalseWeight = 1;
 | |
|     if (!SuccHasWeights)
 | |
|       SuccTrueWeight = SuccFalseWeight = 1;
 | |
|     return true;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If this basic block is simple enough, and if a predecessor branches to us
 | |
| /// and one of our successors, fold the block into the predecessor and use
 | |
| /// logical operations to pick the right destination.
 | |
| bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
 | |
|   BasicBlock *BB = BI->getParent();
 | |
| 
 | |
|   Instruction *Cond = nullptr;
 | |
|   if (BI->isConditional())
 | |
|     Cond = dyn_cast<Instruction>(BI->getCondition());
 | |
|   else {
 | |
|     // For unconditional branch, check for a simple CFG pattern, where
 | |
|     // BB has a single predecessor and BB's successor is also its predecessor's
 | |
|     // successor. If such pattern exisits, check for CSE between BB and its
 | |
|     // predecessor.
 | |
|     if (BasicBlock *PB = BB->getSinglePredecessor())
 | |
|       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
 | |
|         if (PBI->isConditional() &&
 | |
|             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
 | |
|              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
 | |
|           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | |
|             Instruction *Curr = &*I++;
 | |
|             if (isa<CmpInst>(Curr)) {
 | |
|               Cond = Curr;
 | |
|               break;
 | |
|             }
 | |
|             // Quit if we can't remove this instruction.
 | |
|             if (!checkCSEInPredecessor(Curr, PB))
 | |
|               return false;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     if (!Cond)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
 | |
|       Cond->getParent() != BB || !Cond->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure the instruction after the condition is the cond branch.
 | |
|   BasicBlock::iterator CondIt = ++Cond->getIterator();
 | |
| 
 | |
|   // Ignore dbg intrinsics.
 | |
|   while (isa<DbgInfoIntrinsic>(CondIt))
 | |
|     ++CondIt;
 | |
| 
 | |
|   if (&*CondIt != BI)
 | |
|     return false;
 | |
| 
 | |
|   // Only allow this transformation if computing the condition doesn't involve
 | |
|   // too many instructions and these involved instructions can be executed
 | |
|   // unconditionally. We denote all involved instructions except the condition
 | |
|   // as "bonus instructions", and only allow this transformation when the
 | |
|   // number of the bonus instructions does not exceed a certain threshold.
 | |
|   unsigned NumBonusInsts = 0;
 | |
|   for (auto I = BB->begin(); Cond != &*I; ++I) {
 | |
|     // Ignore dbg intrinsics.
 | |
|     if (isa<DbgInfoIntrinsic>(I))
 | |
|       continue;
 | |
|     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
 | |
|       return false;
 | |
|     // I has only one use and can be executed unconditionally.
 | |
|     Instruction *User = dyn_cast<Instruction>(I->user_back());
 | |
|     if (User == nullptr || User->getParent() != BB)
 | |
|       return false;
 | |
|     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
 | |
|     // to use any other instruction, User must be an instruction between next(I)
 | |
|     // and Cond.
 | |
|     ++NumBonusInsts;
 | |
|     // Early exits once we reach the limit.
 | |
|     if (NumBonusInsts > BonusInstThreshold)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Cond is known to be a compare or binary operator.  Check to make sure that
 | |
|   // neither operand is a potentially-trapping constant expression.
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
 | |
|     if (CE->canTrap())
 | |
|       return false;
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
 | |
|     if (CE->canTrap())
 | |
|       return false;
 | |
| 
 | |
|   // Finally, don't infinitely unroll conditional loops.
 | |
|   BasicBlock *TrueDest = BI->getSuccessor(0);
 | |
|   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
 | |
|   if (TrueDest == BB || FalseDest == BB)
 | |
|     return false;
 | |
| 
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|     BasicBlock *PredBlock = *PI;
 | |
|     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
 | |
| 
 | |
|     // Check that we have two conditional branches.  If there is a PHI node in
 | |
|     // the common successor, verify that the same value flows in from both
 | |
|     // blocks.
 | |
|     SmallVector<PHINode *, 4> PHIs;
 | |
|     if (!PBI || PBI->isUnconditional() ||
 | |
|         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
 | |
|         (!BI->isConditional() &&
 | |
|          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
 | |
|       continue;
 | |
| 
 | |
|     // Determine if the two branches share a common destination.
 | |
|     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
 | |
|     bool InvertPredCond = false;
 | |
| 
 | |
|     if (BI->isConditional()) {
 | |
|       if (PBI->getSuccessor(0) == TrueDest) {
 | |
|         Opc = Instruction::Or;
 | |
|       } else if (PBI->getSuccessor(1) == FalseDest) {
 | |
|         Opc = Instruction::And;
 | |
|       } else if (PBI->getSuccessor(0) == FalseDest) {
 | |
|         Opc = Instruction::And;
 | |
|         InvertPredCond = true;
 | |
|       } else if (PBI->getSuccessor(1) == TrueDest) {
 | |
|         Opc = Instruction::Or;
 | |
|         InvertPredCond = true;
 | |
|       } else {
 | |
|         continue;
 | |
|       }
 | |
|     } else {
 | |
|       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
 | |
|     IRBuilder<> Builder(PBI);
 | |
| 
 | |
|     // If we need to invert the condition in the pred block to match, do so now.
 | |
|     if (InvertPredCond) {
 | |
|       Value *NewCond = PBI->getCondition();
 | |
| 
 | |
|       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
 | |
|         CmpInst *CI = cast<CmpInst>(NewCond);
 | |
|         CI->setPredicate(CI->getInversePredicate());
 | |
|       } else {
 | |
|         NewCond =
 | |
|             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
 | |
|       }
 | |
| 
 | |
|       PBI->setCondition(NewCond);
 | |
|       PBI->swapSuccessors();
 | |
|     }
 | |
| 
 | |
|     // If we have bonus instructions, clone them into the predecessor block.
 | |
|     // Note that there may be multiple predecessor blocks, so we cannot move
 | |
|     // bonus instructions to a predecessor block.
 | |
|     ValueToValueMapTy VMap; // maps original values to cloned values
 | |
|     // We already make sure Cond is the last instruction before BI. Therefore,
 | |
|     // all instructions before Cond other than DbgInfoIntrinsic are bonus
 | |
|     // instructions.
 | |
|     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
 | |
|       if (isa<DbgInfoIntrinsic>(BonusInst))
 | |
|         continue;
 | |
|       Instruction *NewBonusInst = BonusInst->clone();
 | |
|       RemapInstruction(NewBonusInst, VMap,
 | |
|                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | |
|       VMap[&*BonusInst] = NewBonusInst;
 | |
| 
 | |
|       // If we moved a load, we cannot any longer claim any knowledge about
 | |
|       // its potential value. The previous information might have been valid
 | |
|       // only given the branch precondition.
 | |
|       // For an analogous reason, we must also drop all the metadata whose
 | |
|       // semantics we don't understand.
 | |
|       NewBonusInst->dropUnknownNonDebugMetadata();
 | |
| 
 | |
|       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
 | |
|       NewBonusInst->takeName(&*BonusInst);
 | |
|       BonusInst->setName(BonusInst->getName() + ".old");
 | |
|     }
 | |
| 
 | |
|     // Clone Cond into the predecessor basic block, and or/and the
 | |
|     // two conditions together.
 | |
|     Instruction *New = Cond->clone();
 | |
|     RemapInstruction(New, VMap,
 | |
|                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | |
|     PredBlock->getInstList().insert(PBI->getIterator(), New);
 | |
|     New->takeName(Cond);
 | |
|     Cond->setName(New->getName() + ".old");
 | |
| 
 | |
|     if (BI->isConditional()) {
 | |
|       Instruction *NewCond = cast<Instruction>(
 | |
|           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
 | |
|       PBI->setCondition(NewCond);
 | |
| 
 | |
|       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
 | |
|       bool HasWeights =
 | |
|           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
 | |
|                                  SuccTrueWeight, SuccFalseWeight);
 | |
|       SmallVector<uint64_t, 8> NewWeights;
 | |
| 
 | |
|       if (PBI->getSuccessor(0) == BB) {
 | |
|         if (HasWeights) {
 | |
|           // PBI: br i1 %x, BB, FalseDest
 | |
|           // BI:  br i1 %y, TrueDest, FalseDest
 | |
|           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
 | |
|           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
 | |
|           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
 | |
|           //               TrueWeight for PBI * FalseWeight for BI.
 | |
|           // We assume that total weights of a BranchInst can fit into 32 bits.
 | |
|           // Therefore, we will not have overflow using 64-bit arithmetic.
 | |
|           NewWeights.push_back(PredFalseWeight *
 | |
|                                    (SuccFalseWeight + SuccTrueWeight) +
 | |
|                                PredTrueWeight * SuccFalseWeight);
 | |
|         }
 | |
|         AddPredecessorToBlock(TrueDest, PredBlock, BB);
 | |
|         PBI->setSuccessor(0, TrueDest);
 | |
|       }
 | |
|       if (PBI->getSuccessor(1) == BB) {
 | |
|         if (HasWeights) {
 | |
|           // PBI: br i1 %x, TrueDest, BB
 | |
|           // BI:  br i1 %y, TrueDest, FalseDest
 | |
|           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
 | |
|           //              FalseWeight for PBI * TrueWeight for BI.
 | |
|           NewWeights.push_back(PredTrueWeight *
 | |
|                                    (SuccFalseWeight + SuccTrueWeight) +
 | |
|                                PredFalseWeight * SuccTrueWeight);
 | |
|           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
 | |
|           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
 | |
|         }
 | |
|         AddPredecessorToBlock(FalseDest, PredBlock, BB);
 | |
|         PBI->setSuccessor(1, FalseDest);
 | |
|       }
 | |
|       if (NewWeights.size() == 2) {
 | |
|         // Halve the weights if any of them cannot fit in an uint32_t
 | |
|         FitWeights(NewWeights);
 | |
| 
 | |
|         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
 | |
|                                            NewWeights.end());
 | |
|         PBI->setMetadata(
 | |
|             LLVMContext::MD_prof,
 | |
|             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
 | |
|       } else
 | |
|         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
 | |
|     } else {
 | |
|       // Update PHI nodes in the common successors.
 | |
|       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
 | |
|         ConstantInt *PBI_C = cast<ConstantInt>(
 | |
|             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
 | |
|         assert(PBI_C->getType()->isIntegerTy(1));
 | |
|         Instruction *MergedCond = nullptr;
 | |
|         if (PBI->getSuccessor(0) == TrueDest) {
 | |
|           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
 | |
|           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
 | |
|           //       is false: !PBI_Cond and BI_Value
 | |
|           Instruction *NotCond = cast<Instruction>(
 | |
|               Builder.CreateNot(PBI->getCondition(), "not.cond"));
 | |
|           MergedCond = cast<Instruction>(
 | |
|               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
 | |
|           if (PBI_C->isOne())
 | |
|             MergedCond = cast<Instruction>(Builder.CreateBinOp(
 | |
|                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
 | |
|         } else {
 | |
|           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
 | |
|           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
 | |
|           //       is false: PBI_Cond and BI_Value
 | |
|           MergedCond = cast<Instruction>(Builder.CreateBinOp(
 | |
|               Instruction::And, PBI->getCondition(), New, "and.cond"));
 | |
|           if (PBI_C->isOne()) {
 | |
|             Instruction *NotCond = cast<Instruction>(
 | |
|                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
 | |
|             MergedCond = cast<Instruction>(Builder.CreateBinOp(
 | |
|                 Instruction::Or, NotCond, MergedCond, "or.cond"));
 | |
|           }
 | |
|         }
 | |
|         // Update PHI Node.
 | |
|         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
 | |
|                                   MergedCond);
 | |
|       }
 | |
|       // Change PBI from Conditional to Unconditional.
 | |
|       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
 | |
|       EraseTerminatorInstAndDCECond(PBI);
 | |
|       PBI = New_PBI;
 | |
|     }
 | |
| 
 | |
|     // TODO: If BB is reachable from all paths through PredBlock, then we
 | |
|     // could replace PBI's branch probabilities with BI's.
 | |
| 
 | |
|     // Copy any debug value intrinsics into the end of PredBlock.
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (isa<DbgInfoIntrinsic>(*I))
 | |
|         I->clone()->insertBefore(PBI);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // If there is only one store in BB1 and BB2, return it, otherwise return
 | |
| // nullptr.
 | |
| static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
 | |
|   StoreInst *S = nullptr;
 | |
|   for (auto *BB : {BB1, BB2}) {
 | |
|     if (!BB)
 | |
|       continue;
 | |
|     for (auto &I : *BB)
 | |
|       if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | |
|         if (S)
 | |
|           // Multiple stores seen.
 | |
|           return nullptr;
 | |
|         else
 | |
|           S = SI;
 | |
|       }
 | |
|   }
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
 | |
|                                               Value *AlternativeV = nullptr) {
 | |
|   // PHI is going to be a PHI node that allows the value V that is defined in
 | |
|   // BB to be referenced in BB's only successor.
 | |
|   //
 | |
|   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
 | |
|   // doesn't matter to us what the other operand is (it'll never get used). We
 | |
|   // could just create a new PHI with an undef incoming value, but that could
 | |
|   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
 | |
|   // other PHI. So here we directly look for some PHI in BB's successor with V
 | |
|   // as an incoming operand. If we find one, we use it, else we create a new
 | |
|   // one.
 | |
|   //
 | |
|   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
 | |
|   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
 | |
|   // where OtherBB is the single other predecessor of BB's only successor.
 | |
|   PHINode *PHI = nullptr;
 | |
|   BasicBlock *Succ = BB->getSingleSuccessor();
 | |
| 
 | |
|   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
 | |
|     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
 | |
|       PHI = cast<PHINode>(I);
 | |
|       if (!AlternativeV)
 | |
|         break;
 | |
| 
 | |
|       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
 | |
|       auto PredI = pred_begin(Succ);
 | |
|       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
 | |
|       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
 | |
|         break;
 | |
|       PHI = nullptr;
 | |
|     }
 | |
|   if (PHI)
 | |
|     return PHI;
 | |
| 
 | |
|   // If V is not an instruction defined in BB, just return it.
 | |
|   if (!AlternativeV &&
 | |
|       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
 | |
|     return V;
 | |
| 
 | |
|   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
 | |
|   PHI->addIncoming(V, BB);
 | |
|   for (BasicBlock *PredBB : predecessors(Succ))
 | |
|     if (PredBB != BB)
 | |
|       PHI->addIncoming(
 | |
|           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
 | |
|   return PHI;
 | |
| }
 | |
| 
 | |
| static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
 | |
|                                            BasicBlock *QTB, BasicBlock *QFB,
 | |
|                                            BasicBlock *PostBB, Value *Address,
 | |
|                                            bool InvertPCond, bool InvertQCond) {
 | |
|   auto IsaBitcastOfPointerType = [](const Instruction &I) {
 | |
|     return Operator::getOpcode(&I) == Instruction::BitCast &&
 | |
|            I.getType()->isPointerTy();
 | |
|   };
 | |
| 
 | |
|   // If we're not in aggressive mode, we only optimize if we have some
 | |
|   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
 | |
|   auto IsWorthwhile = [&](BasicBlock *BB) {
 | |
|     if (!BB)
 | |
|       return true;
 | |
|     // Heuristic: if the block can be if-converted/phi-folded and the
 | |
|     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
 | |
|     // thread this store.
 | |
|     unsigned N = 0;
 | |
|     for (auto &I : *BB) {
 | |
|       // Cheap instructions viable for folding.
 | |
|       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
 | |
|           isa<StoreInst>(I))
 | |
|         ++N;
 | |
|       // Free instructions.
 | |
|       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
 | |
|                IsaBitcastOfPointerType(I))
 | |
|         continue;
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
|     return N <= PHINodeFoldingThreshold;
 | |
|   };
 | |
| 
 | |
|   if (!MergeCondStoresAggressively &&
 | |
|       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
 | |
|        !IsWorthwhile(QFB)))
 | |
|     return false;
 | |
| 
 | |
|   // For every pointer, there must be exactly two stores, one coming from
 | |
|   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
 | |
|   // store (to any address) in PTB,PFB or QTB,QFB.
 | |
|   // FIXME: We could relax this restriction with a bit more work and performance
 | |
|   // testing.
 | |
|   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
 | |
|   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
 | |
|   if (!PStore || !QStore)
 | |
|     return false;
 | |
| 
 | |
|   // Now check the stores are compatible.
 | |
|   if (!QStore->isUnordered() || !PStore->isUnordered())
 | |
|     return false;
 | |
| 
 | |
|   // Check that sinking the store won't cause program behavior changes. Sinking
 | |
|   // the store out of the Q blocks won't change any behavior as we're sinking
 | |
|   // from a block to its unconditional successor. But we're moving a store from
 | |
|   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
 | |
|   // So we need to check that there are no aliasing loads or stores in
 | |
|   // QBI, QTB and QFB. We also need to check there are no conflicting memory
 | |
|   // operations between PStore and the end of its parent block.
 | |
|   //
 | |
|   // The ideal way to do this is to query AliasAnalysis, but we don't
 | |
|   // preserve AA currently so that is dangerous. Be super safe and just
 | |
|   // check there are no other memory operations at all.
 | |
|   for (auto &I : *QFB->getSinglePredecessor())
 | |
|     if (I.mayReadOrWriteMemory())
 | |
|       return false;
 | |
|   for (auto &I : *QFB)
 | |
|     if (&I != QStore && I.mayReadOrWriteMemory())
 | |
|       return false;
 | |
|   if (QTB)
 | |
|     for (auto &I : *QTB)
 | |
|       if (&I != QStore && I.mayReadOrWriteMemory())
 | |
|         return false;
 | |
|   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
 | |
|        I != E; ++I)
 | |
|     if (&*I != PStore && I->mayReadOrWriteMemory())
 | |
|       return false;
 | |
| 
 | |
|   // OK, we're going to sink the stores to PostBB. The store has to be
 | |
|   // conditional though, so first create the predicate.
 | |
|   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
 | |
|                      ->getCondition();
 | |
|   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
 | |
|                      ->getCondition();
 | |
| 
 | |
|   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
 | |
|                                                 PStore->getParent());
 | |
|   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
 | |
|                                                 QStore->getParent(), PPHI);
 | |
| 
 | |
|   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
 | |
| 
 | |
|   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
 | |
|   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
 | |
| 
 | |
|   if (InvertPCond)
 | |
|     PPred = QB.CreateNot(PPred);
 | |
|   if (InvertQCond)
 | |
|     QPred = QB.CreateNot(QPred);
 | |
|   Value *CombinedPred = QB.CreateOr(PPred, QPred);
 | |
| 
 | |
|   auto *T =
 | |
|       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
 | |
|   QB.SetInsertPoint(T);
 | |
|   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
 | |
|   AAMDNodes AAMD;
 | |
|   PStore->getAAMetadata(AAMD, /*Merge=*/false);
 | |
|   PStore->getAAMetadata(AAMD, /*Merge=*/true);
 | |
|   SI->setAAMetadata(AAMD);
 | |
| 
 | |
|   QStore->eraseFromParent();
 | |
|   PStore->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
 | |
|   // The intention here is to find diamonds or triangles (see below) where each
 | |
|   // conditional block contains a store to the same address. Both of these
 | |
|   // stores are conditional, so they can't be unconditionally sunk. But it may
 | |
|   // be profitable to speculatively sink the stores into one merged store at the
 | |
|   // end, and predicate the merged store on the union of the two conditions of
 | |
|   // PBI and QBI.
 | |
|   //
 | |
|   // This can reduce the number of stores executed if both of the conditions are
 | |
|   // true, and can allow the blocks to become small enough to be if-converted.
 | |
|   // This optimization will also chain, so that ladders of test-and-set
 | |
|   // sequences can be if-converted away.
 | |
|   //
 | |
|   // We only deal with simple diamonds or triangles:
 | |
|   //
 | |
|   //     PBI       or      PBI        or a combination of the two
 | |
|   //    /   \               | \
 | |
|   //   PTB  PFB             |  PFB
 | |
|   //    \   /               | /
 | |
|   //     QBI                QBI
 | |
|   //    /  \                | \
 | |
|   //   QTB  QFB             |  QFB
 | |
|   //    \  /                | /
 | |
|   //    PostBB            PostBB
 | |
|   //
 | |
|   // We model triangles as a type of diamond with a nullptr "true" block.
 | |
|   // Triangles are canonicalized so that the fallthrough edge is represented by
 | |
|   // a true condition, as in the diagram above.
 | |
|   //
 | |
|   BasicBlock *PTB = PBI->getSuccessor(0);
 | |
|   BasicBlock *PFB = PBI->getSuccessor(1);
 | |
|   BasicBlock *QTB = QBI->getSuccessor(0);
 | |
|   BasicBlock *QFB = QBI->getSuccessor(1);
 | |
|   BasicBlock *PostBB = QFB->getSingleSuccessor();
 | |
| 
 | |
|   bool InvertPCond = false, InvertQCond = false;
 | |
|   // Canonicalize fallthroughs to the true branches.
 | |
|   if (PFB == QBI->getParent()) {
 | |
|     std::swap(PFB, PTB);
 | |
|     InvertPCond = true;
 | |
|   }
 | |
|   if (QFB == PostBB) {
 | |
|     std::swap(QFB, QTB);
 | |
|     InvertQCond = true;
 | |
|   }
 | |
| 
 | |
|   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
 | |
|   // and QFB may not. Model fallthroughs as a nullptr block.
 | |
|   if (PTB == QBI->getParent())
 | |
|     PTB = nullptr;
 | |
|   if (QTB == PostBB)
 | |
|     QTB = nullptr;
 | |
| 
 | |
|   // Legality bailouts. We must have at least the non-fallthrough blocks and
 | |
|   // the post-dominating block, and the non-fallthroughs must only have one
 | |
|   // predecessor.
 | |
|   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
 | |
|     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
 | |
|   };
 | |
|   if (!PostBB ||
 | |
|       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
 | |
|       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
 | |
|     return false;
 | |
|   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
 | |
|       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
 | |
|     return false;
 | |
|   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // OK, this is a sequence of two diamonds or triangles.
 | |
|   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
 | |
|   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
 | |
|   for (auto *BB : {PTB, PFB}) {
 | |
|     if (!BB)
 | |
|       continue;
 | |
|     for (auto &I : *BB)
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
 | |
|         PStoreAddresses.insert(SI->getPointerOperand());
 | |
|   }
 | |
|   for (auto *BB : {QTB, QFB}) {
 | |
|     if (!BB)
 | |
|       continue;
 | |
|     for (auto &I : *BB)
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
 | |
|         QStoreAddresses.insert(SI->getPointerOperand());
 | |
|   }
 | |
| 
 | |
|   set_intersect(PStoreAddresses, QStoreAddresses);
 | |
|   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
 | |
|   // clear what it contains.
 | |
|   auto &CommonAddresses = PStoreAddresses;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (auto *Address : CommonAddresses)
 | |
|     Changed |= mergeConditionalStoreToAddress(
 | |
|         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// If we have a conditional branch as a predecessor of another block,
 | |
| /// this function tries to simplify it.  We know
 | |
| /// that PBI and BI are both conditional branches, and BI is in one of the
 | |
| /// successor blocks of PBI - PBI branches to BI.
 | |
| static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
 | |
|                                            const DataLayout &DL) {
 | |
|   assert(PBI->isConditional() && BI->isConditional());
 | |
|   BasicBlock *BB = BI->getParent();
 | |
| 
 | |
|   // If this block ends with a branch instruction, and if there is a
 | |
|   // predecessor that ends on a branch of the same condition, make
 | |
|   // this conditional branch redundant.
 | |
|   if (PBI->getCondition() == BI->getCondition() &&
 | |
|       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
 | |
|     // Okay, the outcome of this conditional branch is statically
 | |
|     // knowable.  If this block had a single pred, handle specially.
 | |
|     if (BB->getSinglePredecessor()) {
 | |
|       // Turn this into a branch on constant.
 | |
|       bool CondIsTrue = PBI->getSuccessor(0) == BB;
 | |
|       BI->setCondition(
 | |
|           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
 | |
|       return true; // Nuke the branch on constant.
 | |
|     }
 | |
| 
 | |
|     // Otherwise, if there are multiple predecessors, insert a PHI that merges
 | |
|     // in the constant and simplify the block result.  Subsequent passes of
 | |
|     // simplifycfg will thread the block.
 | |
|     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
 | |
|       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
 | |
|       PHINode *NewPN = PHINode::Create(
 | |
|           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
 | |
|           BI->getCondition()->getName() + ".pr", &BB->front());
 | |
|       // Okay, we're going to insert the PHI node.  Since PBI is not the only
 | |
|       // predecessor, compute the PHI'd conditional value for all of the preds.
 | |
|       // Any predecessor where the condition is not computable we keep symbolic.
 | |
|       for (pred_iterator PI = PB; PI != PE; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
 | |
|             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
 | |
|             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
 | |
|           bool CondIsTrue = PBI->getSuccessor(0) == BB;
 | |
|           NewPN->addIncoming(
 | |
|               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
 | |
|               P);
 | |
|         } else {
 | |
|           NewPN->addIncoming(BI->getCondition(), P);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       BI->setCondition(NewPN);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
 | |
|     if (CE->canTrap())
 | |
|       return false;
 | |
| 
 | |
|   // If both branches are conditional and both contain stores to the same
 | |
|   // address, remove the stores from the conditionals and create a conditional
 | |
|   // merged store at the end.
 | |
|   if (MergeCondStores && mergeConditionalStores(PBI, BI))
 | |
|     return true;
 | |
| 
 | |
|   // If this is a conditional branch in an empty block, and if any
 | |
|   // predecessors are a conditional branch to one of our destinations,
 | |
|   // fold the conditions into logical ops and one cond br.
 | |
|   BasicBlock::iterator BBI = BB->begin();
 | |
|   // Ignore dbg intrinsics.
 | |
|   while (isa<DbgInfoIntrinsic>(BBI))
 | |
|     ++BBI;
 | |
|   if (&*BBI != BI)
 | |
|     return false;
 | |
| 
 | |
|   int PBIOp, BIOp;
 | |
|   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
 | |
|     PBIOp = 0;
 | |
|     BIOp = 0;
 | |
|   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
 | |
|     PBIOp = 0;
 | |
|     BIOp = 1;
 | |
|   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
 | |
|     PBIOp = 1;
 | |
|     BIOp = 0;
 | |
|   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
 | |
|     PBIOp = 1;
 | |
|     BIOp = 1;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check to make sure that the other destination of this branch
 | |
|   // isn't BB itself.  If so, this is an infinite loop that will
 | |
|   // keep getting unwound.
 | |
|   if (PBI->getSuccessor(PBIOp) == BB)
 | |
|     return false;
 | |
| 
 | |
|   // Do not perform this transformation if it would require
 | |
|   // insertion of a large number of select instructions. For targets
 | |
|   // without predication/cmovs, this is a big pessimization.
 | |
| 
 | |
|   // Also do not perform this transformation if any phi node in the common
 | |
|   // destination block can trap when reached by BB or PBB (PR17073). In that
 | |
|   // case, it would be unsafe to hoist the operation into a select instruction.
 | |
| 
 | |
|   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
 | |
|   unsigned NumPhis = 0;
 | |
|   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
 | |
|        ++II, ++NumPhis) {
 | |
|     if (NumPhis > 2) // Disable this xform.
 | |
|       return false;
 | |
| 
 | |
|     PHINode *PN = cast<PHINode>(II);
 | |
|     Value *BIV = PN->getIncomingValueForBlock(BB);
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
 | |
|       if (CE->canTrap())
 | |
|         return false;
 | |
| 
 | |
|     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
 | |
|     Value *PBIV = PN->getIncomingValue(PBBIdx);
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
 | |
|       if (CE->canTrap())
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   // Finally, if everything is ok, fold the branches to logical ops.
 | |
|   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
 | |
| 
 | |
|   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
 | |
|                << "AND: " << *BI->getParent());
 | |
| 
 | |
|   // If OtherDest *is* BB, then BB is a basic block with a single conditional
 | |
|   // branch in it, where one edge (OtherDest) goes back to itself but the other
 | |
|   // exits.  We don't *know* that the program avoids the infinite loop
 | |
|   // (even though that seems likely).  If we do this xform naively, we'll end up
 | |
|   // recursively unpeeling the loop.  Since we know that (after the xform is
 | |
|   // done) that the block *is* infinite if reached, we just make it an obviously
 | |
|   // infinite loop with no cond branch.
 | |
|   if (OtherDest == BB) {
 | |
|     // Insert it at the end of the function, because it's either code,
 | |
|     // or it won't matter if it's hot. :)
 | |
|     BasicBlock *InfLoopBlock =
 | |
|         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
 | |
|     BranchInst::Create(InfLoopBlock, InfLoopBlock);
 | |
|     OtherDest = InfLoopBlock;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << *PBI->getParent()->getParent());
 | |
| 
 | |
|   // BI may have other predecessors.  Because of this, we leave
 | |
|   // it alone, but modify PBI.
 | |
| 
 | |
|   // Make sure we get to CommonDest on True&True directions.
 | |
|   Value *PBICond = PBI->getCondition();
 | |
|   IRBuilder<NoFolder> Builder(PBI);
 | |
|   if (PBIOp)
 | |
|     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
 | |
| 
 | |
|   Value *BICond = BI->getCondition();
 | |
|   if (BIOp)
 | |
|     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
 | |
| 
 | |
|   // Merge the conditions.
 | |
|   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
 | |
| 
 | |
|   // Modify PBI to branch on the new condition to the new dests.
 | |
|   PBI->setCondition(Cond);
 | |
|   PBI->setSuccessor(0, CommonDest);
 | |
|   PBI->setSuccessor(1, OtherDest);
 | |
| 
 | |
|   // Update branch weight for PBI.
 | |
|   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
 | |
|   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
 | |
|   bool HasWeights =
 | |
|       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
 | |
|                              SuccTrueWeight, SuccFalseWeight);
 | |
|   if (HasWeights) {
 | |
|     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
 | |
|     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
 | |
|     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
 | |
|     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
 | |
|     // The weight to CommonDest should be PredCommon * SuccTotal +
 | |
|     //                                    PredOther * SuccCommon.
 | |
|     // The weight to OtherDest should be PredOther * SuccOther.
 | |
|     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
 | |
|                                   PredOther * SuccCommon,
 | |
|                               PredOther * SuccOther};
 | |
|     // Halve the weights if any of them cannot fit in an uint32_t
 | |
|     FitWeights(NewWeights);
 | |
| 
 | |
|     PBI->setMetadata(LLVMContext::MD_prof,
 | |
|                      MDBuilder(BI->getContext())
 | |
|                          .createBranchWeights(NewWeights[0], NewWeights[1]));
 | |
|   }
 | |
| 
 | |
|   // OtherDest may have phi nodes.  If so, add an entry from PBI's
 | |
|   // block that are identical to the entries for BI's block.
 | |
|   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
 | |
| 
 | |
|   // We know that the CommonDest already had an edge from PBI to
 | |
|   // it.  If it has PHIs though, the PHIs may have different
 | |
|   // entries for BB and PBI's BB.  If so, insert a select to make
 | |
|   // them agree.
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator II = CommonDest->begin();
 | |
|        (PN = dyn_cast<PHINode>(II)); ++II) {
 | |
|     Value *BIV = PN->getIncomingValueForBlock(BB);
 | |
|     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
 | |
|     Value *PBIV = PN->getIncomingValue(PBBIdx);
 | |
|     if (BIV != PBIV) {
 | |
|       // Insert a select in PBI to pick the right value.
 | |
|       SelectInst *NV = cast<SelectInst>(
 | |
|           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
 | |
|       PN->setIncomingValue(PBBIdx, NV);
 | |
|       // Although the select has the same condition as PBI, the original branch
 | |
|       // weights for PBI do not apply to the new select because the select's
 | |
|       // 'logical' edges are incoming edges of the phi that is eliminated, not
 | |
|       // the outgoing edges of PBI.
 | |
|       if (HasWeights) {
 | |
|         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
 | |
|         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
 | |
|         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
 | |
|         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
 | |
|         // The weight to PredCommonDest should be PredCommon * SuccTotal.
 | |
|         // The weight to PredOtherDest should be PredOther * SuccCommon.
 | |
|         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
 | |
|                                   PredOther * SuccCommon};
 | |
| 
 | |
|         FitWeights(NewWeights);
 | |
| 
 | |
|         NV->setMetadata(LLVMContext::MD_prof,
 | |
|                         MDBuilder(BI->getContext())
 | |
|                             .createBranchWeights(NewWeights[0], NewWeights[1]));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
 | |
|   DEBUG(dbgs() << *PBI->getParent()->getParent());
 | |
| 
 | |
|   // This basic block is probably dead.  We know it has at least
 | |
|   // one fewer predecessor.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
 | |
| // true or to FalseBB if Cond is false.
 | |
| // Takes care of updating the successors and removing the old terminator.
 | |
| // Also makes sure not to introduce new successors by assuming that edges to
 | |
| // non-successor TrueBBs and FalseBBs aren't reachable.
 | |
| static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
 | |
|                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
 | |
|                                        uint32_t TrueWeight,
 | |
|                                        uint32_t FalseWeight) {
 | |
|   // Remove any superfluous successor edges from the CFG.
 | |
|   // First, figure out which successors to preserve.
 | |
|   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
 | |
|   // successor.
 | |
|   BasicBlock *KeepEdge1 = TrueBB;
 | |
|   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
 | |
| 
 | |
|   // Then remove the rest.
 | |
|   for (BasicBlock *Succ : OldTerm->successors()) {
 | |
|     // Make sure only to keep exactly one copy of each edge.
 | |
|     if (Succ == KeepEdge1)
 | |
|       KeepEdge1 = nullptr;
 | |
|     else if (Succ == KeepEdge2)
 | |
|       KeepEdge2 = nullptr;
 | |
|     else
 | |
|       Succ->removePredecessor(OldTerm->getParent(),
 | |
|                               /*DontDeleteUselessPHIs=*/true);
 | |
|   }
 | |
| 
 | |
|   IRBuilder<> Builder(OldTerm);
 | |
|   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
 | |
| 
 | |
|   // Insert an appropriate new terminator.
 | |
|   if (!KeepEdge1 && !KeepEdge2) {
 | |
|     if (TrueBB == FalseBB)
 | |
|       // We were only looking for one successor, and it was present.
 | |
|       // Create an unconditional branch to it.
 | |
|       Builder.CreateBr(TrueBB);
 | |
|     else {
 | |
|       // We found both of the successors we were looking for.
 | |
|       // Create a conditional branch sharing the condition of the select.
 | |
|       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
 | |
|       if (TrueWeight != FalseWeight)
 | |
|         NewBI->setMetadata(LLVMContext::MD_prof,
 | |
|                            MDBuilder(OldTerm->getContext())
 | |
|                                .createBranchWeights(TrueWeight, FalseWeight));
 | |
|     }
 | |
|   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
 | |
|     // Neither of the selected blocks were successors, so this
 | |
|     // terminator must be unreachable.
 | |
|     new UnreachableInst(OldTerm->getContext(), OldTerm);
 | |
|   } else {
 | |
|     // One of the selected values was a successor, but the other wasn't.
 | |
|     // Insert an unconditional branch to the one that was found;
 | |
|     // the edge to the one that wasn't must be unreachable.
 | |
|     if (!KeepEdge1)
 | |
|       // Only TrueBB was found.
 | |
|       Builder.CreateBr(TrueBB);
 | |
|     else
 | |
|       // Only FalseBB was found.
 | |
|       Builder.CreateBr(FalseBB);
 | |
|   }
 | |
| 
 | |
|   EraseTerminatorInstAndDCECond(OldTerm);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Replaces
 | |
| //   (switch (select cond, X, Y)) on constant X, Y
 | |
| // with a branch - conditional if X and Y lead to distinct BBs,
 | |
| // unconditional otherwise.
 | |
| static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
 | |
|   // Check for constant integer values in the select.
 | |
|   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
 | |
|   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
 | |
|   if (!TrueVal || !FalseVal)
 | |
|     return false;
 | |
| 
 | |
|   // Find the relevant condition and destinations.
 | |
|   Value *Condition = Select->getCondition();
 | |
|   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
 | |
|   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
 | |
| 
 | |
|   // Get weight for TrueBB and FalseBB.
 | |
|   uint32_t TrueWeight = 0, FalseWeight = 0;
 | |
|   SmallVector<uint64_t, 8> Weights;
 | |
|   bool HasWeights = HasBranchWeights(SI);
 | |
|   if (HasWeights) {
 | |
|     GetBranchWeights(SI, Weights);
 | |
|     if (Weights.size() == 1 + SI->getNumCases()) {
 | |
|       TrueWeight =
 | |
|           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
 | |
|       FalseWeight =
 | |
|           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Perform the actual simplification.
 | |
|   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
 | |
|                                     FalseWeight);
 | |
| }
 | |
| 
 | |
| // Replaces
 | |
| //   (indirectbr (select cond, blockaddress(@fn, BlockA),
 | |
| //                             blockaddress(@fn, BlockB)))
 | |
| // with
 | |
| //   (br cond, BlockA, BlockB).
 | |
| static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
 | |
|   // Check that both operands of the select are block addresses.
 | |
|   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
 | |
|   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
 | |
|   if (!TBA || !FBA)
 | |
|     return false;
 | |
| 
 | |
|   // Extract the actual blocks.
 | |
|   BasicBlock *TrueBB = TBA->getBasicBlock();
 | |
|   BasicBlock *FalseBB = FBA->getBasicBlock();
 | |
| 
 | |
|   // Perform the actual simplification.
 | |
|   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
 | |
|                                     0);
 | |
| }
 | |
| 
 | |
| /// This is called when we find an icmp instruction
 | |
| /// (a seteq/setne with a constant) as the only instruction in a
 | |
| /// block that ends with an uncond branch.  We are looking for a very specific
 | |
| /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
 | |
| /// this case, we merge the first two "or's of icmp" into a switch, but then the
 | |
| /// default value goes to an uncond block with a seteq in it, we get something
 | |
| /// like:
 | |
| ///
 | |
| ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
 | |
| /// DEFAULT:
 | |
| ///   %tmp = icmp eq i8 %A, 92
 | |
| ///   br label %end
 | |
| /// end:
 | |
| ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
 | |
| ///
 | |
| /// We prefer to split the edge to 'end' so that there is a true/false entry to
 | |
| /// the PHI, merging the third icmp into the switch.
 | |
| static bool TryToSimplifyUncondBranchWithICmpInIt(
 | |
|     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
 | |
|     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
 | |
|     AssumptionCache *AC) {
 | |
|   BasicBlock *BB = ICI->getParent();
 | |
| 
 | |
|   // If the block has any PHIs in it or the icmp has multiple uses, it is too
 | |
|   // complex.
 | |
|   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   Value *V = ICI->getOperand(0);
 | |
|   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
 | |
| 
 | |
|   // The pattern we're looking for is where our only predecessor is a switch on
 | |
|   // 'V' and this block is the default case for the switch.  In this case we can
 | |
|   // fold the compared value into the switch to simplify things.
 | |
|   BasicBlock *Pred = BB->getSinglePredecessor();
 | |
|   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
 | |
|     return false;
 | |
| 
 | |
|   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
 | |
|   if (SI->getCondition() != V)
 | |
|     return false;
 | |
| 
 | |
|   // If BB is reachable on a non-default case, then we simply know the value of
 | |
|   // V in this block.  Substitute it and constant fold the icmp instruction
 | |
|   // away.
 | |
|   if (SI->getDefaultDest() != BB) {
 | |
|     ConstantInt *VVal = SI->findCaseDest(BB);
 | |
|     assert(VVal && "Should have a unique destination value");
 | |
|     ICI->setOperand(0, VVal);
 | |
| 
 | |
|     if (Value *V = SimplifyInstruction(ICI, DL)) {
 | |
|       ICI->replaceAllUsesWith(V);
 | |
|       ICI->eraseFromParent();
 | |
|     }
 | |
|     // BB is now empty, so it is likely to simplify away.
 | |
|     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|   }
 | |
| 
 | |
|   // Ok, the block is reachable from the default dest.  If the constant we're
 | |
|   // comparing exists in one of the other edges, then we can constant fold ICI
 | |
|   // and zap it.
 | |
|   if (SI->findCaseValue(Cst) != SI->case_default()) {
 | |
|     Value *V;
 | |
|     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | |
|       V = ConstantInt::getFalse(BB->getContext());
 | |
|     else
 | |
|       V = ConstantInt::getTrue(BB->getContext());
 | |
| 
 | |
|     ICI->replaceAllUsesWith(V);
 | |
|     ICI->eraseFromParent();
 | |
|     // BB is now empty, so it is likely to simplify away.
 | |
|     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|   }
 | |
| 
 | |
|   // The use of the icmp has to be in the 'end' block, by the only PHI node in
 | |
|   // the block.
 | |
|   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
 | |
|   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
 | |
|   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
 | |
|       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
 | |
|     return false;
 | |
| 
 | |
|   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
 | |
|   // true in the PHI.
 | |
|   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
 | |
|   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
 | |
| 
 | |
|   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | |
|     std::swap(DefaultCst, NewCst);
 | |
| 
 | |
|   // Replace ICI (which is used by the PHI for the default value) with true or
 | |
|   // false depending on if it is EQ or NE.
 | |
|   ICI->replaceAllUsesWith(DefaultCst);
 | |
|   ICI->eraseFromParent();
 | |
| 
 | |
|   // Okay, the switch goes to this block on a default value.  Add an edge from
 | |
|   // the switch to the merge point on the compared value.
 | |
|   BasicBlock *NewBB =
 | |
|       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
 | |
|   SmallVector<uint64_t, 8> Weights;
 | |
|   bool HasWeights = HasBranchWeights(SI);
 | |
|   if (HasWeights) {
 | |
|     GetBranchWeights(SI, Weights);
 | |
|     if (Weights.size() == 1 + SI->getNumCases()) {
 | |
|       // Split weight for default case to case for "Cst".
 | |
|       Weights[0] = (Weights[0] + 1) >> 1;
 | |
|       Weights.push_back(Weights[0]);
 | |
| 
 | |
|       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
 | |
|       SI->setMetadata(
 | |
|           LLVMContext::MD_prof,
 | |
|           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
 | |
|     }
 | |
|   }
 | |
|   SI->addCase(Cst, NewBB);
 | |
| 
 | |
|   // NewBB branches to the phi block, add the uncond branch and the phi entry.
 | |
|   Builder.SetInsertPoint(NewBB);
 | |
|   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
 | |
|   Builder.CreateBr(SuccBlock);
 | |
|   PHIUse->addIncoming(NewCst, NewBB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// The specified branch is a conditional branch.
 | |
| /// Check to see if it is branching on an or/and chain of icmp instructions, and
 | |
| /// fold it into a switch instruction if so.
 | |
| static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
 | |
|                                       const DataLayout &DL) {
 | |
|   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
 | |
|   if (!Cond)
 | |
|     return false;
 | |
| 
 | |
|   // Change br (X == 0 | X == 1), T, F into a switch instruction.
 | |
|   // If this is a bunch of seteq's or'd together, or if it's a bunch of
 | |
|   // 'setne's and'ed together, collect them.
 | |
| 
 | |
|   // Try to gather values from a chain of and/or to be turned into a switch
 | |
|   ConstantComparesGatherer ConstantCompare(Cond, DL);
 | |
|   // Unpack the result
 | |
|   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
 | |
|   Value *CompVal = ConstantCompare.CompValue;
 | |
|   unsigned UsedICmps = ConstantCompare.UsedICmps;
 | |
|   Value *ExtraCase = ConstantCompare.Extra;
 | |
| 
 | |
|   // If we didn't have a multiply compared value, fail.
 | |
|   if (!CompVal)
 | |
|     return false;
 | |
| 
 | |
|   // Avoid turning single icmps into a switch.
 | |
|   if (UsedICmps <= 1)
 | |
|     return false;
 | |
| 
 | |
|   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
 | |
| 
 | |
|   // There might be duplicate constants in the list, which the switch
 | |
|   // instruction can't handle, remove them now.
 | |
|   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
 | |
|   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
 | |
| 
 | |
|   // If Extra was used, we require at least two switch values to do the
 | |
|   // transformation.  A switch with one value is just a conditional branch.
 | |
|   if (ExtraCase && Values.size() < 2)
 | |
|     return false;
 | |
| 
 | |
|   // TODO: Preserve branch weight metadata, similarly to how
 | |
|   // FoldValueComparisonIntoPredecessors preserves it.
 | |
| 
 | |
|   // Figure out which block is which destination.
 | |
|   BasicBlock *DefaultBB = BI->getSuccessor(1);
 | |
|   BasicBlock *EdgeBB = BI->getSuccessor(0);
 | |
|   if (!TrueWhenEqual)
 | |
|     std::swap(DefaultBB, EdgeBB);
 | |
| 
 | |
|   BasicBlock *BB = BI->getParent();
 | |
| 
 | |
|   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
 | |
|                << " cases into SWITCH.  BB is:\n"
 | |
|                << *BB);
 | |
| 
 | |
|   // If there are any extra values that couldn't be folded into the switch
 | |
|   // then we evaluate them with an explicit branch first.  Split the block
 | |
|   // right before the condbr to handle it.
 | |
|   if (ExtraCase) {
 | |
|     BasicBlock *NewBB =
 | |
|         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
 | |
|     // Remove the uncond branch added to the old block.
 | |
|     TerminatorInst *OldTI = BB->getTerminator();
 | |
|     Builder.SetInsertPoint(OldTI);
 | |
| 
 | |
|     if (TrueWhenEqual)
 | |
|       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
 | |
|     else
 | |
|       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
 | |
| 
 | |
|     OldTI->eraseFromParent();
 | |
| 
 | |
|     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
 | |
|     // for the edge we just added.
 | |
|     AddPredecessorToBlock(EdgeBB, BB, NewBB);
 | |
| 
 | |
|     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
 | |
|                  << "\nEXTRABB = " << *BB);
 | |
|     BB = NewBB;
 | |
|   }
 | |
| 
 | |
|   Builder.SetInsertPoint(BI);
 | |
|   // Convert pointer to int before we switch.
 | |
|   if (CompVal->getType()->isPointerTy()) {
 | |
|     CompVal = Builder.CreatePtrToInt(
 | |
|         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
 | |
|   }
 | |
| 
 | |
|   // Create the new switch instruction now.
 | |
|   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
 | |
| 
 | |
|   // Add all of the 'cases' to the switch instruction.
 | |
|   for (unsigned i = 0, e = Values.size(); i != e; ++i)
 | |
|     New->addCase(Values[i], EdgeBB);
 | |
| 
 | |
|   // We added edges from PI to the EdgeBB.  As such, if there were any
 | |
|   // PHI nodes in EdgeBB, they need entries to be added corresponding to
 | |
|   // the number of edges added.
 | |
|   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
 | |
|     PHINode *PN = cast<PHINode>(BBI);
 | |
|     Value *InVal = PN->getIncomingValueForBlock(BB);
 | |
|     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
 | |
|       PN->addIncoming(InVal, BB);
 | |
|   }
 | |
| 
 | |
|   // Erase the old branch instruction.
 | |
|   EraseTerminatorInstAndDCECond(BI);
 | |
| 
 | |
|   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
 | |
|   if (isa<PHINode>(RI->getValue()))
 | |
|     return SimplifyCommonResume(RI);
 | |
|   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
 | |
|            RI->getValue() == RI->getParent()->getFirstNonPHI())
 | |
|     // The resume must unwind the exception that caused control to branch here.
 | |
|     return SimplifySingleResume(RI);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Simplify resume that is shared by several landing pads (phi of landing pad).
 | |
| bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
 | |
|   BasicBlock *BB = RI->getParent();
 | |
| 
 | |
|   // Check that there are no other instructions except for debug intrinsics
 | |
|   // between the phi of landing pads (RI->getValue()) and resume instruction.
 | |
|   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
 | |
|                        E = RI->getIterator();
 | |
|   while (++I != E)
 | |
|     if (!isa<DbgInfoIntrinsic>(I))
 | |
|       return false;
 | |
| 
 | |
|   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
 | |
|   auto *PhiLPInst = cast<PHINode>(RI->getValue());
 | |
| 
 | |
|   // Check incoming blocks to see if any of them are trivial.
 | |
|   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
 | |
|        Idx++) {
 | |
|     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
 | |
|     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
 | |
| 
 | |
|     // If the block has other successors, we can not delete it because
 | |
|     // it has other dependents.
 | |
|     if (IncomingBB->getUniqueSuccessor() != BB)
 | |
|       continue;
 | |
| 
 | |
|     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
 | |
|     // Not the landing pad that caused the control to branch here.
 | |
|     if (IncomingValue != LandingPad)
 | |
|       continue;
 | |
| 
 | |
|     bool isTrivial = true;
 | |
| 
 | |
|     I = IncomingBB->getFirstNonPHI()->getIterator();
 | |
|     E = IncomingBB->getTerminator()->getIterator();
 | |
|     while (++I != E)
 | |
|       if (!isa<DbgInfoIntrinsic>(I)) {
 | |
|         isTrivial = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (isTrivial)
 | |
|       TrivialUnwindBlocks.insert(IncomingBB);
 | |
|   }
 | |
| 
 | |
|   // If no trivial unwind blocks, don't do any simplifications.
 | |
|   if (TrivialUnwindBlocks.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Turn all invokes that unwind here into calls.
 | |
|   for (auto *TrivialBB : TrivialUnwindBlocks) {
 | |
|     // Blocks that will be simplified should be removed from the phi node.
 | |
|     // Note there could be multiple edges to the resume block, and we need
 | |
|     // to remove them all.
 | |
|     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
 | |
|       BB->removePredecessor(TrivialBB, true);
 | |
| 
 | |
|     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
 | |
|          PI != PE;) {
 | |
|       BasicBlock *Pred = *PI++;
 | |
|       removeUnwindEdge(Pred);
 | |
|     }
 | |
| 
 | |
|     // In each SimplifyCFG run, only the current processed block can be erased.
 | |
|     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
 | |
|     // of erasing TrivialBB, we only remove the branch to the common resume
 | |
|     // block so that we can later erase the resume block since it has no
 | |
|     // predecessors.
 | |
|     TrivialBB->getTerminator()->eraseFromParent();
 | |
|     new UnreachableInst(RI->getContext(), TrivialBB);
 | |
|   }
 | |
| 
 | |
|   // Delete the resume block if all its predecessors have been removed.
 | |
|   if (pred_empty(BB))
 | |
|     BB->eraseFromParent();
 | |
| 
 | |
|   return !TrivialUnwindBlocks.empty();
 | |
| }
 | |
| 
 | |
| // Simplify resume that is only used by a single (non-phi) landing pad.
 | |
| bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
 | |
|   BasicBlock *BB = RI->getParent();
 | |
|   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
 | |
|   assert(RI->getValue() == LPInst &&
 | |
|          "Resume must unwind the exception that caused control to here");
 | |
| 
 | |
|   // Check that there are no other instructions except for debug intrinsics.
 | |
|   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
 | |
|   while (++I != E)
 | |
|     if (!isa<DbgInfoIntrinsic>(I))
 | |
|       return false;
 | |
| 
 | |
|   // Turn all invokes that unwind here into calls and delete the basic block.
 | |
|   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
 | |
|     BasicBlock *Pred = *PI++;
 | |
|     removeUnwindEdge(Pred);
 | |
|   }
 | |
| 
 | |
|   // The landingpad is now unreachable.  Zap it.
 | |
|   BB->eraseFromParent();
 | |
|   if (LoopHeaders)
 | |
|     LoopHeaders->erase(BB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool removeEmptyCleanup(CleanupReturnInst *RI) {
 | |
|   // If this is a trivial cleanup pad that executes no instructions, it can be
 | |
|   // eliminated.  If the cleanup pad continues to the caller, any predecessor
 | |
|   // that is an EH pad will be updated to continue to the caller and any
 | |
|   // predecessor that terminates with an invoke instruction will have its invoke
 | |
|   // instruction converted to a call instruction.  If the cleanup pad being
 | |
|   // simplified does not continue to the caller, each predecessor will be
 | |
|   // updated to continue to the unwind destination of the cleanup pad being
 | |
|   // simplified.
 | |
|   BasicBlock *BB = RI->getParent();
 | |
|   CleanupPadInst *CPInst = RI->getCleanupPad();
 | |
|   if (CPInst->getParent() != BB)
 | |
|     // This isn't an empty cleanup.
 | |
|     return false;
 | |
| 
 | |
|   // Check that there are no other instructions except for benign intrinsics.
 | |
|   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
 | |
|   while (++I != E) {
 | |
|     auto *II = dyn_cast<IntrinsicInst>(I);
 | |
|     if (!II)
 | |
|       return false;
 | |
| 
 | |
|     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
 | |
|     switch (IntrinsicID) {
 | |
|     case Intrinsic::dbg_declare:
 | |
|     case Intrinsic::dbg_value:
 | |
|     case Intrinsic::lifetime_end:
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the cleanup return we are simplifying unwinds to the caller, this will
 | |
|   // set UnwindDest to nullptr.
 | |
|   BasicBlock *UnwindDest = RI->getUnwindDest();
 | |
|   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
 | |
| 
 | |
|   // We're about to remove BB from the control flow.  Before we do, sink any
 | |
|   // PHINodes into the unwind destination.  Doing this before changing the
 | |
|   // control flow avoids some potentially slow checks, since we can currently
 | |
|   // be certain that UnwindDest and BB have no common predecessors (since they
 | |
|   // are both EH pads).
 | |
|   if (UnwindDest) {
 | |
|     // First, go through the PHI nodes in UnwindDest and update any nodes that
 | |
|     // reference the block we are removing
 | |
|     for (BasicBlock::iterator I = UnwindDest->begin(),
 | |
|                               IE = DestEHPad->getIterator();
 | |
|          I != IE; ++I) {
 | |
|       PHINode *DestPN = cast<PHINode>(I);
 | |
| 
 | |
|       int Idx = DestPN->getBasicBlockIndex(BB);
 | |
|       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
 | |
|       assert(Idx != -1);
 | |
|       // This PHI node has an incoming value that corresponds to a control
 | |
|       // path through the cleanup pad we are removing.  If the incoming
 | |
|       // value is in the cleanup pad, it must be a PHINode (because we
 | |
|       // verified above that the block is otherwise empty).  Otherwise, the
 | |
|       // value is either a constant or a value that dominates the cleanup
 | |
|       // pad being removed.
 | |
|       //
 | |
|       // Because BB and UnwindDest are both EH pads, all of their
 | |
|       // predecessors must unwind to these blocks, and since no instruction
 | |
|       // can have multiple unwind destinations, there will be no overlap in
 | |
|       // incoming blocks between SrcPN and DestPN.
 | |
|       Value *SrcVal = DestPN->getIncomingValue(Idx);
 | |
|       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
 | |
| 
 | |
|       // Remove the entry for the block we are deleting.
 | |
|       DestPN->removeIncomingValue(Idx, false);
 | |
| 
 | |
|       if (SrcPN && SrcPN->getParent() == BB) {
 | |
|         // If the incoming value was a PHI node in the cleanup pad we are
 | |
|         // removing, we need to merge that PHI node's incoming values into
 | |
|         // DestPN.
 | |
|         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
 | |
|              SrcIdx != SrcE; ++SrcIdx) {
 | |
|           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
 | |
|                               SrcPN->getIncomingBlock(SrcIdx));
 | |
|         }
 | |
|       } else {
 | |
|         // Otherwise, the incoming value came from above BB and
 | |
|         // so we can just reuse it.  We must associate all of BB's
 | |
|         // predecessors with this value.
 | |
|         for (auto *pred : predecessors(BB)) {
 | |
|           DestPN->addIncoming(SrcVal, pred);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Sink any remaining PHI nodes directly into UnwindDest.
 | |
|     Instruction *InsertPt = DestEHPad;
 | |
|     for (BasicBlock::iterator I = BB->begin(),
 | |
|                               IE = BB->getFirstNonPHI()->getIterator();
 | |
|          I != IE;) {
 | |
|       // The iterator must be incremented here because the instructions are
 | |
|       // being moved to another block.
 | |
|       PHINode *PN = cast<PHINode>(I++);
 | |
|       if (PN->use_empty())
 | |
|         // If the PHI node has no uses, just leave it.  It will be erased
 | |
|         // when we erase BB below.
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, sink this PHI node into UnwindDest.
 | |
|       // Any predecessors to UnwindDest which are not already represented
 | |
|       // must be back edges which inherit the value from the path through
 | |
|       // BB.  In this case, the PHI value must reference itself.
 | |
|       for (auto *pred : predecessors(UnwindDest))
 | |
|         if (pred != BB)
 | |
|           PN->addIncoming(PN, pred);
 | |
|       PN->moveBefore(InsertPt);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
 | |
|     // The iterator must be updated here because we are removing this pred.
 | |
|     BasicBlock *PredBB = *PI++;
 | |
|     if (UnwindDest == nullptr) {
 | |
|       removeUnwindEdge(PredBB);
 | |
|     } else {
 | |
|       TerminatorInst *TI = PredBB->getTerminator();
 | |
|       TI->replaceUsesOfWith(BB, UnwindDest);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The cleanup pad is now unreachable.  Zap it.
 | |
|   BB->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Try to merge two cleanuppads together.
 | |
| static bool mergeCleanupPad(CleanupReturnInst *RI) {
 | |
|   // Skip any cleanuprets which unwind to caller, there is nothing to merge
 | |
|   // with.
 | |
|   BasicBlock *UnwindDest = RI->getUnwindDest();
 | |
|   if (!UnwindDest)
 | |
|     return false;
 | |
| 
 | |
|   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
 | |
|   // be safe to merge without code duplication.
 | |
|   if (UnwindDest->getSinglePredecessor() != RI->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // Verify that our cleanuppad's unwind destination is another cleanuppad.
 | |
|   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
 | |
|   if (!SuccessorCleanupPad)
 | |
|     return false;
 | |
| 
 | |
|   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
 | |
|   // Replace any uses of the successor cleanupad with the predecessor pad
 | |
|   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
 | |
|   // funclet bundle operands.
 | |
|   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
 | |
|   // Remove the old cleanuppad.
 | |
|   SuccessorCleanupPad->eraseFromParent();
 | |
|   // Now, we simply replace the cleanupret with a branch to the unwind
 | |
|   // destination.
 | |
|   BranchInst::Create(UnwindDest, RI->getParent());
 | |
|   RI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
 | |
|   // It is possible to transiantly have an undef cleanuppad operand because we
 | |
|   // have deleted some, but not all, dead blocks.
 | |
|   // Eventually, this block will be deleted.
 | |
|   if (isa<UndefValue>(RI->getOperand(0)))
 | |
|     return false;
 | |
| 
 | |
|   if (mergeCleanupPad(RI))
 | |
|     return true;
 | |
| 
 | |
|   if (removeEmptyCleanup(RI))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
 | |
|   BasicBlock *BB = RI->getParent();
 | |
|   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
 | |
|     return false;
 | |
| 
 | |
|   // Find predecessors that end with branches.
 | |
|   SmallVector<BasicBlock *, 8> UncondBranchPreds;
 | |
|   SmallVector<BranchInst *, 8> CondBranchPreds;
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|     BasicBlock *P = *PI;
 | |
|     TerminatorInst *PTI = P->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
 | |
|       if (BI->isUnconditional())
 | |
|         UncondBranchPreds.push_back(P);
 | |
|       else
 | |
|         CondBranchPreds.push_back(BI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we found some, do the transformation!
 | |
|   if (!UncondBranchPreds.empty() && DupRet) {
 | |
|     while (!UncondBranchPreds.empty()) {
 | |
|       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
 | |
|       DEBUG(dbgs() << "FOLDING: " << *BB
 | |
|                    << "INTO UNCOND BRANCH PRED: " << *Pred);
 | |
|       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
 | |
|     }
 | |
| 
 | |
|     // If we eliminated all predecessors of the block, delete the block now.
 | |
|     if (pred_empty(BB)) {
 | |
|       // We know there are no successors, so just nuke the block.
 | |
|       BB->eraseFromParent();
 | |
|       if (LoopHeaders)
 | |
|         LoopHeaders->erase(BB);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check out all of the conditional branches going to this return
 | |
|   // instruction.  If any of them just select between returns, change the
 | |
|   // branch itself into a select/return pair.
 | |
|   while (!CondBranchPreds.empty()) {
 | |
|     BranchInst *BI = CondBranchPreds.pop_back_val();
 | |
| 
 | |
|     // Check to see if the non-BB successor is also a return block.
 | |
|     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
 | |
|         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
 | |
|         SimplifyCondBranchToTwoReturns(BI, Builder))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
 | |
|   BasicBlock *BB = UI->getParent();
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // If there are any instructions immediately before the unreachable that can
 | |
|   // be removed, do so.
 | |
|   while (UI->getIterator() != BB->begin()) {
 | |
|     BasicBlock::iterator BBI = UI->getIterator();
 | |
|     --BBI;
 | |
|     // Do not delete instructions that can have side effects which might cause
 | |
|     // the unreachable to not be reachable; specifically, calls and volatile
 | |
|     // operations may have this effect.
 | |
|     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
 | |
|       break;
 | |
| 
 | |
|     if (BBI->mayHaveSideEffects()) {
 | |
|       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
 | |
|         if (SI->isVolatile())
 | |
|           break;
 | |
|       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|         if (LI->isVolatile())
 | |
|           break;
 | |
|       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
 | |
|         if (RMWI->isVolatile())
 | |
|           break;
 | |
|       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
 | |
|         if (CXI->isVolatile())
 | |
|           break;
 | |
|       } else if (isa<CatchPadInst>(BBI)) {
 | |
|         // A catchpad may invoke exception object constructors and such, which
 | |
|         // in some languages can be arbitrary code, so be conservative by
 | |
|         // default.
 | |
|         // For CoreCLR, it just involves a type test, so can be removed.
 | |
|         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
 | |
|             EHPersonality::CoreCLR)
 | |
|           break;
 | |
|       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
 | |
|                  !isa<LandingPadInst>(BBI)) {
 | |
|         break;
 | |
|       }
 | |
|       // Note that deleting LandingPad's here is in fact okay, although it
 | |
|       // involves a bit of subtle reasoning. If this inst is a LandingPad,
 | |
|       // all the predecessors of this block will be the unwind edges of Invokes,
 | |
|       // and we can therefore guarantee this block will be erased.
 | |
|     }
 | |
| 
 | |
|     // Delete this instruction (any uses are guaranteed to be dead)
 | |
|     if (!BBI->use_empty())
 | |
|       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
 | |
|     BBI->eraseFromParent();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // If the unreachable instruction is the first in the block, take a gander
 | |
|   // at all of the predecessors of this instruction, and simplify them.
 | |
|   if (&BB->front() != UI)
 | |
|     return Changed;
 | |
| 
 | |
|   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
 | |
|   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|     TerminatorInst *TI = Preds[i]->getTerminator();
 | |
|     IRBuilder<> Builder(TI);
 | |
|     if (auto *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (BI->isUnconditional()) {
 | |
|         if (BI->getSuccessor(0) == BB) {
 | |
|           new UnreachableInst(TI->getContext(), TI);
 | |
|           TI->eraseFromParent();
 | |
|           Changed = true;
 | |
|         }
 | |
|       } else {
 | |
|         if (BI->getSuccessor(0) == BB) {
 | |
|           Builder.CreateBr(BI->getSuccessor(1));
 | |
|           EraseTerminatorInstAndDCECond(BI);
 | |
|         } else if (BI->getSuccessor(1) == BB) {
 | |
|           Builder.CreateBr(BI->getSuccessor(0));
 | |
|           EraseTerminatorInstAndDCECond(BI);
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
 | |
|            ++i)
 | |
|         if (i.getCaseSuccessor() == BB) {
 | |
|           BB->removePredecessor(SI->getParent());
 | |
|           SI->removeCase(i);
 | |
|           --i;
 | |
|           --e;
 | |
|           Changed = true;
 | |
|         }
 | |
|     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
 | |
|       if (II->getUnwindDest() == BB) {
 | |
|         removeUnwindEdge(TI->getParent());
 | |
|         Changed = true;
 | |
|       }
 | |
|     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
 | |
|       if (CSI->getUnwindDest() == BB) {
 | |
|         removeUnwindEdge(TI->getParent());
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
 | |
|                                              E = CSI->handler_end();
 | |
|            I != E; ++I) {
 | |
|         if (*I == BB) {
 | |
|           CSI->removeHandler(I);
 | |
|           --I;
 | |
|           --E;
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|       if (CSI->getNumHandlers() == 0) {
 | |
|         BasicBlock *CatchSwitchBB = CSI->getParent();
 | |
|         if (CSI->hasUnwindDest()) {
 | |
|           // Redirect preds to the unwind dest
 | |
|           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
 | |
|         } else {
 | |
|           // Rewrite all preds to unwind to caller (or from invoke to call).
 | |
|           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
 | |
|           for (BasicBlock *EHPred : EHPreds)
 | |
|             removeUnwindEdge(EHPred);
 | |
|         }
 | |
|         // The catchswitch is no longer reachable.
 | |
|         new UnreachableInst(CSI->getContext(), CSI);
 | |
|         CSI->eraseFromParent();
 | |
|         Changed = true;
 | |
|       }
 | |
|     } else if (isa<CleanupReturnInst>(TI)) {
 | |
|       new UnreachableInst(TI->getContext(), TI);
 | |
|       TI->eraseFromParent();
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this block is now dead, remove it.
 | |
|   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
 | |
|     // We know there are no successors, so just nuke the block.
 | |
|     BB->eraseFromParent();
 | |
|     if (LoopHeaders)
 | |
|       LoopHeaders->erase(BB);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
 | |
|   assert(Cases.size() >= 1);
 | |
| 
 | |
|   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
 | |
|   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
 | |
|     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Turn a switch with two reachable destinations into an integer range
 | |
| /// comparison and branch.
 | |
| static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
 | |
|   assert(SI->getNumCases() > 1 && "Degenerate switch?");
 | |
| 
 | |
|   bool HasDefault =
 | |
|       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
 | |
| 
 | |
|   // Partition the cases into two sets with different destinations.
 | |
|   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
 | |
|   BasicBlock *DestB = nullptr;
 | |
|   SmallVector<ConstantInt *, 16> CasesA;
 | |
|   SmallVector<ConstantInt *, 16> CasesB;
 | |
| 
 | |
|   for (SwitchInst::CaseIt I : SI->cases()) {
 | |
|     BasicBlock *Dest = I.getCaseSuccessor();
 | |
|     if (!DestA)
 | |
|       DestA = Dest;
 | |
|     if (Dest == DestA) {
 | |
|       CasesA.push_back(I.getCaseValue());
 | |
|       continue;
 | |
|     }
 | |
|     if (!DestB)
 | |
|       DestB = Dest;
 | |
|     if (Dest == DestB) {
 | |
|       CasesB.push_back(I.getCaseValue());
 | |
|       continue;
 | |
|     }
 | |
|     return false; // More than two destinations.
 | |
|   }
 | |
| 
 | |
|   assert(DestA && DestB &&
 | |
|          "Single-destination switch should have been folded.");
 | |
|   assert(DestA != DestB);
 | |
|   assert(DestB != SI->getDefaultDest());
 | |
|   assert(!CasesB.empty() && "There must be non-default cases.");
 | |
|   assert(!CasesA.empty() || HasDefault);
 | |
| 
 | |
|   // Figure out if one of the sets of cases form a contiguous range.
 | |
|   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
 | |
|   BasicBlock *ContiguousDest = nullptr;
 | |
|   BasicBlock *OtherDest = nullptr;
 | |
|   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
 | |
|     ContiguousCases = &CasesA;
 | |
|     ContiguousDest = DestA;
 | |
|     OtherDest = DestB;
 | |
|   } else if (CasesAreContiguous(CasesB)) {
 | |
|     ContiguousCases = &CasesB;
 | |
|     ContiguousDest = DestB;
 | |
|     OtherDest = DestA;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Start building the compare and branch.
 | |
| 
 | |
|   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
 | |
|   Constant *NumCases =
 | |
|       ConstantInt::get(Offset->getType(), ContiguousCases->size());
 | |
| 
 | |
|   Value *Sub = SI->getCondition();
 | |
|   if (!Offset->isNullValue())
 | |
|     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
 | |
| 
 | |
|   Value *Cmp;
 | |
|   // If NumCases overflowed, then all possible values jump to the successor.
 | |
|   if (NumCases->isNullValue() && !ContiguousCases->empty())
 | |
|     Cmp = ConstantInt::getTrue(SI->getContext());
 | |
|   else
 | |
|     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
 | |
|   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
 | |
| 
 | |
|   // Update weight for the newly-created conditional branch.
 | |
|   if (HasBranchWeights(SI)) {
 | |
|     SmallVector<uint64_t, 8> Weights;
 | |
|     GetBranchWeights(SI, Weights);
 | |
|     if (Weights.size() == 1 + SI->getNumCases()) {
 | |
|       uint64_t TrueWeight = 0;
 | |
|       uint64_t FalseWeight = 0;
 | |
|       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
 | |
|         if (SI->getSuccessor(I) == ContiguousDest)
 | |
|           TrueWeight += Weights[I];
 | |
|         else
 | |
|           FalseWeight += Weights[I];
 | |
|       }
 | |
|       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
 | |
|         TrueWeight /= 2;
 | |
|         FalseWeight /= 2;
 | |
|       }
 | |
|       NewBI->setMetadata(LLVMContext::MD_prof,
 | |
|                          MDBuilder(SI->getContext())
 | |
|                              .createBranchWeights((uint32_t)TrueWeight,
 | |
|                                                   (uint32_t)FalseWeight));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Prune obsolete incoming values off the successors' PHI nodes.
 | |
|   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
 | |
|     unsigned PreviousEdges = ContiguousCases->size();
 | |
|     if (ContiguousDest == SI->getDefaultDest())
 | |
|       ++PreviousEdges;
 | |
|     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
 | |
|       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
 | |
|   }
 | |
|   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
 | |
|     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
 | |
|     if (OtherDest == SI->getDefaultDest())
 | |
|       ++PreviousEdges;
 | |
|     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
 | |
|       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
 | |
|   }
 | |
| 
 | |
|   // Drop the switch.
 | |
|   SI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Compute masked bits for the condition of a switch
 | |
| /// and use it to remove dead cases.
 | |
| static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
 | |
|                                      const DataLayout &DL) {
 | |
|   Value *Cond = SI->getCondition();
 | |
|   unsigned Bits = Cond->getType()->getIntegerBitWidth();
 | |
|   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
 | |
|   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
 | |
| 
 | |
|   // We can also eliminate cases by determining that their values are outside of
 | |
|   // the limited range of the condition based on how many significant (non-sign)
 | |
|   // bits are in the condition value.
 | |
|   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
 | |
|   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
 | |
| 
 | |
|   // Gather dead cases.
 | |
|   SmallVector<ConstantInt *, 8> DeadCases;
 | |
|   for (auto &Case : SI->cases()) {
 | |
|     APInt CaseVal = Case.getCaseValue()->getValue();
 | |
|     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
 | |
|         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
 | |
|       DeadCases.push_back(Case.getCaseValue());
 | |
|       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we can prove that the cases must cover all possible values, the
 | |
|   // default destination becomes dead and we can remove it.  If we know some
 | |
|   // of the bits in the value, we can use that to more precisely compute the
 | |
|   // number of possible unique case values.
 | |
|   bool HasDefault =
 | |
|       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
 | |
|   const unsigned NumUnknownBits =
 | |
|       Bits - (KnownZero.Or(KnownOne)).countPopulation();
 | |
|   assert(NumUnknownBits <= Bits);
 | |
|   if (HasDefault && DeadCases.empty() &&
 | |
|       NumUnknownBits < 64 /* avoid overflow */ &&
 | |
|       SI->getNumCases() == (1ULL << NumUnknownBits)) {
 | |
|     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
 | |
|     BasicBlock *NewDefault =
 | |
|         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
 | |
|     SI->setDefaultDest(&*NewDefault);
 | |
|     SplitBlock(&*NewDefault, &NewDefault->front());
 | |
|     auto *OldTI = NewDefault->getTerminator();
 | |
|     new UnreachableInst(SI->getContext(), OldTI);
 | |
|     EraseTerminatorInstAndDCECond(OldTI);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   SmallVector<uint64_t, 8> Weights;
 | |
|   bool HasWeight = HasBranchWeights(SI);
 | |
|   if (HasWeight) {
 | |
|     GetBranchWeights(SI, Weights);
 | |
|     HasWeight = (Weights.size() == 1 + SI->getNumCases());
 | |
|   }
 | |
| 
 | |
|   // Remove dead cases from the switch.
 | |
|   for (ConstantInt *DeadCase : DeadCases) {
 | |
|     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
 | |
|     assert(Case != SI->case_default() &&
 | |
|            "Case was not found. Probably mistake in DeadCases forming.");
 | |
|     if (HasWeight) {
 | |
|       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
 | |
|       Weights.pop_back();
 | |
|     }
 | |
| 
 | |
|     // Prune unused values from PHI nodes.
 | |
|     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
 | |
|     SI->removeCase(Case);
 | |
|   }
 | |
|   if (HasWeight && Weights.size() >= 2) {
 | |
|     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
 | |
|     SI->setMetadata(LLVMContext::MD_prof,
 | |
|                     MDBuilder(SI->getParent()->getContext())
 | |
|                         .createBranchWeights(MDWeights));
 | |
|   }
 | |
| 
 | |
|   return !DeadCases.empty();
 | |
| }
 | |
| 
 | |
| /// If BB would be eligible for simplification by
 | |
| /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
 | |
| /// by an unconditional branch), look at the phi node for BB in the successor
 | |
| /// block and see if the incoming value is equal to CaseValue. If so, return
 | |
| /// the phi node, and set PhiIndex to BB's index in the phi node.
 | |
| static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
 | |
|                                               BasicBlock *BB, int *PhiIndex) {
 | |
|   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
 | |
|     return nullptr; // BB must be empty to be a candidate for simplification.
 | |
|   if (!BB->getSinglePredecessor())
 | |
|     return nullptr; // BB must be dominated by the switch.
 | |
| 
 | |
|   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!Branch || !Branch->isUnconditional())
 | |
|     return nullptr; // Terminator must be unconditional branch.
 | |
| 
 | |
|   BasicBlock *Succ = Branch->getSuccessor(0);
 | |
| 
 | |
|   BasicBlock::iterator I = Succ->begin();
 | |
|   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
 | |
|     int Idx = PHI->getBasicBlockIndex(BB);
 | |
|     assert(Idx >= 0 && "PHI has no entry for predecessor?");
 | |
| 
 | |
|     Value *InValue = PHI->getIncomingValue(Idx);
 | |
|     if (InValue != CaseValue)
 | |
|       continue;
 | |
| 
 | |
|     *PhiIndex = Idx;
 | |
|     return PHI;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Try to forward the condition of a switch instruction to a phi node
 | |
| /// dominated by the switch, if that would mean that some of the destination
 | |
| /// blocks of the switch can be folded away.
 | |
| /// Returns true if a change is made.
 | |
| static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
 | |
|   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
 | |
|   ForwardingNodesMap ForwardingNodes;
 | |
| 
 | |
|   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
 | |
|        ++I) {
 | |
|     ConstantInt *CaseValue = I.getCaseValue();
 | |
|     BasicBlock *CaseDest = I.getCaseSuccessor();
 | |
| 
 | |
|     int PhiIndex;
 | |
|     PHINode *PHI =
 | |
|         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
 | |
|     if (!PHI)
 | |
|       continue;
 | |
| 
 | |
|     ForwardingNodes[PHI].push_back(PhiIndex);
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
 | |
|                                     E = ForwardingNodes.end();
 | |
|        I != E; ++I) {
 | |
|     PHINode *Phi = I->first;
 | |
|     SmallVectorImpl<int> &Indexes = I->second;
 | |
| 
 | |
|     if (Indexes.size() < 2)
 | |
|       continue;
 | |
| 
 | |
|     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
 | |
|       Phi->setIncomingValue(Indexes[I], SI->getCondition());
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Return true if the backend will be able to handle
 | |
| /// initializing an array of constants like C.
 | |
| static bool ValidLookupTableConstant(Constant *C) {
 | |
|   if (C->isThreadDependent())
 | |
|     return false;
 | |
|   if (C->isDLLImportDependent())
 | |
|     return false;
 | |
| 
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | |
|     return CE->isGEPWithNoNotionalOverIndexing();
 | |
| 
 | |
|   return isa<ConstantFP>(C) || isa<ConstantInt>(C) ||
 | |
|          isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) ||
 | |
|          isa<UndefValue>(C);
 | |
| }
 | |
| 
 | |
| /// If V is a Constant, return it. Otherwise, try to look up
 | |
| /// its constant value in ConstantPool, returning 0 if it's not there.
 | |
| static Constant *
 | |
| LookupConstant(Value *V,
 | |
|                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return C;
 | |
|   return ConstantPool.lookup(V);
 | |
| }
 | |
| 
 | |
| /// Try to fold instruction I into a constant. This works for
 | |
| /// simple instructions such as binary operations where both operands are
 | |
| /// constant or can be replaced by constants from the ConstantPool. Returns the
 | |
| /// resulting constant on success, 0 otherwise.
 | |
| static Constant *
 | |
| ConstantFold(Instruction *I, const DataLayout &DL,
 | |
|              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
 | |
|   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
 | |
|     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
 | |
|     if (!A)
 | |
|       return nullptr;
 | |
|     if (A->isAllOnesValue())
 | |
|       return LookupConstant(Select->getTrueValue(), ConstantPool);
 | |
|     if (A->isNullValue())
 | |
|       return LookupConstant(Select->getFalseValue(), ConstantPool);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   SmallVector<Constant *, 4> COps;
 | |
|   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
 | |
|     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
 | |
|       COps.push_back(A);
 | |
|     else
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
 | |
|     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
 | |
|                                            COps[1], DL);
 | |
|   }
 | |
| 
 | |
|   return ConstantFoldInstOperands(I, COps, DL);
 | |
| }
 | |
| 
 | |
| /// Try to determine the resulting constant values in phi nodes
 | |
| /// at the common destination basic block, *CommonDest, for one of the case
 | |
| /// destionations CaseDest corresponding to value CaseVal (0 for the default
 | |
| /// case), of a switch instruction SI.
 | |
| static bool
 | |
| GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
 | |
|                BasicBlock **CommonDest,
 | |
|                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
 | |
|                const DataLayout &DL) {
 | |
|   // The block from which we enter the common destination.
 | |
|   BasicBlock *Pred = SI->getParent();
 | |
| 
 | |
|   // If CaseDest is empty except for some side-effect free instructions through
 | |
|   // which we can constant-propagate the CaseVal, continue to its successor.
 | |
|   SmallDenseMap<Value *, Constant *> ConstantPool;
 | |
|   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
 | |
|   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
 | |
|        ++I) {
 | |
|     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
 | |
|       // If the terminator is a simple branch, continue to the next block.
 | |
|       if (T->getNumSuccessors() != 1)
 | |
|         return false;
 | |
|       Pred = CaseDest;
 | |
|       CaseDest = T->getSuccessor(0);
 | |
|     } else if (isa<DbgInfoIntrinsic>(I)) {
 | |
|       // Skip debug intrinsic.
 | |
|       continue;
 | |
|     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
 | |
|       // Instruction is side-effect free and constant.
 | |
| 
 | |
|       // If the instruction has uses outside this block or a phi node slot for
 | |
|       // the block, it is not safe to bypass the instruction since it would then
 | |
|       // no longer dominate all its uses.
 | |
|       for (auto &Use : I->uses()) {
 | |
|         User *User = Use.getUser();
 | |
|         if (Instruction *I = dyn_cast<Instruction>(User))
 | |
|           if (I->getParent() == CaseDest)
 | |
|             continue;
 | |
|         if (PHINode *Phi = dyn_cast<PHINode>(User))
 | |
|           if (Phi->getIncomingBlock(Use) == CaseDest)
 | |
|             continue;
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       ConstantPool.insert(std::make_pair(&*I, C));
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we did not have a CommonDest before, use the current one.
 | |
|   if (!*CommonDest)
 | |
|     *CommonDest = CaseDest;
 | |
|   // If the destination isn't the common one, abort.
 | |
|   if (CaseDest != *CommonDest)
 | |
|     return false;
 | |
| 
 | |
|   // Get the values for this case from phi nodes in the destination block.
 | |
|   BasicBlock::iterator I = (*CommonDest)->begin();
 | |
|   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
 | |
|     int Idx = PHI->getBasicBlockIndex(Pred);
 | |
|     if (Idx == -1)
 | |
|       continue;
 | |
| 
 | |
|     Constant *ConstVal =
 | |
|         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
 | |
|     if (!ConstVal)
 | |
|       return false;
 | |
| 
 | |
|     // Be conservative about which kinds of constants we support.
 | |
|     if (!ValidLookupTableConstant(ConstVal))
 | |
|       return false;
 | |
| 
 | |
|     Res.push_back(std::make_pair(PHI, ConstVal));
 | |
|   }
 | |
| 
 | |
|   return Res.size() > 0;
 | |
| }
 | |
| 
 | |
| // Helper function used to add CaseVal to the list of cases that generate
 | |
| // Result.
 | |
| static void MapCaseToResult(ConstantInt *CaseVal,
 | |
|                             SwitchCaseResultVectorTy &UniqueResults,
 | |
|                             Constant *Result) {
 | |
|   for (auto &I : UniqueResults) {
 | |
|     if (I.first == Result) {
 | |
|       I.second.push_back(CaseVal);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   UniqueResults.push_back(
 | |
|       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
 | |
| }
 | |
| 
 | |
| // Helper function that initializes a map containing
 | |
| // results for the PHI node of the common destination block for a switch
 | |
| // instruction. Returns false if multiple PHI nodes have been found or if
 | |
| // there is not a common destination block for the switch.
 | |
| static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
 | |
|                                   BasicBlock *&CommonDest,
 | |
|                                   SwitchCaseResultVectorTy &UniqueResults,
 | |
|                                   Constant *&DefaultResult,
 | |
|                                   const DataLayout &DL) {
 | |
|   for (auto &I : SI->cases()) {
 | |
|     ConstantInt *CaseVal = I.getCaseValue();
 | |
| 
 | |
|     // Resulting value at phi nodes for this case value.
 | |
|     SwitchCaseResultsTy Results;
 | |
|     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
 | |
|                         DL))
 | |
|       return false;
 | |
| 
 | |
|     // Only one value per case is permitted
 | |
|     if (Results.size() > 1)
 | |
|       return false;
 | |
|     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
 | |
| 
 | |
|     // Check the PHI consistency.
 | |
|     if (!PHI)
 | |
|       PHI = Results[0].first;
 | |
|     else if (PHI != Results[0].first)
 | |
|       return false;
 | |
|   }
 | |
|   // Find the default result value.
 | |
|   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
 | |
|   BasicBlock *DefaultDest = SI->getDefaultDest();
 | |
|   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
 | |
|                  DL);
 | |
|   // If the default value is not found abort unless the default destination
 | |
|   // is unreachable.
 | |
|   DefaultResult =
 | |
|       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
 | |
|   if ((!DefaultResult &&
 | |
|        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Helper function that checks if it is possible to transform a switch with only
 | |
| // two cases (or two cases + default) that produces a result into a select.
 | |
| // Example:
 | |
| // switch (a) {
 | |
| //   case 10:                %0 = icmp eq i32 %a, 10
 | |
| //     return 10;            %1 = select i1 %0, i32 10, i32 4
 | |
| //   case 20:        ---->   %2 = icmp eq i32 %a, 20
 | |
| //     return 2;             %3 = select i1 %2, i32 2, i32 %1
 | |
| //   default:
 | |
| //     return 4;
 | |
| // }
 | |
| static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
 | |
|                                    Constant *DefaultResult, Value *Condition,
 | |
|                                    IRBuilder<> &Builder) {
 | |
|   assert(ResultVector.size() == 2 &&
 | |
|          "We should have exactly two unique results at this point");
 | |
|   // If we are selecting between only two cases transform into a simple
 | |
|   // select or a two-way select if default is possible.
 | |
|   if (ResultVector[0].second.size() == 1 &&
 | |
|       ResultVector[1].second.size() == 1) {
 | |
|     ConstantInt *const FirstCase = ResultVector[0].second[0];
 | |
|     ConstantInt *const SecondCase = ResultVector[1].second[0];
 | |
| 
 | |
|     bool DefaultCanTrigger = DefaultResult;
 | |
|     Value *SelectValue = ResultVector[1].first;
 | |
|     if (DefaultCanTrigger) {
 | |
|       Value *const ValueCompare =
 | |
|           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
 | |
|       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
 | |
|                                          DefaultResult, "switch.select");
 | |
|     }
 | |
|     Value *const ValueCompare =
 | |
|         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
 | |
|     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
 | |
|                                 SelectValue, "switch.select");
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Helper function to cleanup a switch instruction that has been converted into
 | |
| // a select, fixing up PHI nodes and basic blocks.
 | |
| static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
 | |
|                                               Value *SelectValue,
 | |
|                                               IRBuilder<> &Builder) {
 | |
|   BasicBlock *SelectBB = SI->getParent();
 | |
|   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
 | |
|     PHI->removeIncomingValue(SelectBB);
 | |
|   PHI->addIncoming(SelectValue, SelectBB);
 | |
| 
 | |
|   Builder.CreateBr(PHI->getParent());
 | |
| 
 | |
|   // Remove the switch.
 | |
|   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
 | |
|     BasicBlock *Succ = SI->getSuccessor(i);
 | |
| 
 | |
|     if (Succ == PHI->getParent())
 | |
|       continue;
 | |
|     Succ->removePredecessor(SelectBB);
 | |
|   }
 | |
|   SI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// If the switch is only used to initialize one or more
 | |
| /// phi nodes in a common successor block with only two different
 | |
| /// constant values, replace the switch with select.
 | |
| static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
 | |
|                            AssumptionCache *AC, const DataLayout &DL) {
 | |
|   Value *const Cond = SI->getCondition();
 | |
|   PHINode *PHI = nullptr;
 | |
|   BasicBlock *CommonDest = nullptr;
 | |
|   Constant *DefaultResult;
 | |
|   SwitchCaseResultVectorTy UniqueResults;
 | |
|   // Collect all the cases that will deliver the same value from the switch.
 | |
|   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
 | |
|                              DL))
 | |
|     return false;
 | |
|   // Selects choose between maximum two values.
 | |
|   if (UniqueResults.size() != 2)
 | |
|     return false;
 | |
|   assert(PHI != nullptr && "PHI for value select not found");
 | |
| 
 | |
|   Builder.SetInsertPoint(SI);
 | |
|   Value *SelectValue =
 | |
|       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
 | |
|   if (SelectValue) {
 | |
|     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
 | |
|     return true;
 | |
|   }
 | |
|   // The switch couldn't be converted into a select.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// This class represents a lookup table that can be used to replace a switch.
 | |
| class SwitchLookupTable {
 | |
| public:
 | |
|   /// Create a lookup table to use as a switch replacement with the contents
 | |
|   /// of Values, using DefaultValue to fill any holes in the table.
 | |
|   SwitchLookupTable(
 | |
|       Module &M, uint64_t TableSize, ConstantInt *Offset,
 | |
|       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
 | |
|       Constant *DefaultValue, const DataLayout &DL);
 | |
| 
 | |
|   /// Build instructions with Builder to retrieve the value at
 | |
|   /// the position given by Index in the lookup table.
 | |
|   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
 | |
| 
 | |
|   /// Return true if a table with TableSize elements of
 | |
|   /// type ElementType would fit in a target-legal register.
 | |
|   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
 | |
|                                  Type *ElementType);
 | |
| 
 | |
| private:
 | |
|   // Depending on the contents of the table, it can be represented in
 | |
|   // different ways.
 | |
|   enum {
 | |
|     // For tables where each element contains the same value, we just have to
 | |
|     // store that single value and return it for each lookup.
 | |
|     SingleValueKind,
 | |
| 
 | |
|     // For tables where there is a linear relationship between table index
 | |
|     // and values. We calculate the result with a simple multiplication
 | |
|     // and addition instead of a table lookup.
 | |
|     LinearMapKind,
 | |
| 
 | |
|     // For small tables with integer elements, we can pack them into a bitmap
 | |
|     // that fits into a target-legal register. Values are retrieved by
 | |
|     // shift and mask operations.
 | |
|     BitMapKind,
 | |
| 
 | |
|     // The table is stored as an array of values. Values are retrieved by load
 | |
|     // instructions from the table.
 | |
|     ArrayKind
 | |
|   } Kind;
 | |
| 
 | |
|   // For SingleValueKind, this is the single value.
 | |
|   Constant *SingleValue;
 | |
| 
 | |
|   // For BitMapKind, this is the bitmap.
 | |
|   ConstantInt *BitMap;
 | |
|   IntegerType *BitMapElementTy;
 | |
| 
 | |
|   // For LinearMapKind, these are the constants used to derive the value.
 | |
|   ConstantInt *LinearOffset;
 | |
|   ConstantInt *LinearMultiplier;
 | |
| 
 | |
|   // For ArrayKind, this is the array.
 | |
|   GlobalVariable *Array;
 | |
| };
 | |
| }
 | |
| 
 | |
| SwitchLookupTable::SwitchLookupTable(
 | |
|     Module &M, uint64_t TableSize, ConstantInt *Offset,
 | |
|     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
 | |
|     Constant *DefaultValue, const DataLayout &DL)
 | |
|     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
 | |
|       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
 | |
|   assert(Values.size() && "Can't build lookup table without values!");
 | |
|   assert(TableSize >= Values.size() && "Can't fit values in table!");
 | |
| 
 | |
|   // If all values in the table are equal, this is that value.
 | |
|   SingleValue = Values.begin()->second;
 | |
| 
 | |
|   Type *ValueType = Values.begin()->second->getType();
 | |
| 
 | |
|   // Build up the table contents.
 | |
|   SmallVector<Constant *, 64> TableContents(TableSize);
 | |
|   for (size_t I = 0, E = Values.size(); I != E; ++I) {
 | |
|     ConstantInt *CaseVal = Values[I].first;
 | |
|     Constant *CaseRes = Values[I].second;
 | |
|     assert(CaseRes->getType() == ValueType);
 | |
| 
 | |
|     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
 | |
|     TableContents[Idx] = CaseRes;
 | |
| 
 | |
|     if (CaseRes != SingleValue)
 | |
|       SingleValue = nullptr;
 | |
|   }
 | |
| 
 | |
|   // Fill in any holes in the table with the default result.
 | |
|   if (Values.size() < TableSize) {
 | |
|     assert(DefaultValue &&
 | |
|            "Need a default value to fill the lookup table holes.");
 | |
|     assert(DefaultValue->getType() == ValueType);
 | |
|     for (uint64_t I = 0; I < TableSize; ++I) {
 | |
|       if (!TableContents[I])
 | |
|         TableContents[I] = DefaultValue;
 | |
|     }
 | |
| 
 | |
|     if (DefaultValue != SingleValue)
 | |
|       SingleValue = nullptr;
 | |
|   }
 | |
| 
 | |
|   // If each element in the table contains the same value, we only need to store
 | |
|   // that single value.
 | |
|   if (SingleValue) {
 | |
|     Kind = SingleValueKind;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check if we can derive the value with a linear transformation from the
 | |
|   // table index.
 | |
|   if (isa<IntegerType>(ValueType)) {
 | |
|     bool LinearMappingPossible = true;
 | |
|     APInt PrevVal;
 | |
|     APInt DistToPrev;
 | |
|     assert(TableSize >= 2 && "Should be a SingleValue table.");
 | |
|     // Check if there is the same distance between two consecutive values.
 | |
|     for (uint64_t I = 0; I < TableSize; ++I) {
 | |
|       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
 | |
|       if (!ConstVal) {
 | |
|         // This is an undef. We could deal with it, but undefs in lookup tables
 | |
|         // are very seldom. It's probably not worth the additional complexity.
 | |
|         LinearMappingPossible = false;
 | |
|         break;
 | |
|       }
 | |
|       APInt Val = ConstVal->getValue();
 | |
|       if (I != 0) {
 | |
|         APInt Dist = Val - PrevVal;
 | |
|         if (I == 1) {
 | |
|           DistToPrev = Dist;
 | |
|         } else if (Dist != DistToPrev) {
 | |
|           LinearMappingPossible = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       PrevVal = Val;
 | |
|     }
 | |
|     if (LinearMappingPossible) {
 | |
|       LinearOffset = cast<ConstantInt>(TableContents[0]);
 | |
|       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
 | |
|       Kind = LinearMapKind;
 | |
|       ++NumLinearMaps;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the type is integer and the table fits in a register, build a bitmap.
 | |
|   if (WouldFitInRegister(DL, TableSize, ValueType)) {
 | |
|     IntegerType *IT = cast<IntegerType>(ValueType);
 | |
|     APInt TableInt(TableSize * IT->getBitWidth(), 0);
 | |
|     for (uint64_t I = TableSize; I > 0; --I) {
 | |
|       TableInt <<= IT->getBitWidth();
 | |
|       // Insert values into the bitmap. Undef values are set to zero.
 | |
|       if (!isa<UndefValue>(TableContents[I - 1])) {
 | |
|         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
 | |
|         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
 | |
|       }
 | |
|     }
 | |
|     BitMap = ConstantInt::get(M.getContext(), TableInt);
 | |
|     BitMapElementTy = IT;
 | |
|     Kind = BitMapKind;
 | |
|     ++NumBitMaps;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Store the table in an array.
 | |
|   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
 | |
|   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
 | |
| 
 | |
|   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
 | |
|                              GlobalVariable::PrivateLinkage, Initializer,
 | |
|                              "switch.table");
 | |
|   Array->setUnnamedAddr(true);
 | |
|   Kind = ArrayKind;
 | |
| }
 | |
| 
 | |
| Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
 | |
|   switch (Kind) {
 | |
|   case SingleValueKind:
 | |
|     return SingleValue;
 | |
|   case LinearMapKind: {
 | |
|     // Derive the result value from the input value.
 | |
|     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
 | |
|                                           false, "switch.idx.cast");
 | |
|     if (!LinearMultiplier->isOne())
 | |
|       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
 | |
|     if (!LinearOffset->isZero())
 | |
|       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
 | |
|     return Result;
 | |
|   }
 | |
|   case BitMapKind: {
 | |
|     // Type of the bitmap (e.g. i59).
 | |
|     IntegerType *MapTy = BitMap->getType();
 | |
| 
 | |
|     // Cast Index to the same type as the bitmap.
 | |
|     // Note: The Index is <= the number of elements in the table, so
 | |
|     // truncating it to the width of the bitmask is safe.
 | |
|     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
 | |
| 
 | |
|     // Multiply the shift amount by the element width.
 | |
|     ShiftAmt = Builder.CreateMul(
 | |
|         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
 | |
|         "switch.shiftamt");
 | |
| 
 | |
|     // Shift down.
 | |
|     Value *DownShifted =
 | |
|         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
 | |
|     // Mask off.
 | |
|     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
 | |
|   }
 | |
|   case ArrayKind: {
 | |
|     // Make sure the table index will not overflow when treated as signed.
 | |
|     IntegerType *IT = cast<IntegerType>(Index->getType());
 | |
|     uint64_t TableSize =
 | |
|         Array->getInitializer()->getType()->getArrayNumElements();
 | |
|     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
 | |
|       Index = Builder.CreateZExt(
 | |
|           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
 | |
|           "switch.tableidx.zext");
 | |
| 
 | |
|     Value *GEPIndices[] = {Builder.getInt32(0), Index};
 | |
|     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
 | |
|                                            GEPIndices, "switch.gep");
 | |
|     return Builder.CreateLoad(GEP, "switch.load");
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("Unknown lookup table kind!");
 | |
| }
 | |
| 
 | |
| bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
 | |
|                                            uint64_t TableSize,
 | |
|                                            Type *ElementType) {
 | |
|   auto *IT = dyn_cast<IntegerType>(ElementType);
 | |
|   if (!IT)
 | |
|     return false;
 | |
|   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
 | |
|   // are <= 15, we could try to narrow the type.
 | |
| 
 | |
|   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
 | |
|   if (TableSize >= UINT_MAX / IT->getBitWidth())
 | |
|     return false;
 | |
|   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
 | |
| }
 | |
| 
 | |
| /// Determine whether a lookup table should be built for this switch, based on
 | |
| /// the number of cases, size of the table, and the types of the results.
 | |
| static bool
 | |
| ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
 | |
|                        const TargetTransformInfo &TTI, const DataLayout &DL,
 | |
|                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
 | |
|   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
 | |
|     return false; // TableSize overflowed, or mul below might overflow.
 | |
| 
 | |
|   bool AllTablesFitInRegister = true;
 | |
|   bool HasIllegalType = false;
 | |
|   for (const auto &I : ResultTypes) {
 | |
|     Type *Ty = I.second;
 | |
| 
 | |
|     // Saturate this flag to true.
 | |
|     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
 | |
| 
 | |
|     // Saturate this flag to false.
 | |
|     AllTablesFitInRegister =
 | |
|         AllTablesFitInRegister &&
 | |
|         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
 | |
| 
 | |
|     // If both flags saturate, we're done. NOTE: This *only* works with
 | |
|     // saturating flags, and all flags have to saturate first due to the
 | |
|     // non-deterministic behavior of iterating over a dense map.
 | |
|     if (HasIllegalType && !AllTablesFitInRegister)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // If each table would fit in a register, we should build it anyway.
 | |
|   if (AllTablesFitInRegister)
 | |
|     return true;
 | |
| 
 | |
|   // Don't build a table that doesn't fit in-register if it has illegal types.
 | |
|   if (HasIllegalType)
 | |
|     return false;
 | |
| 
 | |
|   // The table density should be at least 40%. This is the same criterion as for
 | |
|   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
 | |
|   // FIXME: Find the best cut-off.
 | |
|   return SI->getNumCases() * 10 >= TableSize * 4;
 | |
| }
 | |
| 
 | |
| /// Try to reuse the switch table index compare. Following pattern:
 | |
| /// \code
 | |
| ///     if (idx < tablesize)
 | |
| ///        r = table[idx]; // table does not contain default_value
 | |
| ///     else
 | |
| ///        r = default_value;
 | |
| ///     if (r != default_value)
 | |
| ///        ...
 | |
| /// \endcode
 | |
| /// Is optimized to:
 | |
| /// \code
 | |
| ///     cond = idx < tablesize;
 | |
| ///     if (cond)
 | |
| ///        r = table[idx];
 | |
| ///     else
 | |
| ///        r = default_value;
 | |
| ///     if (cond)
 | |
| ///        ...
 | |
| /// \endcode
 | |
| /// Jump threading will then eliminate the second if(cond).
 | |
| static void reuseTableCompare(
 | |
|     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
 | |
|     Constant *DefaultValue,
 | |
|     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
 | |
| 
 | |
|   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
 | |
|   if (!CmpInst)
 | |
|     return;
 | |
| 
 | |
|   // We require that the compare is in the same block as the phi so that jump
 | |
|   // threading can do its work afterwards.
 | |
|   if (CmpInst->getParent() != PhiBlock)
 | |
|     return;
 | |
| 
 | |
|   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
 | |
|   if (!CmpOp1)
 | |
|     return;
 | |
| 
 | |
|   Value *RangeCmp = RangeCheckBranch->getCondition();
 | |
|   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
 | |
|   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
 | |
| 
 | |
|   // Check if the compare with the default value is constant true or false.
 | |
|   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
 | |
|                                                  DefaultValue, CmpOp1, true);
 | |
|   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
 | |
|     return;
 | |
| 
 | |
|   // Check if the compare with the case values is distinct from the default
 | |
|   // compare result.
 | |
|   for (auto ValuePair : Values) {
 | |
|     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
 | |
|                                                 ValuePair.second, CmpOp1, true);
 | |
|     if (!CaseConst || CaseConst == DefaultConst)
 | |
|       return;
 | |
|     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
 | |
|            "Expect true or false as compare result.");
 | |
|   }
 | |
| 
 | |
|   // Check if the branch instruction dominates the phi node. It's a simple
 | |
|   // dominance check, but sufficient for our needs.
 | |
|   // Although this check is invariant in the calling loops, it's better to do it
 | |
|   // at this late stage. Practically we do it at most once for a switch.
 | |
|   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
 | |
|   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
 | |
|     BasicBlock *Pred = *PI;
 | |
|     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   if (DefaultConst == FalseConst) {
 | |
|     // The compare yields the same result. We can replace it.
 | |
|     CmpInst->replaceAllUsesWith(RangeCmp);
 | |
|     ++NumTableCmpReuses;
 | |
|   } else {
 | |
|     // The compare yields the same result, just inverted. We can replace it.
 | |
|     Value *InvertedTableCmp = BinaryOperator::CreateXor(
 | |
|         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
 | |
|         RangeCheckBranch);
 | |
|     CmpInst->replaceAllUsesWith(InvertedTableCmp);
 | |
|     ++NumTableCmpReuses;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If the switch is only used to initialize one or more phi nodes in a common
 | |
| /// successor block with different constant values, replace the switch with
 | |
| /// lookup tables.
 | |
| static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
 | |
|                                 const DataLayout &DL,
 | |
|                                 const TargetTransformInfo &TTI) {
 | |
|   assert(SI->getNumCases() > 1 && "Degenerate switch?");
 | |
| 
 | |
|   // Only build lookup table when we have a target that supports it.
 | |
|   if (!TTI.shouldBuildLookupTables())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
 | |
|   // split off a dense part and build a lookup table for that.
 | |
| 
 | |
|   // FIXME: This creates arrays of GEPs to constant strings, which means each
 | |
|   // GEP needs a runtime relocation in PIC code. We should just build one big
 | |
|   // string and lookup indices into that.
 | |
| 
 | |
|   // Ignore switches with less than three cases. Lookup tables will not make
 | |
|   // them
 | |
|   // faster, so we don't analyze them.
 | |
|   if (SI->getNumCases() < 3)
 | |
|     return false;
 | |
| 
 | |
|   // Figure out the corresponding result for each case value and phi node in the
 | |
|   // common destination, as well as the min and max case values.
 | |
|   assert(SI->case_begin() != SI->case_end());
 | |
|   SwitchInst::CaseIt CI = SI->case_begin();
 | |
|   ConstantInt *MinCaseVal = CI.getCaseValue();
 | |
|   ConstantInt *MaxCaseVal = CI.getCaseValue();
 | |
| 
 | |
|   BasicBlock *CommonDest = nullptr;
 | |
|   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
 | |
|   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
 | |
|   SmallDenseMap<PHINode *, Constant *> DefaultResults;
 | |
|   SmallDenseMap<PHINode *, Type *> ResultTypes;
 | |
|   SmallVector<PHINode *, 4> PHIs;
 | |
| 
 | |
|   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
 | |
|     ConstantInt *CaseVal = CI.getCaseValue();
 | |
|     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
 | |
|       MinCaseVal = CaseVal;
 | |
|     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
 | |
|       MaxCaseVal = CaseVal;
 | |
| 
 | |
|     // Resulting value at phi nodes for this case value.
 | |
|     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
 | |
|     ResultsTy Results;
 | |
|     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
 | |
|                         Results, DL))
 | |
|       return false;
 | |
| 
 | |
|     // Append the result from this case to the list for each phi.
 | |
|     for (const auto &I : Results) {
 | |
|       PHINode *PHI = I.first;
 | |
|       Constant *Value = I.second;
 | |
|       if (!ResultLists.count(PHI))
 | |
|         PHIs.push_back(PHI);
 | |
|       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Keep track of the result types.
 | |
|   for (PHINode *PHI : PHIs) {
 | |
|     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
 | |
|   }
 | |
| 
 | |
|   uint64_t NumResults = ResultLists[PHIs[0]].size();
 | |
|   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
 | |
|   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
 | |
|   bool TableHasHoles = (NumResults < TableSize);
 | |
| 
 | |
|   // If the table has holes, we need a constant result for the default case
 | |
|   // or a bitmask that fits in a register.
 | |
|   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
 | |
|   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
 | |
|                                           &CommonDest, DefaultResultsList, DL);
 | |
| 
 | |
|   bool NeedMask = (TableHasHoles && !HasDefaultResults);
 | |
|   if (NeedMask) {
 | |
|     // As an extra penalty for the validity test we require more cases.
 | |
|     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
 | |
|       return false;
 | |
|     if (!DL.fitsInLegalInteger(TableSize))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   for (const auto &I : DefaultResultsList) {
 | |
|     PHINode *PHI = I.first;
 | |
|     Constant *Result = I.second;
 | |
|     DefaultResults[PHI] = Result;
 | |
|   }
 | |
| 
 | |
|   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
 | |
|     return false;
 | |
| 
 | |
|   // Create the BB that does the lookups.
 | |
|   Module &Mod = *CommonDest->getParent()->getParent();
 | |
|   BasicBlock *LookupBB = BasicBlock::Create(
 | |
|       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
 | |
| 
 | |
|   // Compute the table index value.
 | |
|   Builder.SetInsertPoint(SI);
 | |
|   Value *TableIndex =
 | |
|       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
 | |
| 
 | |
|   // Compute the maximum table size representable by the integer type we are
 | |
|   // switching upon.
 | |
|   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
 | |
|   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
 | |
|   assert(MaxTableSize >= TableSize &&
 | |
|          "It is impossible for a switch to have more entries than the max "
 | |
|          "representable value of its input integer type's size.");
 | |
| 
 | |
|   // If the default destination is unreachable, or if the lookup table covers
 | |
|   // all values of the conditional variable, branch directly to the lookup table
 | |
|   // BB. Otherwise, check that the condition is within the case range.
 | |
|   const bool DefaultIsReachable =
 | |
|       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
 | |
|   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
 | |
|   BranchInst *RangeCheckBranch = nullptr;
 | |
| 
 | |
|   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
 | |
|     Builder.CreateBr(LookupBB);
 | |
|     // Note: We call removeProdecessor later since we need to be able to get the
 | |
|     // PHI value for the default case in case we're using a bit mask.
 | |
|   } else {
 | |
|     Value *Cmp = Builder.CreateICmpULT(
 | |
|         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
 | |
|     RangeCheckBranch =
 | |
|         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
 | |
|   }
 | |
| 
 | |
|   // Populate the BB that does the lookups.
 | |
|   Builder.SetInsertPoint(LookupBB);
 | |
| 
 | |
|   if (NeedMask) {
 | |
|     // Before doing the lookup we do the hole check.
 | |
|     // The LookupBB is therefore re-purposed to do the hole check
 | |
|     // and we create a new LookupBB.
 | |
|     BasicBlock *MaskBB = LookupBB;
 | |
|     MaskBB->setName("switch.hole_check");
 | |
|     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
 | |
|                                   CommonDest->getParent(), CommonDest);
 | |
| 
 | |
|     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
 | |
|     // unnecessary illegal types.
 | |
|     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
 | |
|     APInt MaskInt(TableSizePowOf2, 0);
 | |
|     APInt One(TableSizePowOf2, 1);
 | |
|     // Build bitmask; fill in a 1 bit for every case.
 | |
|     const ResultListTy &ResultList = ResultLists[PHIs[0]];
 | |
|     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
 | |
|       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
 | |
|                          .getLimitedValue();
 | |
|       MaskInt |= One << Idx;
 | |
|     }
 | |
|     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
 | |
| 
 | |
|     // Get the TableIndex'th bit of the bitmask.
 | |
|     // If this bit is 0 (meaning hole) jump to the default destination,
 | |
|     // else continue with table lookup.
 | |
|     IntegerType *MapTy = TableMask->getType();
 | |
|     Value *MaskIndex =
 | |
|         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
 | |
|     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
 | |
|     Value *LoBit = Builder.CreateTrunc(
 | |
|         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
 | |
|     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
 | |
| 
 | |
|     Builder.SetInsertPoint(LookupBB);
 | |
|     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
 | |
|   }
 | |
| 
 | |
|   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
 | |
|     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
 | |
|     // do not delete PHINodes here.
 | |
|     SI->getDefaultDest()->removePredecessor(SI->getParent(),
 | |
|                                             /*DontDeleteUselessPHIs=*/true);
 | |
|   }
 | |
| 
 | |
|   bool ReturnedEarly = false;
 | |
|   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
 | |
|     PHINode *PHI = PHIs[I];
 | |
|     const ResultListTy &ResultList = ResultLists[PHI];
 | |
| 
 | |
|     // If using a bitmask, use any value to fill the lookup table holes.
 | |
|     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
 | |
|     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
 | |
| 
 | |
|     Value *Result = Table.BuildLookup(TableIndex, Builder);
 | |
| 
 | |
|     // If the result is used to return immediately from the function, we want to
 | |
|     // do that right here.
 | |
|     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
 | |
|         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
 | |
|       Builder.CreateRet(Result);
 | |
|       ReturnedEarly = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Do a small peephole optimization: re-use the switch table compare if
 | |
|     // possible.
 | |
|     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
 | |
|       BasicBlock *PhiBlock = PHI->getParent();
 | |
|       // Search for compare instructions which use the phi.
 | |
|       for (auto *User : PHI->users()) {
 | |
|         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PHI->addIncoming(Result, LookupBB);
 | |
|   }
 | |
| 
 | |
|   if (!ReturnedEarly)
 | |
|     Builder.CreateBr(CommonDest);
 | |
| 
 | |
|   // Remove the switch.
 | |
|   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
 | |
|     BasicBlock *Succ = SI->getSuccessor(i);
 | |
| 
 | |
|     if (Succ == SI->getDefaultDest())
 | |
|       continue;
 | |
|     Succ->removePredecessor(SI->getParent());
 | |
|   }
 | |
|   SI->eraseFromParent();
 | |
| 
 | |
|   ++NumLookupTables;
 | |
|   if (NeedMask)
 | |
|     ++NumLookupTablesHoles;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
 | |
|   BasicBlock *BB = SI->getParent();
 | |
| 
 | |
|   if (isValueEqualityComparison(SI)) {
 | |
|     // If we only have one predecessor, and if it is a branch on this value,
 | |
|     // see if that predecessor totally determines the outcome of this switch.
 | |
|     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
 | |
|       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|     Value *Cond = SI->getCondition();
 | |
|     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
 | |
|       if (SimplifySwitchOnSelect(SI, Select))
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|     // If the block only contains the switch, see if we can fold the block
 | |
|     // away into any preds.
 | |
|     BasicBlock::iterator BBI = BB->begin();
 | |
|     // Ignore dbg intrinsics.
 | |
|     while (isa<DbgInfoIntrinsic>(BBI))
 | |
|       ++BBI;
 | |
|     if (SI == &*BBI)
 | |
|       if (FoldValueComparisonIntoPredecessors(SI, Builder))
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|   }
 | |
| 
 | |
|   // Try to transform the switch into an icmp and a branch.
 | |
|   if (TurnSwitchRangeIntoICmp(SI, Builder))
 | |
|     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|   // Remove unreachable cases.
 | |
|   if (EliminateDeadSwitchCases(SI, AC, DL))
 | |
|     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|   if (SwitchToSelect(SI, Builder, AC, DL))
 | |
|     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|   if (ForwardSwitchConditionToPHI(SI))
 | |
|     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|   if (SwitchToLookupTable(SI, Builder, DL, TTI))
 | |
|     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
 | |
|   BasicBlock *BB = IBI->getParent();
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Eliminate redundant destinations.
 | |
|   SmallPtrSet<Value *, 8> Succs;
 | |
|   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
 | |
|     BasicBlock *Dest = IBI->getDestination(i);
 | |
|     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
 | |
|       Dest->removePredecessor(BB);
 | |
|       IBI->removeDestination(i);
 | |
|       --i;
 | |
|       --e;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IBI->getNumDestinations() == 0) {
 | |
|     // If the indirectbr has no successors, change it to unreachable.
 | |
|     new UnreachableInst(IBI->getContext(), IBI);
 | |
|     EraseTerminatorInstAndDCECond(IBI);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (IBI->getNumDestinations() == 1) {
 | |
|     // If the indirectbr has one successor, change it to a direct branch.
 | |
|     BranchInst::Create(IBI->getDestination(0), IBI);
 | |
|     EraseTerminatorInstAndDCECond(IBI);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
 | |
|     if (SimplifyIndirectBrOnSelect(IBI, SI))
 | |
|       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Given an block with only a single landing pad and a unconditional branch
 | |
| /// try to find another basic block which this one can be merged with.  This
 | |
| /// handles cases where we have multiple invokes with unique landing pads, but
 | |
| /// a shared handler.
 | |
| ///
 | |
| /// We specifically choose to not worry about merging non-empty blocks
 | |
| /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
 | |
| /// practice, the optimizer produces empty landing pad blocks quite frequently
 | |
| /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
 | |
| /// sinking in this file)
 | |
| ///
 | |
| /// This is primarily a code size optimization.  We need to avoid performing
 | |
| /// any transform which might inhibit optimization (such as our ability to
 | |
| /// specialize a particular handler via tail commoning).  We do this by not
 | |
| /// merging any blocks which require us to introduce a phi.  Since the same
 | |
| /// values are flowing through both blocks, we don't loose any ability to
 | |
| /// specialize.  If anything, we make such specialization more likely.
 | |
| ///
 | |
| /// TODO - This transformation could remove entries from a phi in the target
 | |
| /// block when the inputs in the phi are the same for the two blocks being
 | |
| /// merged.  In some cases, this could result in removal of the PHI entirely.
 | |
| static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
 | |
|                                  BasicBlock *BB) {
 | |
|   auto Succ = BB->getUniqueSuccessor();
 | |
|   assert(Succ);
 | |
|   // If there's a phi in the successor block, we'd likely have to introduce
 | |
|   // a phi into the merged landing pad block.
 | |
|   if (isa<PHINode>(*Succ->begin()))
 | |
|     return false;
 | |
| 
 | |
|   for (BasicBlock *OtherPred : predecessors(Succ)) {
 | |
|     if (BB == OtherPred)
 | |
|       continue;
 | |
|     BasicBlock::iterator I = OtherPred->begin();
 | |
|     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
 | |
|     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
 | |
|       continue;
 | |
|     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
 | |
|     }
 | |
|     BranchInst *BI2 = dyn_cast<BranchInst>(I);
 | |
|     if (!BI2 || !BI2->isIdenticalTo(BI))
 | |
|       continue;
 | |
| 
 | |
|     // We've found an identical block.  Update our predecessors to take that
 | |
|     // path instead and make ourselves dead.
 | |
|     SmallSet<BasicBlock *, 16> Preds;
 | |
|     Preds.insert(pred_begin(BB), pred_end(BB));
 | |
|     for (BasicBlock *Pred : Preds) {
 | |
|       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
 | |
|       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
 | |
|              "unexpected successor");
 | |
|       II->setUnwindDest(OtherPred);
 | |
|     }
 | |
| 
 | |
|     // The debug info in OtherPred doesn't cover the merged control flow that
 | |
|     // used to go through BB.  We need to delete it or update it.
 | |
|     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
 | |
|       Instruction &Inst = *I;
 | |
|       I++;
 | |
|       if (isa<DbgInfoIntrinsic>(Inst))
 | |
|         Inst.eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     SmallSet<BasicBlock *, 16> Succs;
 | |
|     Succs.insert(succ_begin(BB), succ_end(BB));
 | |
|     for (BasicBlock *Succ : Succs) {
 | |
|       Succ->removePredecessor(BB);
 | |
|     }
 | |
| 
 | |
|     IRBuilder<> Builder(BI);
 | |
|     Builder.CreateUnreachable();
 | |
|     BI->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
 | |
|                                           IRBuilder<> &Builder) {
 | |
|   BasicBlock *BB = BI->getParent();
 | |
| 
 | |
|   if (SinkCommon && SinkThenElseCodeToEnd(BI))
 | |
|     return true;
 | |
| 
 | |
|   // If the Terminator is the only non-phi instruction, simplify the block.
 | |
|   // if LoopHeader is provided, check if the block is a loop header
 | |
|   // (This is for early invocations before loop simplify and vectorization
 | |
|   // to keep canonical loop forms for nested loops.
 | |
|   // These blocks can be eliminated when the pass is invoked later
 | |
|   // in the back-end.)
 | |
|   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
 | |
|   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
 | |
|       (!LoopHeaders || !LoopHeaders->count(BB)) &&
 | |
|       TryToSimplifyUncondBranchFromEmptyBlock(BB))
 | |
|     return true;
 | |
| 
 | |
|   // If the only instruction in the block is a seteq/setne comparison
 | |
|   // against a constant, try to simplify the block.
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
 | |
|     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
 | |
|       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
 | |
|         ;
 | |
|       if (I->isTerminator() &&
 | |
|           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
 | |
|                                                 BonusInstThreshold, AC))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|   // See if we can merge an empty landing pad block with another which is
 | |
|   // equivalent.
 | |
|   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
 | |
|     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
 | |
|     }
 | |
|     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // If this basic block is ONLY a compare and a branch, and if a predecessor
 | |
|   // branches to us and our successor, fold the comparison into the
 | |
|   // predecessor and use logical operations to update the incoming value
 | |
|   // for PHI nodes in common successor.
 | |
|   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
 | |
|     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
 | |
|   BasicBlock *PredPred = nullptr;
 | |
|   for (auto *P : predecessors(BB)) {
 | |
|     BasicBlock *PPred = P->getSinglePredecessor();
 | |
|     if (!PPred || (PredPred && PredPred != PPred))
 | |
|       return nullptr;
 | |
|     PredPred = PPred;
 | |
|   }
 | |
|   return PredPred;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
 | |
|   BasicBlock *BB = BI->getParent();
 | |
| 
 | |
|   // Conditional branch
 | |
|   if (isValueEqualityComparison(BI)) {
 | |
|     // If we only have one predecessor, and if it is a branch on this value,
 | |
|     // see if that predecessor totally determines the outcome of this
 | |
|     // switch.
 | |
|     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
 | |
|       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|     // This block must be empty, except for the setcond inst, if it exists.
 | |
|     // Ignore dbg intrinsics.
 | |
|     BasicBlock::iterator I = BB->begin();
 | |
|     // Ignore dbg intrinsics.
 | |
|     while (isa<DbgInfoIntrinsic>(I))
 | |
|       ++I;
 | |
|     if (&*I == BI) {
 | |
|       if (FoldValueComparisonIntoPredecessors(BI, Builder))
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|     } else if (&*I == cast<Instruction>(BI->getCondition())) {
 | |
|       ++I;
 | |
|       // Ignore dbg intrinsics.
 | |
|       while (isa<DbgInfoIntrinsic>(I))
 | |
|         ++I;
 | |
|       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
 | |
|   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
 | |
|     return true;
 | |
| 
 | |
|   // If this basic block has a single dominating predecessor block and the
 | |
|   // dominating block's condition implies BI's condition, we know the direction
 | |
|   // of the BI branch.
 | |
|   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
 | |
|     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
 | |
|     if (PBI && PBI->isConditional() &&
 | |
|         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
 | |
|         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
 | |
|       bool CondIsFalse = PBI->getSuccessor(1) == BB;
 | |
|       Optional<bool> Implication = isImpliedCondition(
 | |
|           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
 | |
|       if (Implication) {
 | |
|         // Turn this into a branch on constant.
 | |
|         auto *OldCond = BI->getCondition();
 | |
|         ConstantInt *CI = *Implication
 | |
|                               ? ConstantInt::getTrue(BB->getContext())
 | |
|                               : ConstantInt::getFalse(BB->getContext());
 | |
|         BI->setCondition(CI);
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this basic block is ONLY a compare and a branch, and if a predecessor
 | |
|   // branches to us and one of our successors, fold the comparison into the
 | |
|   // predecessor and use logical operations to pick the right destination.
 | |
|   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
 | |
|     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|   // We have a conditional branch to two blocks that are only reachable
 | |
|   // from BI.  We know that the condbr dominates the two blocks, so see if
 | |
|   // there is any identical code in the "then" and "else" blocks.  If so, we
 | |
|   // can hoist it up to the branching block.
 | |
|   if (BI->getSuccessor(0)->getSinglePredecessor()) {
 | |
|     if (BI->getSuccessor(1)->getSinglePredecessor()) {
 | |
|       if (HoistThenElseCodeToIf(BI, TTI))
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|     } else {
 | |
|       // If Successor #1 has multiple preds, we may be able to conditionally
 | |
|       // execute Successor #0 if it branches to Successor #1.
 | |
|       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
 | |
|       if (Succ0TI->getNumSuccessors() == 1 &&
 | |
|           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
 | |
|         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
 | |
|           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|     }
 | |
|   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
 | |
|     // If Successor #0 has multiple preds, we may be able to conditionally
 | |
|     // execute Successor #1 if it branches to Successor #0.
 | |
|     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
 | |
|     if (Succ1TI->getNumSuccessors() == 1 &&
 | |
|         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
 | |
|       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
|   }
 | |
| 
 | |
|   // If this is a branch on a phi node in the current block, thread control
 | |
|   // through this block if any PHI node entries are constants.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
 | |
|     if (PN->getParent() == BI->getParent())
 | |
|       if (FoldCondBranchOnPHI(BI, DL))
 | |
|         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|   // Scan predecessor blocks for conditional branches.
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | |
|       if (PBI != BI && PBI->isConditional())
 | |
|         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
 | |
|           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|   // Look for diamond patterns.
 | |
|   if (MergeCondStores)
 | |
|     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
 | |
|       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
 | |
|         if (PBI != BI && PBI->isConditional())
 | |
|           if (mergeConditionalStores(PBI, BI))
 | |
|             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check if passing a value to an instruction will cause undefined behavior.
 | |
| static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
 | |
|   Constant *C = dyn_cast<Constant>(V);
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   if (I->use_empty())
 | |
|     return false;
 | |
| 
 | |
|   if (C->isNullValue()) {
 | |
|     // Only look at the first use, avoid hurting compile time with long uselists
 | |
|     User *Use = *I->user_begin();
 | |
| 
 | |
|     // Now make sure that there are no instructions in between that can alter
 | |
|     // control flow (eg. calls)
 | |
|     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
 | |
|       if (i == I->getParent()->end() || i->mayHaveSideEffects())
 | |
|         return false;
 | |
| 
 | |
|     // Look through GEPs. A load from a GEP derived from NULL is still undefined
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
 | |
|       if (GEP->getPointerOperand() == I)
 | |
|         return passingValueIsAlwaysUndefined(V, GEP);
 | |
| 
 | |
|     // Look through bitcasts.
 | |
|     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
 | |
|       return passingValueIsAlwaysUndefined(V, BC);
 | |
| 
 | |
|     // Load from null is undefined.
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
 | |
|       if (!LI->isVolatile())
 | |
|         return LI->getPointerAddressSpace() == 0;
 | |
| 
 | |
|     // Store to null is undefined.
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
 | |
|       if (!SI->isVolatile())
 | |
|         return SI->getPointerAddressSpace() == 0 &&
 | |
|                SI->getPointerOperand() == I;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// If BB has an incoming value that will always trigger undefined behavior
 | |
| /// (eg. null pointer dereference), remove the branch leading here.
 | |
| static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
 | |
|   for (BasicBlock::iterator i = BB->begin();
 | |
|        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
 | |
|     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
 | |
|       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
 | |
|         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
 | |
|         IRBuilder<> Builder(T);
 | |
|         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
 | |
|           BB->removePredecessor(PHI->getIncomingBlock(i));
 | |
|           // Turn uncoditional branches into unreachables and remove the dead
 | |
|           // destination from conditional branches.
 | |
|           if (BI->isUnconditional())
 | |
|             Builder.CreateUnreachable();
 | |
|           else
 | |
|             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
 | |
|                                                        : BI->getSuccessor(0));
 | |
|           BI->eraseFromParent();
 | |
|           return true;
 | |
|         }
 | |
|         // TODO: SwitchInst.
 | |
|       }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::run(BasicBlock *BB) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   assert(BB && BB->getParent() && "Block not embedded in function!");
 | |
|   assert(BB->getTerminator() && "Degenerate basic block encountered!");
 | |
| 
 | |
|   // Remove basic blocks that have no predecessors (except the entry block)...
 | |
|   // or that just have themself as a predecessor.  These are unreachable.
 | |
|   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
 | |
|       BB->getSinglePredecessor() == BB) {
 | |
|     DEBUG(dbgs() << "Removing BB: \n" << *BB);
 | |
|     DeleteDeadBlock(BB);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check to see if we can constant propagate this terminator instruction
 | |
|   // away...
 | |
|   Changed |= ConstantFoldTerminator(BB, true);
 | |
| 
 | |
|   // Check for and eliminate duplicate PHI nodes in this block.
 | |
|   Changed |= EliminateDuplicatePHINodes(BB);
 | |
| 
 | |
|   // Check for and remove branches that will always cause undefined behavior.
 | |
|   Changed |= removeUndefIntroducingPredecessor(BB);
 | |
| 
 | |
|   // Merge basic blocks into their predecessor if there is only one distinct
 | |
|   // pred, and if there is only one distinct successor of the predecessor, and
 | |
|   // if there are no PHI nodes.
 | |
|   //
 | |
|   if (MergeBlockIntoPredecessor(BB))
 | |
|     return true;
 | |
| 
 | |
|   IRBuilder<> Builder(BB);
 | |
| 
 | |
|   // If there is a trivial two-entry PHI node in this basic block, and we can
 | |
|   // eliminate it, do so now.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
 | |
|     if (PN->getNumIncomingValues() == 2)
 | |
|       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
 | |
| 
 | |
|   Builder.SetInsertPoint(BB->getTerminator());
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | |
|     if (BI->isUnconditional()) {
 | |
|       if (SimplifyUncondBranch(BI, Builder))
 | |
|         return true;
 | |
|     } else {
 | |
|       if (SimplifyCondBranch(BI, Builder))
 | |
|         return true;
 | |
|     }
 | |
|   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | |
|     if (SimplifyReturn(RI, Builder))
 | |
|       return true;
 | |
|   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
 | |
|     if (SimplifyResume(RI, Builder))
 | |
|       return true;
 | |
|   } else if (CleanupReturnInst *RI =
 | |
|                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
 | |
|     if (SimplifyCleanupReturn(RI))
 | |
|       return true;
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
 | |
|     if (SimplifySwitch(SI, Builder))
 | |
|       return true;
 | |
|   } else if (UnreachableInst *UI =
 | |
|                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
 | |
|     if (SimplifyUnreachable(UI))
 | |
|       return true;
 | |
|   } else if (IndirectBrInst *IBI =
 | |
|                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
 | |
|     if (SimplifyIndirectBr(IBI))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// This function is used to do simplification of a CFG.
 | |
| /// For example, it adjusts branches to branches to eliminate the extra hop,
 | |
| /// eliminates unreachable basic blocks, and does other "peephole" optimization
 | |
| /// of the CFG.  It returns true if a modification was made.
 | |
| ///
 | |
| bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
 | |
|                        unsigned BonusInstThreshold, AssumptionCache *AC,
 | |
|                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
 | |
|   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
 | |
|                         BonusInstThreshold, AC, LoopHeaders)
 | |
|       .run(BB);
 | |
| }
 |