forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3872 lines
		
	
	
		
			139 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3872 lines
		
	
	
		
			139 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements name lookup for C, C++, Objective-C, and
 | 
						|
//  Objective-C++.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#include "clang/Sema/Sema.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/Overload.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/TemplateDeduction.h"
 | 
						|
#include "clang/Sema/ExternalSemaSource.h"
 | 
						|
#include "clang/Sema/TypoCorrection.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/LangOptions.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/ADT/TinyPtrVector.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include <limits>
 | 
						|
#include <list>
 | 
						|
#include <set>
 | 
						|
#include <vector>
 | 
						|
#include <iterator>
 | 
						|
#include <utility>
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
namespace {
 | 
						|
  class UnqualUsingEntry {
 | 
						|
    const DeclContext *Nominated;
 | 
						|
    const DeclContext *CommonAncestor;
 | 
						|
 | 
						|
  public:
 | 
						|
    UnqualUsingEntry(const DeclContext *Nominated,
 | 
						|
                     const DeclContext *CommonAncestor)
 | 
						|
      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
 | 
						|
    }
 | 
						|
 | 
						|
    const DeclContext *getCommonAncestor() const {
 | 
						|
      return CommonAncestor;
 | 
						|
    }
 | 
						|
 | 
						|
    const DeclContext *getNominatedNamespace() const {
 | 
						|
      return Nominated;
 | 
						|
    }
 | 
						|
 | 
						|
    // Sort by the pointer value of the common ancestor.
 | 
						|
    struct Comparator {
 | 
						|
      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
 | 
						|
        return L.getCommonAncestor() < R.getCommonAncestor();
 | 
						|
      }
 | 
						|
 | 
						|
      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
 | 
						|
        return E.getCommonAncestor() < DC;
 | 
						|
      }
 | 
						|
 | 
						|
      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
 | 
						|
        return DC < E.getCommonAncestor();
 | 
						|
      }
 | 
						|
    };
 | 
						|
  };
 | 
						|
 | 
						|
  /// A collection of using directives, as used by C++ unqualified
 | 
						|
  /// lookup.
 | 
						|
  class UnqualUsingDirectiveSet {
 | 
						|
    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
 | 
						|
 | 
						|
    ListTy list;
 | 
						|
    llvm::SmallPtrSet<DeclContext*, 8> visited;
 | 
						|
 | 
						|
  public:
 | 
						|
    UnqualUsingDirectiveSet() {}
 | 
						|
 | 
						|
    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
 | 
						|
      // C++ [namespace.udir]p1:
 | 
						|
      //   During unqualified name lookup, the names appear as if they
 | 
						|
      //   were declared in the nearest enclosing namespace which contains
 | 
						|
      //   both the using-directive and the nominated namespace.
 | 
						|
      DeclContext *InnermostFileDC
 | 
						|
        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
 | 
						|
      assert(InnermostFileDC && InnermostFileDC->isFileContext());
 | 
						|
 | 
						|
      for (; S; S = S->getParent()) {
 | 
						|
        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
 | 
						|
          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
 | 
						|
          visit(Ctx, EffectiveDC);
 | 
						|
        } else {
 | 
						|
          Scope::udir_iterator I = S->using_directives_begin(),
 | 
						|
                             End = S->using_directives_end();
 | 
						|
 | 
						|
          for (; I != End; ++I)
 | 
						|
            visit(*I, InnermostFileDC);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Visits a context and collect all of its using directives
 | 
						|
    // recursively.  Treats all using directives as if they were
 | 
						|
    // declared in the context.
 | 
						|
    //
 | 
						|
    // A given context is only every visited once, so it is important
 | 
						|
    // that contexts be visited from the inside out in order to get
 | 
						|
    // the effective DCs right.
 | 
						|
    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
 | 
						|
      if (!visited.insert(DC))
 | 
						|
        return;
 | 
						|
 | 
						|
      addUsingDirectives(DC, EffectiveDC);
 | 
						|
    }
 | 
						|
 | 
						|
    // Visits a using directive and collects all of its using
 | 
						|
    // directives recursively.  Treats all using directives as if they
 | 
						|
    // were declared in the effective DC.
 | 
						|
    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
 | 
						|
      DeclContext *NS = UD->getNominatedNamespace();
 | 
						|
      if (!visited.insert(NS))
 | 
						|
        return;
 | 
						|
 | 
						|
      addUsingDirective(UD, EffectiveDC);
 | 
						|
      addUsingDirectives(NS, EffectiveDC);
 | 
						|
    }
 | 
						|
 | 
						|
    // Adds all the using directives in a context (and those nominated
 | 
						|
    // by its using directives, transitively) as if they appeared in
 | 
						|
    // the given effective context.
 | 
						|
    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
 | 
						|
      SmallVector<DeclContext*,4> queue;
 | 
						|
      while (true) {
 | 
						|
        DeclContext::udir_iterator I, End;
 | 
						|
        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
 | 
						|
          UsingDirectiveDecl *UD = *I;
 | 
						|
          DeclContext *NS = UD->getNominatedNamespace();
 | 
						|
          if (visited.insert(NS)) {
 | 
						|
            addUsingDirective(UD, EffectiveDC);
 | 
						|
            queue.push_back(NS);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (queue.empty())
 | 
						|
          return;
 | 
						|
 | 
						|
        DC = queue.back();
 | 
						|
        queue.pop_back();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a using directive as if it had been declared in the given
 | 
						|
    // context.  This helps implement C++ [namespace.udir]p3:
 | 
						|
    //   The using-directive is transitive: if a scope contains a
 | 
						|
    //   using-directive that nominates a second namespace that itself
 | 
						|
    //   contains using-directives, the effect is as if the
 | 
						|
    //   using-directives from the second namespace also appeared in
 | 
						|
    //   the first.
 | 
						|
    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
 | 
						|
      // Find the common ancestor between the effective context and
 | 
						|
      // the nominated namespace.
 | 
						|
      DeclContext *Common = UD->getNominatedNamespace();
 | 
						|
      while (!Common->Encloses(EffectiveDC))
 | 
						|
        Common = Common->getParent();
 | 
						|
      Common = Common->getPrimaryContext();
 | 
						|
 | 
						|
      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
 | 
						|
    }
 | 
						|
 | 
						|
    void done() {
 | 
						|
      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
 | 
						|
    }
 | 
						|
 | 
						|
    typedef ListTy::const_iterator const_iterator;
 | 
						|
 | 
						|
    const_iterator begin() const { return list.begin(); }
 | 
						|
    const_iterator end() const { return list.end(); }
 | 
						|
 | 
						|
    std::pair<const_iterator,const_iterator>
 | 
						|
    getNamespacesFor(DeclContext *DC) const {
 | 
						|
      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
 | 
						|
                              UnqualUsingEntry::Comparator());
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
// Retrieve the set of identifier namespaces that correspond to a
 | 
						|
// specific kind of name lookup.
 | 
						|
static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
 | 
						|
                               bool CPlusPlus,
 | 
						|
                               bool Redeclaration) {
 | 
						|
  unsigned IDNS = 0;
 | 
						|
  switch (NameKind) {
 | 
						|
  case Sema::LookupObjCImplicitSelfParam:
 | 
						|
  case Sema::LookupOrdinaryName:
 | 
						|
  case Sema::LookupRedeclarationWithLinkage:
 | 
						|
    IDNS = Decl::IDNS_Ordinary;
 | 
						|
    if (CPlusPlus) {
 | 
						|
      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
 | 
						|
      if (Redeclaration)
 | 
						|
        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::LookupOperatorName:
 | 
						|
    // Operator lookup is its own crazy thing;  it is not the same
 | 
						|
    // as (e.g.) looking up an operator name for redeclaration.
 | 
						|
    assert(!Redeclaration && "cannot do redeclaration operator lookup");
 | 
						|
    IDNS = Decl::IDNS_NonMemberOperator;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::LookupTagName:
 | 
						|
    if (CPlusPlus) {
 | 
						|
      IDNS = Decl::IDNS_Type;
 | 
						|
 | 
						|
      // When looking for a redeclaration of a tag name, we add:
 | 
						|
      // 1) TagFriend to find undeclared friend decls
 | 
						|
      // 2) Namespace because they can't "overload" with tag decls.
 | 
						|
      // 3) Tag because it includes class templates, which can't
 | 
						|
      //    "overload" with tag decls.
 | 
						|
      if (Redeclaration)
 | 
						|
        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
 | 
						|
    } else {
 | 
						|
      IDNS = Decl::IDNS_Tag;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Sema::LookupLabel:
 | 
						|
    IDNS = Decl::IDNS_Label;
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case Sema::LookupMemberName:
 | 
						|
    IDNS = Decl::IDNS_Member;
 | 
						|
    if (CPlusPlus)
 | 
						|
      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::LookupNestedNameSpecifierName:
 | 
						|
    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::LookupNamespaceName:
 | 
						|
    IDNS = Decl::IDNS_Namespace;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::LookupUsingDeclName:
 | 
						|
    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
 | 
						|
         | Decl::IDNS_Member | Decl::IDNS_Using;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::LookupObjCProtocolName:
 | 
						|
    IDNS = Decl::IDNS_ObjCProtocol;
 | 
						|
    break;
 | 
						|
 | 
						|
  case Sema::LookupAnyName:
 | 
						|
    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
 | 
						|
      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
 | 
						|
      | Decl::IDNS_Type;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return IDNS;
 | 
						|
}
 | 
						|
 | 
						|
void LookupResult::configure() {
 | 
						|
  IDNS = getIDNS(LookupKind, SemaRef.getLangOptions().CPlusPlus,
 | 
						|
                 isForRedeclaration());
 | 
						|
 | 
						|
  // If we're looking for one of the allocation or deallocation
 | 
						|
  // operators, make sure that the implicitly-declared new and delete
 | 
						|
  // operators can be found.
 | 
						|
  if (!isForRedeclaration()) {
 | 
						|
    switch (NameInfo.getName().getCXXOverloadedOperator()) {
 | 
						|
    case OO_New:
 | 
						|
    case OO_Delete:
 | 
						|
    case OO_Array_New:
 | 
						|
    case OO_Array_Delete:
 | 
						|
      SemaRef.DeclareGlobalNewDelete();
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LookupResult::sanity() const {
 | 
						|
  assert(ResultKind != NotFound || Decls.size() == 0);
 | 
						|
  assert(ResultKind != Found || Decls.size() == 1);
 | 
						|
  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
 | 
						|
         (Decls.size() == 1 &&
 | 
						|
          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
 | 
						|
  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
 | 
						|
  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
 | 
						|
         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
 | 
						|
                                Ambiguity == AmbiguousBaseSubobjectTypes)));
 | 
						|
  assert((Paths != NULL) == (ResultKind == Ambiguous &&
 | 
						|
                             (Ambiguity == AmbiguousBaseSubobjectTypes ||
 | 
						|
                              Ambiguity == AmbiguousBaseSubobjects)));
 | 
						|
}
 | 
						|
 | 
						|
// Necessary because CXXBasePaths is not complete in Sema.h
 | 
						|
void LookupResult::deletePaths(CXXBasePaths *Paths) {
 | 
						|
  delete Paths;
 | 
						|
}
 | 
						|
 | 
						|
/// Resolves the result kind of this lookup.
 | 
						|
void LookupResult::resolveKind() {
 | 
						|
  unsigned N = Decls.size();
 | 
						|
 | 
						|
  // Fast case: no possible ambiguity.
 | 
						|
  if (N == 0) {
 | 
						|
    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there's a single decl, we need to examine it to decide what
 | 
						|
  // kind of lookup this is.
 | 
						|
  if (N == 1) {
 | 
						|
    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
 | 
						|
    if (isa<FunctionTemplateDecl>(D))
 | 
						|
      ResultKind = FoundOverloaded;
 | 
						|
    else if (isa<UnresolvedUsingValueDecl>(D))
 | 
						|
      ResultKind = FoundUnresolvedValue;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't do any extra resolution if we've already resolved as ambiguous.
 | 
						|
  if (ResultKind == Ambiguous) return;
 | 
						|
 | 
						|
  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
 | 
						|
  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
 | 
						|
 | 
						|
  bool Ambiguous = false;
 | 
						|
  bool HasTag = false, HasFunction = false, HasNonFunction = false;
 | 
						|
  bool HasFunctionTemplate = false, HasUnresolved = false;
 | 
						|
 | 
						|
  unsigned UniqueTagIndex = 0;
 | 
						|
 | 
						|
  unsigned I = 0;
 | 
						|
  while (I < N) {
 | 
						|
    NamedDecl *D = Decls[I]->getUnderlyingDecl();
 | 
						|
    D = cast<NamedDecl>(D->getCanonicalDecl());
 | 
						|
 | 
						|
    // Redeclarations of types via typedef can occur both within a scope
 | 
						|
    // and, through using declarations and directives, across scopes. There is
 | 
						|
    // no ambiguity if they all refer to the same type, so unique based on the
 | 
						|
    // canonical type.
 | 
						|
    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
 | 
						|
      if (!TD->getDeclContext()->isRecord()) {
 | 
						|
        QualType T = SemaRef.Context.getTypeDeclType(TD);
 | 
						|
        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
 | 
						|
          // The type is not unique; pull something off the back and continue
 | 
						|
          // at this index.
 | 
						|
          Decls[I] = Decls[--N];
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Unique.insert(D)) {
 | 
						|
      // If it's not unique, pull something off the back (and
 | 
						|
      // continue at this index).
 | 
						|
      Decls[I] = Decls[--N];
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, do some decl type analysis and then continue.
 | 
						|
 | 
						|
    if (isa<UnresolvedUsingValueDecl>(D)) {
 | 
						|
      HasUnresolved = true;
 | 
						|
    } else if (isa<TagDecl>(D)) {
 | 
						|
      if (HasTag)
 | 
						|
        Ambiguous = true;
 | 
						|
      UniqueTagIndex = I;
 | 
						|
      HasTag = true;
 | 
						|
    } else if (isa<FunctionTemplateDecl>(D)) {
 | 
						|
      HasFunction = true;
 | 
						|
      HasFunctionTemplate = true;
 | 
						|
    } else if (isa<FunctionDecl>(D)) {
 | 
						|
      HasFunction = true;
 | 
						|
    } else {
 | 
						|
      if (HasNonFunction)
 | 
						|
        Ambiguous = true;
 | 
						|
      HasNonFunction = true;
 | 
						|
    }
 | 
						|
    I++;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [basic.scope.hiding]p2:
 | 
						|
  //   A class name or enumeration name can be hidden by the name of
 | 
						|
  //   an object, function, or enumerator declared in the same
 | 
						|
  //   scope. If a class or enumeration name and an object, function,
 | 
						|
  //   or enumerator are declared in the same scope (in any order)
 | 
						|
  //   with the same name, the class or enumeration name is hidden
 | 
						|
  //   wherever the object, function, or enumerator name is visible.
 | 
						|
  // But it's still an error if there are distinct tag types found,
 | 
						|
  // even if they're not visible. (ref?)
 | 
						|
  if (HideTags && HasTag && !Ambiguous &&
 | 
						|
      (HasFunction || HasNonFunction || HasUnresolved)) {
 | 
						|
    if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
 | 
						|
         Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
 | 
						|
      Decls[UniqueTagIndex] = Decls[--N];
 | 
						|
    else
 | 
						|
      Ambiguous = true;
 | 
						|
  }
 | 
						|
 | 
						|
  Decls.set_size(N);
 | 
						|
 | 
						|
  if (HasNonFunction && (HasFunction || HasUnresolved))
 | 
						|
    Ambiguous = true;
 | 
						|
 | 
						|
  if (Ambiguous)
 | 
						|
    setAmbiguous(LookupResult::AmbiguousReference);
 | 
						|
  else if (HasUnresolved)
 | 
						|
    ResultKind = LookupResult::FoundUnresolvedValue;
 | 
						|
  else if (N > 1 || HasFunctionTemplate)
 | 
						|
    ResultKind = LookupResult::FoundOverloaded;
 | 
						|
  else
 | 
						|
    ResultKind = LookupResult::Found;
 | 
						|
}
 | 
						|
 | 
						|
void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
 | 
						|
  CXXBasePaths::const_paths_iterator I, E;
 | 
						|
  DeclContext::lookup_iterator DI, DE;
 | 
						|
  for (I = P.begin(), E = P.end(); I != E; ++I)
 | 
						|
    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
 | 
						|
      addDecl(*DI);
 | 
						|
}
 | 
						|
 | 
						|
void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
 | 
						|
  Paths = new CXXBasePaths;
 | 
						|
  Paths->swap(P);
 | 
						|
  addDeclsFromBasePaths(*Paths);
 | 
						|
  resolveKind();
 | 
						|
  setAmbiguous(AmbiguousBaseSubobjects);
 | 
						|
}
 | 
						|
 | 
						|
void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
 | 
						|
  Paths = new CXXBasePaths;
 | 
						|
  Paths->swap(P);
 | 
						|
  addDeclsFromBasePaths(*Paths);
 | 
						|
  resolveKind();
 | 
						|
  setAmbiguous(AmbiguousBaseSubobjectTypes);
 | 
						|
}
 | 
						|
 | 
						|
void LookupResult::print(raw_ostream &Out) {
 | 
						|
  Out << Decls.size() << " result(s)";
 | 
						|
  if (isAmbiguous()) Out << ", ambiguous";
 | 
						|
  if (Paths) Out << ", base paths present";
 | 
						|
 | 
						|
  for (iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    Out << "\n";
 | 
						|
    (*I)->print(Out, 2);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Lookup a builtin function, when name lookup would otherwise
 | 
						|
/// fail.
 | 
						|
static bool LookupBuiltin(Sema &S, LookupResult &R) {
 | 
						|
  Sema::LookupNameKind NameKind = R.getLookupKind();
 | 
						|
 | 
						|
  // If we didn't find a use of this identifier, and if the identifier
 | 
						|
  // corresponds to a compiler builtin, create the decl object for the builtin
 | 
						|
  // now, injecting it into translation unit scope, and return it.
 | 
						|
  if (NameKind == Sema::LookupOrdinaryName ||
 | 
						|
      NameKind == Sema::LookupRedeclarationWithLinkage) {
 | 
						|
    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
 | 
						|
    if (II) {
 | 
						|
      // If this is a builtin on this (or all) targets, create the decl.
 | 
						|
      if (unsigned BuiltinID = II->getBuiltinID()) {
 | 
						|
        // In C++, we don't have any predefined library functions like
 | 
						|
        // 'malloc'. Instead, we'll just error.
 | 
						|
        if (S.getLangOptions().CPlusPlus &&
 | 
						|
            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
 | 
						|
          return false;
 | 
						|
 | 
						|
        if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
 | 
						|
                                                 BuiltinID, S.TUScope,
 | 
						|
                                                 R.isForRedeclaration(),
 | 
						|
                                                 R.getNameLoc())) {
 | 
						|
          R.addDecl(D);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        if (R.isForRedeclaration()) {
 | 
						|
          // If we're redeclaring this function anyway, forget that
 | 
						|
          // this was a builtin at all.
 | 
						|
          S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether we can declare a special member function within
 | 
						|
/// the class at this point.
 | 
						|
static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
 | 
						|
                                            const CXXRecordDecl *Class) {
 | 
						|
  // Don't do it if the class is invalid.
 | 
						|
  if (Class->isInvalidDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We need to have a definition for the class.
 | 
						|
  if (!Class->getDefinition() || Class->isDependentContext())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can't be in the middle of defining the class.
 | 
						|
  if (const RecordType *RecordTy
 | 
						|
                        = Context.getTypeDeclType(Class)->getAs<RecordType>())
 | 
						|
    return !RecordTy->isBeingDefined();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
 | 
						|
  if (!CanDeclareSpecialMemberFunction(Context, Class))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If the default constructor has not yet been declared, do so now.
 | 
						|
  if (Class->needsImplicitDefaultConstructor())
 | 
						|
    DeclareImplicitDefaultConstructor(Class);
 | 
						|
 | 
						|
  // If the copy constructor has not yet been declared, do so now.
 | 
						|
  if (!Class->hasDeclaredCopyConstructor())
 | 
						|
    DeclareImplicitCopyConstructor(Class);
 | 
						|
 | 
						|
  // If the copy assignment operator has not yet been declared, do so now.
 | 
						|
  if (!Class->hasDeclaredCopyAssignment())
 | 
						|
    DeclareImplicitCopyAssignment(Class);
 | 
						|
 | 
						|
  if (getLangOptions().CPlusPlus0x) {
 | 
						|
    // If the move constructor has not yet been declared, do so now.
 | 
						|
    if (Class->needsImplicitMoveConstructor())
 | 
						|
      DeclareImplicitMoveConstructor(Class); // might not actually do it
 | 
						|
 | 
						|
    // If the move assignment operator has not yet been declared, do so now.
 | 
						|
    if (Class->needsImplicitMoveAssignment())
 | 
						|
      DeclareImplicitMoveAssignment(Class); // might not actually do it
 | 
						|
  }
 | 
						|
 | 
						|
  // If the destructor has not yet been declared, do so now.
 | 
						|
  if (!Class->hasDeclaredDestructor())
 | 
						|
    DeclareImplicitDestructor(Class);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether this is the name of an implicitly-declared
 | 
						|
/// special member function.
 | 
						|
static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
 | 
						|
  switch (Name.getNameKind()) {
 | 
						|
  case DeclarationName::CXXConstructorName:
 | 
						|
  case DeclarationName::CXXDestructorName:
 | 
						|
    return true;
 | 
						|
 | 
						|
  case DeclarationName::CXXOperatorName:
 | 
						|
    return Name.getCXXOverloadedOperator() == OO_Equal;
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If there are any implicit member functions with the given name
 | 
						|
/// that need to be declared in the given declaration context, do so.
 | 
						|
static void DeclareImplicitMemberFunctionsWithName(Sema &S,
 | 
						|
                                                   DeclarationName Name,
 | 
						|
                                                   const DeclContext *DC) {
 | 
						|
  if (!DC)
 | 
						|
    return;
 | 
						|
 | 
						|
  switch (Name.getNameKind()) {
 | 
						|
  case DeclarationName::CXXConstructorName:
 | 
						|
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
 | 
						|
      if (Record->getDefinition() &&
 | 
						|
          CanDeclareSpecialMemberFunction(S.Context, Record)) {
 | 
						|
        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
 | 
						|
        if (Record->needsImplicitDefaultConstructor())
 | 
						|
          S.DeclareImplicitDefaultConstructor(Class);
 | 
						|
        if (!Record->hasDeclaredCopyConstructor())
 | 
						|
          S.DeclareImplicitCopyConstructor(Class);
 | 
						|
        if (S.getLangOptions().CPlusPlus0x &&
 | 
						|
            Record->needsImplicitMoveConstructor())
 | 
						|
          S.DeclareImplicitMoveConstructor(Class);
 | 
						|
      }
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXDestructorName:
 | 
						|
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
 | 
						|
      if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
 | 
						|
          CanDeclareSpecialMemberFunction(S.Context, Record))
 | 
						|
        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
 | 
						|
    break;
 | 
						|
 | 
						|
  case DeclarationName::CXXOperatorName:
 | 
						|
    if (Name.getCXXOverloadedOperator() != OO_Equal)
 | 
						|
      break;
 | 
						|
 | 
						|
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
 | 
						|
      if (Record->getDefinition() &&
 | 
						|
          CanDeclareSpecialMemberFunction(S.Context, Record)) {
 | 
						|
        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
 | 
						|
        if (!Record->hasDeclaredCopyAssignment())
 | 
						|
          S.DeclareImplicitCopyAssignment(Class);
 | 
						|
        if (S.getLangOptions().CPlusPlus0x &&
 | 
						|
            Record->needsImplicitMoveAssignment())
 | 
						|
          S.DeclareImplicitMoveAssignment(Class);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Adds all qualifying matches for a name within a decl context to the
 | 
						|
// given lookup result.  Returns true if any matches were found.
 | 
						|
static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
 | 
						|
  bool Found = false;
 | 
						|
 | 
						|
  // Lazily declare C++ special member functions.
 | 
						|
  if (S.getLangOptions().CPlusPlus)
 | 
						|
    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
 | 
						|
 | 
						|
  // Perform lookup into this declaration context.
 | 
						|
  DeclContext::lookup_const_iterator I, E;
 | 
						|
  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
 | 
						|
    NamedDecl *D = *I;
 | 
						|
    if (R.isAcceptableDecl(D)) {
 | 
						|
      R.addDecl(D);
 | 
						|
      Found = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (R.getLookupName().getNameKind()
 | 
						|
        != DeclarationName::CXXConversionFunctionName ||
 | 
						|
      R.getLookupName().getCXXNameType()->isDependentType() ||
 | 
						|
      !isa<CXXRecordDecl>(DC))
 | 
						|
    return Found;
 | 
						|
 | 
						|
  // C++ [temp.mem]p6:
 | 
						|
  //   A specialization of a conversion function template is not found by
 | 
						|
  //   name lookup. Instead, any conversion function templates visible in the
 | 
						|
  //   context of the use are considered. [...]
 | 
						|
  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
 | 
						|
  if (!Record->isDefinition())
 | 
						|
    return Found;
 | 
						|
 | 
						|
  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
 | 
						|
  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
 | 
						|
         UEnd = Unresolved->end(); U != UEnd; ++U) {
 | 
						|
    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
 | 
						|
    if (!ConvTemplate)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // When we're performing lookup for the purposes of redeclaration, just
 | 
						|
    // add the conversion function template. When we deduce template
 | 
						|
    // arguments for specializations, we'll end up unifying the return
 | 
						|
    // type of the new declaration with the type of the function template.
 | 
						|
    if (R.isForRedeclaration()) {
 | 
						|
      R.addDecl(ConvTemplate);
 | 
						|
      Found = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [temp.mem]p6:
 | 
						|
    //   [...] For each such operator, if argument deduction succeeds
 | 
						|
    //   (14.9.2.3), the resulting specialization is used as if found by
 | 
						|
    //   name lookup.
 | 
						|
    //
 | 
						|
    // When referencing a conversion function for any purpose other than
 | 
						|
    // a redeclaration (such that we'll be building an expression with the
 | 
						|
    // result), perform template argument deduction and place the
 | 
						|
    // specialization into the result set. We do this to avoid forcing all
 | 
						|
    // callers to perform special deduction for conversion functions.
 | 
						|
    TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
 | 
						|
    FunctionDecl *Specialization = 0;
 | 
						|
 | 
						|
    const FunctionProtoType *ConvProto
 | 
						|
      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
 | 
						|
    assert(ConvProto && "Nonsensical conversion function template type");
 | 
						|
 | 
						|
    // Compute the type of the function that we would expect the conversion
 | 
						|
    // function to have, if it were to match the name given.
 | 
						|
    // FIXME: Calling convention!
 | 
						|
    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
 | 
						|
    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
 | 
						|
    EPI.ExceptionSpecType = EST_None;
 | 
						|
    EPI.NumExceptions = 0;
 | 
						|
    QualType ExpectedType
 | 
						|
      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
 | 
						|
                                            0, 0, EPI);
 | 
						|
 | 
						|
    // Perform template argument deduction against the type that we would
 | 
						|
    // expect the function to have.
 | 
						|
    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
 | 
						|
                                            Specialization, Info)
 | 
						|
          == Sema::TDK_Success) {
 | 
						|
      R.addDecl(Specialization);
 | 
						|
      Found = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Found;
 | 
						|
}
 | 
						|
 | 
						|
// Performs C++ unqualified lookup into the given file context.
 | 
						|
static bool
 | 
						|
CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
 | 
						|
                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
 | 
						|
 | 
						|
  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
 | 
						|
 | 
						|
  // Perform direct name lookup into the LookupCtx.
 | 
						|
  bool Found = LookupDirect(S, R, NS);
 | 
						|
 | 
						|
  // Perform direct name lookup into the namespaces nominated by the
 | 
						|
  // using directives whose common ancestor is this namespace.
 | 
						|
  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
 | 
						|
  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
 | 
						|
 | 
						|
  for (; UI != UEnd; ++UI)
 | 
						|
    if (LookupDirect(S, R, UI->getNominatedNamespace()))
 | 
						|
      Found = true;
 | 
						|
 | 
						|
  R.resolveKind();
 | 
						|
 | 
						|
  return Found;
 | 
						|
}
 | 
						|
 | 
						|
static bool isNamespaceOrTranslationUnitScope(Scope *S) {
 | 
						|
  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
 | 
						|
    return Ctx->isFileContext();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Find the next outer declaration context from this scope. This
 | 
						|
// routine actually returns the semantic outer context, which may
 | 
						|
// differ from the lexical context (encoded directly in the Scope
 | 
						|
// stack) when we are parsing a member of a class template. In this
 | 
						|
// case, the second element of the pair will be true, to indicate that
 | 
						|
// name lookup should continue searching in this semantic context when
 | 
						|
// it leaves the current template parameter scope.
 | 
						|
static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
 | 
						|
  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
 | 
						|
  DeclContext *Lexical = 0;
 | 
						|
  for (Scope *OuterS = S->getParent(); OuterS;
 | 
						|
       OuterS = OuterS->getParent()) {
 | 
						|
    if (OuterS->getEntity()) {
 | 
						|
      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.local]p8:
 | 
						|
  //   In the definition of a member of a class template that appears
 | 
						|
  //   outside of the namespace containing the class template
 | 
						|
  //   definition, the name of a template-parameter hides the name of
 | 
						|
  //   a member of this namespace.
 | 
						|
  //
 | 
						|
  // Example:
 | 
						|
  //
 | 
						|
  //   namespace N {
 | 
						|
  //     class C { };
 | 
						|
  //
 | 
						|
  //     template<class T> class B {
 | 
						|
  //       void f(T);
 | 
						|
  //     };
 | 
						|
  //   }
 | 
						|
  //
 | 
						|
  //   template<class C> void N::B<C>::f(C) {
 | 
						|
  //     C b;  // C is the template parameter, not N::C
 | 
						|
  //   }
 | 
						|
  //
 | 
						|
  // In this example, the lexical context we return is the
 | 
						|
  // TranslationUnit, while the semantic context is the namespace N.
 | 
						|
  if (!Lexical || !DC || !S->getParent() ||
 | 
						|
      !S->getParent()->isTemplateParamScope())
 | 
						|
    return std::make_pair(Lexical, false);
 | 
						|
 | 
						|
  // Find the outermost template parameter scope.
 | 
						|
  // For the example, this is the scope for the template parameters of
 | 
						|
  // template<class C>.
 | 
						|
  Scope *OutermostTemplateScope = S->getParent();
 | 
						|
  while (OutermostTemplateScope->getParent() &&
 | 
						|
         OutermostTemplateScope->getParent()->isTemplateParamScope())
 | 
						|
    OutermostTemplateScope = OutermostTemplateScope->getParent();
 | 
						|
 | 
						|
  // Find the namespace context in which the original scope occurs. In
 | 
						|
  // the example, this is namespace N.
 | 
						|
  DeclContext *Semantic = DC;
 | 
						|
  while (!Semantic->isFileContext())
 | 
						|
    Semantic = Semantic->getParent();
 | 
						|
 | 
						|
  // Find the declaration context just outside of the template
 | 
						|
  // parameter scope. This is the context in which the template is
 | 
						|
  // being lexically declaration (a namespace context). In the
 | 
						|
  // example, this is the global scope.
 | 
						|
  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
 | 
						|
      Lexical->Encloses(Semantic))
 | 
						|
    return std::make_pair(Semantic, true);
 | 
						|
 | 
						|
  return std::make_pair(Lexical, false);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CppLookupName(LookupResult &R, Scope *S) {
 | 
						|
  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
 | 
						|
 | 
						|
  DeclarationName Name = R.getLookupName();
 | 
						|
 | 
						|
  // If this is the name of an implicitly-declared special member function,
 | 
						|
  // go through the scope stack to implicitly declare
 | 
						|
  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
 | 
						|
    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
 | 
						|
      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
 | 
						|
        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Implicitly declare member functions with the name we're looking for, if in
 | 
						|
  // fact we are in a scope where it matters.
 | 
						|
 | 
						|
  Scope *Initial = S;
 | 
						|
  IdentifierResolver::iterator
 | 
						|
    I = IdResolver.begin(Name),
 | 
						|
    IEnd = IdResolver.end();
 | 
						|
 | 
						|
  // First we lookup local scope.
 | 
						|
  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
 | 
						|
  // ...During unqualified name lookup (3.4.1), the names appear as if
 | 
						|
  // they were declared in the nearest enclosing namespace which contains
 | 
						|
  // both the using-directive and the nominated namespace.
 | 
						|
  // [Note: in this context, "contains" means "contains directly or
 | 
						|
  // indirectly".
 | 
						|
  //
 | 
						|
  // For example:
 | 
						|
  // namespace A { int i; }
 | 
						|
  // void foo() {
 | 
						|
  //   int i;
 | 
						|
  //   {
 | 
						|
  //     using namespace A;
 | 
						|
  //     ++i; // finds local 'i', A::i appears at global scope
 | 
						|
  //   }
 | 
						|
  // }
 | 
						|
  //
 | 
						|
  DeclContext *OutsideOfTemplateParamDC = 0;
 | 
						|
  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
 | 
						|
    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
 | 
						|
 | 
						|
    // Check whether the IdResolver has anything in this scope.
 | 
						|
    bool Found = false;
 | 
						|
    for (; I != IEnd && S->isDeclScope(*I); ++I) {
 | 
						|
      if (R.isAcceptableDecl(*I)) {
 | 
						|
        Found = true;
 | 
						|
        R.addDecl(*I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Found) {
 | 
						|
      R.resolveKind();
 | 
						|
      if (S->isClassScope())
 | 
						|
        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
 | 
						|
          R.setNamingClass(Record);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
 | 
						|
        S->getParent() && !S->getParent()->isTemplateParamScope()) {
 | 
						|
      // We've just searched the last template parameter scope and
 | 
						|
      // found nothing, so look into the the contexts between the
 | 
						|
      // lexical and semantic declaration contexts returned by
 | 
						|
      // findOuterContext(). This implements the name lookup behavior
 | 
						|
      // of C++ [temp.local]p8.
 | 
						|
      Ctx = OutsideOfTemplateParamDC;
 | 
						|
      OutsideOfTemplateParamDC = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Ctx) {
 | 
						|
      DeclContext *OuterCtx;
 | 
						|
      bool SearchAfterTemplateScope;
 | 
						|
      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
 | 
						|
      if (SearchAfterTemplateScope)
 | 
						|
        OutsideOfTemplateParamDC = OuterCtx;
 | 
						|
 | 
						|
      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
 | 
						|
        // We do not directly look into transparent contexts, since
 | 
						|
        // those entities will be found in the nearest enclosing
 | 
						|
        // non-transparent context.
 | 
						|
        if (Ctx->isTransparentContext())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // We do not look directly into function or method contexts,
 | 
						|
        // since all of the local variables and parameters of the
 | 
						|
        // function/method are present within the Scope.
 | 
						|
        if (Ctx->isFunctionOrMethod()) {
 | 
						|
          // If we have an Objective-C instance method, look for ivars
 | 
						|
          // in the corresponding interface.
 | 
						|
          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
 | 
						|
            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
 | 
						|
              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
 | 
						|
                ObjCInterfaceDecl *ClassDeclared;
 | 
						|
                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
 | 
						|
                                                 Name.getAsIdentifierInfo(),
 | 
						|
                                                             ClassDeclared)) {
 | 
						|
                  if (R.isAcceptableDecl(Ivar)) {
 | 
						|
                    R.addDecl(Ivar);
 | 
						|
                    R.resolveKind();
 | 
						|
                    return true;
 | 
						|
                  }
 | 
						|
                }
 | 
						|
              }
 | 
						|
          }
 | 
						|
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Perform qualified name lookup into this context.
 | 
						|
        // FIXME: In some cases, we know that every name that could be found by
 | 
						|
        // this qualified name lookup will also be on the identifier chain. For
 | 
						|
        // example, inside a class without any base classes, we never need to
 | 
						|
        // perform qualified lookup because all of the members are on top of the
 | 
						|
        // identifier chain.
 | 
						|
        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Stop if we ran out of scopes.
 | 
						|
  // FIXME:  This really, really shouldn't be happening.
 | 
						|
  if (!S) return false;
 | 
						|
 | 
						|
  // If we are looking for members, no need to look into global/namespace scope.
 | 
						|
  if (R.getLookupKind() == LookupMemberName)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Collect UsingDirectiveDecls in all scopes, and recursively all
 | 
						|
  // nominated namespaces by those using-directives.
 | 
						|
  //
 | 
						|
  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
 | 
						|
  // don't build it for each lookup!
 | 
						|
 | 
						|
  UnqualUsingDirectiveSet UDirs;
 | 
						|
  UDirs.visitScopeChain(Initial, S);
 | 
						|
  UDirs.done();
 | 
						|
 | 
						|
  // Lookup namespace scope, and global scope.
 | 
						|
  // Unqualified name lookup in C++ requires looking into scopes
 | 
						|
  // that aren't strictly lexical, and therefore we walk through the
 | 
						|
  // context as well as walking through the scopes.
 | 
						|
 | 
						|
  for (; S; S = S->getParent()) {
 | 
						|
    // Check whether the IdResolver has anything in this scope.
 | 
						|
    bool Found = false;
 | 
						|
    for (; I != IEnd && S->isDeclScope(*I); ++I) {
 | 
						|
      if (R.isAcceptableDecl(*I)) {
 | 
						|
        // We found something.  Look for anything else in our scope
 | 
						|
        // with this same name and in an acceptable identifier
 | 
						|
        // namespace, so that we can construct an overload set if we
 | 
						|
        // need to.
 | 
						|
        Found = true;
 | 
						|
        R.addDecl(*I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Found && S->isTemplateParamScope()) {
 | 
						|
      R.resolveKind();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
 | 
						|
    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
 | 
						|
        S->getParent() && !S->getParent()->isTemplateParamScope()) {
 | 
						|
      // We've just searched the last template parameter scope and
 | 
						|
      // found nothing, so look into the the contexts between the
 | 
						|
      // lexical and semantic declaration contexts returned by
 | 
						|
      // findOuterContext(). This implements the name lookup behavior
 | 
						|
      // of C++ [temp.local]p8.
 | 
						|
      Ctx = OutsideOfTemplateParamDC;
 | 
						|
      OutsideOfTemplateParamDC = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Ctx) {
 | 
						|
      DeclContext *OuterCtx;
 | 
						|
      bool SearchAfterTemplateScope;
 | 
						|
      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
 | 
						|
      if (SearchAfterTemplateScope)
 | 
						|
        OutsideOfTemplateParamDC = OuterCtx;
 | 
						|
 | 
						|
      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
 | 
						|
        // We do not directly look into transparent contexts, since
 | 
						|
        // those entities will be found in the nearest enclosing
 | 
						|
        // non-transparent context.
 | 
						|
        if (Ctx->isTransparentContext())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If we have a context, and it's not a context stashed in the
 | 
						|
        // template parameter scope for an out-of-line definition, also
 | 
						|
        // look into that context.
 | 
						|
        if (!(Found && S && S->isTemplateParamScope())) {
 | 
						|
          assert(Ctx->isFileContext() &&
 | 
						|
              "We should have been looking only at file context here already.");
 | 
						|
 | 
						|
          // Look into context considering using-directives.
 | 
						|
          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
 | 
						|
            Found = true;
 | 
						|
        }
 | 
						|
 | 
						|
        if (Found) {
 | 
						|
          R.resolveKind();
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return !R.empty();
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Perform unqualified name lookup starting from a given
 | 
						|
/// scope.
 | 
						|
///
 | 
						|
/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
 | 
						|
/// used to find names within the current scope. For example, 'x' in
 | 
						|
/// @code
 | 
						|
/// int x;
 | 
						|
/// int f() {
 | 
						|
///   return x; // unqualified name look finds 'x' in the global scope
 | 
						|
/// }
 | 
						|
/// @endcode
 | 
						|
///
 | 
						|
/// Different lookup criteria can find different names. For example, a
 | 
						|
/// particular scope can have both a struct and a function of the same
 | 
						|
/// name, and each can be found by certain lookup criteria. For more
 | 
						|
/// information about lookup criteria, see the documentation for the
 | 
						|
/// class LookupCriteria.
 | 
						|
///
 | 
						|
/// @param S        The scope from which unqualified name lookup will
 | 
						|
/// begin. If the lookup criteria permits, name lookup may also search
 | 
						|
/// in the parent scopes.
 | 
						|
///
 | 
						|
/// @param Name     The name of the entity that we are searching for.
 | 
						|
///
 | 
						|
/// @param Loc      If provided, the source location where we're performing
 | 
						|
/// name lookup. At present, this is only used to produce diagnostics when
 | 
						|
/// C library functions (like "malloc") are implicitly declared.
 | 
						|
///
 | 
						|
/// @returns The result of name lookup, which includes zero or more
 | 
						|
/// declarations and possibly additional information used to diagnose
 | 
						|
/// ambiguities.
 | 
						|
bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
 | 
						|
  DeclarationName Name = R.getLookupName();
 | 
						|
  if (!Name) return false;
 | 
						|
 | 
						|
  LookupNameKind NameKind = R.getLookupKind();
 | 
						|
 | 
						|
  if (!getLangOptions().CPlusPlus) {
 | 
						|
    // Unqualified name lookup in C/Objective-C is purely lexical, so
 | 
						|
    // search in the declarations attached to the name.
 | 
						|
    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
 | 
						|
      // Find the nearest non-transparent declaration scope.
 | 
						|
      while (!(S->getFlags() & Scope::DeclScope) ||
 | 
						|
             (S->getEntity() &&
 | 
						|
              static_cast<DeclContext *>(S->getEntity())
 | 
						|
                ->isTransparentContext()))
 | 
						|
        S = S->getParent();
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned IDNS = R.getIdentifierNamespace();
 | 
						|
 | 
						|
    // Scan up the scope chain looking for a decl that matches this
 | 
						|
    // identifier that is in the appropriate namespace.  This search
 | 
						|
    // should not take long, as shadowing of names is uncommon, and
 | 
						|
    // deep shadowing is extremely uncommon.
 | 
						|
    bool LeftStartingScope = false;
 | 
						|
 | 
						|
    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
 | 
						|
                                   IEnd = IdResolver.end();
 | 
						|
         I != IEnd; ++I)
 | 
						|
      if ((*I)->isInIdentifierNamespace(IDNS)) {
 | 
						|
        if (NameKind == LookupRedeclarationWithLinkage) {
 | 
						|
          // Determine whether this (or a previous) declaration is
 | 
						|
          // out-of-scope.
 | 
						|
          if (!LeftStartingScope && !S->isDeclScope(*I))
 | 
						|
            LeftStartingScope = true;
 | 
						|
 | 
						|
          // If we found something outside of our starting scope that
 | 
						|
          // does not have linkage, skip it.
 | 
						|
          if (LeftStartingScope && !((*I)->hasLinkage()))
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        else if (NameKind == LookupObjCImplicitSelfParam &&
 | 
						|
                 !isa<ImplicitParamDecl>(*I))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        R.addDecl(*I);
 | 
						|
 | 
						|
        if ((*I)->getAttr<OverloadableAttr>()) {
 | 
						|
          // If this declaration has the "overloadable" attribute, we
 | 
						|
          // might have a set of overloaded functions.
 | 
						|
 | 
						|
          // Figure out what scope the identifier is in.
 | 
						|
          while (!(S->getFlags() & Scope::DeclScope) ||
 | 
						|
                 !S->isDeclScope(*I))
 | 
						|
            S = S->getParent();
 | 
						|
 | 
						|
          // Find the last declaration in this scope (with the same
 | 
						|
          // name, naturally).
 | 
						|
          IdentifierResolver::iterator LastI = I;
 | 
						|
          for (++LastI; LastI != IEnd; ++LastI) {
 | 
						|
            if (!S->isDeclScope(*LastI))
 | 
						|
              break;
 | 
						|
            R.addDecl(*LastI);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        R.resolveKind();
 | 
						|
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
  } else {
 | 
						|
    // Perform C++ unqualified name lookup.
 | 
						|
    if (CppLookupName(R, S))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't find a use of this identifier, and if the identifier
 | 
						|
  // corresponds to a compiler builtin, create the decl object for the builtin
 | 
						|
  // now, injecting it into translation unit scope, and return it.
 | 
						|
  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If we didn't find a use of this identifier, the ExternalSource 
 | 
						|
  // may be able to handle the situation. 
 | 
						|
  // Note: some lookup failures are expected!
 | 
						|
  // See e.g. R.isForRedeclaration().
 | 
						|
  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Perform qualified name lookup in the namespaces nominated by
 | 
						|
/// using directives by the given context.
 | 
						|
///
 | 
						|
/// C++98 [namespace.qual]p2:
 | 
						|
///   Given X::m (where X is a user-declared namespace), or given ::m
 | 
						|
///   (where X is the global namespace), let S be the set of all
 | 
						|
///   declarations of m in X and in the transitive closure of all
 | 
						|
///   namespaces nominated by using-directives in X and its used
 | 
						|
///   namespaces, except that using-directives are ignored in any
 | 
						|
///   namespace, including X, directly containing one or more
 | 
						|
///   declarations of m. No namespace is searched more than once in
 | 
						|
///   the lookup of a name. If S is the empty set, the program is
 | 
						|
///   ill-formed. Otherwise, if S has exactly one member, or if the
 | 
						|
///   context of the reference is a using-declaration
 | 
						|
///   (namespace.udecl), S is the required set of declarations of
 | 
						|
///   m. Otherwise if the use of m is not one that allows a unique
 | 
						|
///   declaration to be chosen from S, the program is ill-formed.
 | 
						|
/// C++98 [namespace.qual]p5:
 | 
						|
///   During the lookup of a qualified namespace member name, if the
 | 
						|
///   lookup finds more than one declaration of the member, and if one
 | 
						|
///   declaration introduces a class name or enumeration name and the
 | 
						|
///   other declarations either introduce the same object, the same
 | 
						|
///   enumerator or a set of functions, the non-type name hides the
 | 
						|
///   class or enumeration name if and only if the declarations are
 | 
						|
///   from the same namespace; otherwise (the declarations are from
 | 
						|
///   different namespaces), the program is ill-formed.
 | 
						|
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
 | 
						|
                                                 DeclContext *StartDC) {
 | 
						|
  assert(StartDC->isFileContext() && "start context is not a file context");
 | 
						|
 | 
						|
  DeclContext::udir_iterator I = StartDC->using_directives_begin();
 | 
						|
  DeclContext::udir_iterator E = StartDC->using_directives_end();
 | 
						|
 | 
						|
  if (I == E) return false;
 | 
						|
 | 
						|
  // We have at least added all these contexts to the queue.
 | 
						|
  llvm::DenseSet<DeclContext*> Visited;
 | 
						|
  Visited.insert(StartDC);
 | 
						|
 | 
						|
  // We have not yet looked into these namespaces, much less added
 | 
						|
  // their "using-children" to the queue.
 | 
						|
  SmallVector<NamespaceDecl*, 8> Queue;
 | 
						|
 | 
						|
  // We have already looked into the initial namespace; seed the queue
 | 
						|
  // with its using-children.
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
 | 
						|
    if (Visited.insert(ND).second)
 | 
						|
      Queue.push_back(ND);
 | 
						|
  }
 | 
						|
 | 
						|
  // The easiest way to implement the restriction in [namespace.qual]p5
 | 
						|
  // is to check whether any of the individual results found a tag
 | 
						|
  // and, if so, to declare an ambiguity if the final result is not
 | 
						|
  // a tag.
 | 
						|
  bool FoundTag = false;
 | 
						|
  bool FoundNonTag = false;
 | 
						|
 | 
						|
  LookupResult LocalR(LookupResult::Temporary, R);
 | 
						|
 | 
						|
  bool Found = false;
 | 
						|
  while (!Queue.empty()) {
 | 
						|
    NamespaceDecl *ND = Queue.back();
 | 
						|
    Queue.pop_back();
 | 
						|
 | 
						|
    // We go through some convolutions here to avoid copying results
 | 
						|
    // between LookupResults.
 | 
						|
    bool UseLocal = !R.empty();
 | 
						|
    LookupResult &DirectR = UseLocal ? LocalR : R;
 | 
						|
    bool FoundDirect = LookupDirect(S, DirectR, ND);
 | 
						|
 | 
						|
    if (FoundDirect) {
 | 
						|
      // First do any local hiding.
 | 
						|
      DirectR.resolveKind();
 | 
						|
 | 
						|
      // If the local result is a tag, remember that.
 | 
						|
      if (DirectR.isSingleTagDecl())
 | 
						|
        FoundTag = true;
 | 
						|
      else
 | 
						|
        FoundNonTag = true;
 | 
						|
 | 
						|
      // Append the local results to the total results if necessary.
 | 
						|
      if (UseLocal) {
 | 
						|
        R.addAllDecls(LocalR);
 | 
						|
        LocalR.clear();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we find names in this namespace, ignore its using directives.
 | 
						|
    if (FoundDirect) {
 | 
						|
      Found = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
 | 
						|
      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
 | 
						|
      if (Visited.insert(Nom).second)
 | 
						|
        Queue.push_back(Nom);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Found) {
 | 
						|
    if (FoundTag && FoundNonTag)
 | 
						|
      R.setAmbiguousQualifiedTagHiding();
 | 
						|
    else
 | 
						|
      R.resolveKind();
 | 
						|
  }
 | 
						|
 | 
						|
  return Found;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Callback that looks for any member of a class with the given name.
 | 
						|
static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
 | 
						|
                            CXXBasePath &Path,
 | 
						|
                            void *Name) {
 | 
						|
  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
 | 
						|
 | 
						|
  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
 | 
						|
  Path.Decls = BaseRecord->lookup(N);
 | 
						|
  return Path.Decls.first != Path.Decls.second;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given set of member declarations contains only
 | 
						|
/// static members, nested types, and enumerators.
 | 
						|
template<typename InputIterator>
 | 
						|
static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
 | 
						|
  Decl *D = (*First)->getUnderlyingDecl();
 | 
						|
  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (isa<CXXMethodDecl>(D)) {
 | 
						|
    // Determine whether all of the methods are static.
 | 
						|
    bool AllMethodsAreStatic = true;
 | 
						|
    for(; First != Last; ++First) {
 | 
						|
      D = (*First)->getUnderlyingDecl();
 | 
						|
 | 
						|
      if (!isa<CXXMethodDecl>(D)) {
 | 
						|
        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!cast<CXXMethodDecl>(D)->isStatic()) {
 | 
						|
        AllMethodsAreStatic = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (AllMethodsAreStatic)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform qualified name lookup into a given context.
 | 
						|
///
 | 
						|
/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
 | 
						|
/// names when the context of those names is explicit specified, e.g.,
 | 
						|
/// "std::vector" or "x->member", or as part of unqualified name lookup.
 | 
						|
///
 | 
						|
/// Different lookup criteria can find different names. For example, a
 | 
						|
/// particular scope can have both a struct and a function of the same
 | 
						|
/// name, and each can be found by certain lookup criteria. For more
 | 
						|
/// information about lookup criteria, see the documentation for the
 | 
						|
/// class LookupCriteria.
 | 
						|
///
 | 
						|
/// \param R captures both the lookup criteria and any lookup results found.
 | 
						|
///
 | 
						|
/// \param LookupCtx The context in which qualified name lookup will
 | 
						|
/// search. If the lookup criteria permits, name lookup may also search
 | 
						|
/// in the parent contexts or (for C++ classes) base classes.
 | 
						|
///
 | 
						|
/// \param InUnqualifiedLookup true if this is qualified name lookup that
 | 
						|
/// occurs as part of unqualified name lookup.
 | 
						|
///
 | 
						|
/// \returns true if lookup succeeded, false if it failed.
 | 
						|
bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
 | 
						|
                               bool InUnqualifiedLookup) {
 | 
						|
  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
 | 
						|
 | 
						|
  if (!R.getLookupName())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that the declaration context is complete.
 | 
						|
  assert((!isa<TagDecl>(LookupCtx) ||
 | 
						|
          LookupCtx->isDependentContext() ||
 | 
						|
          cast<TagDecl>(LookupCtx)->isDefinition() ||
 | 
						|
          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
 | 
						|
            ->isBeingDefined()) &&
 | 
						|
         "Declaration context must already be complete!");
 | 
						|
 | 
						|
  // Perform qualified name lookup into the LookupCtx.
 | 
						|
  if (LookupDirect(*this, R, LookupCtx)) {
 | 
						|
    R.resolveKind();
 | 
						|
    if (isa<CXXRecordDecl>(LookupCtx))
 | 
						|
      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't descend into implied contexts for redeclarations.
 | 
						|
  // C++98 [namespace.qual]p6:
 | 
						|
  //   In a declaration for a namespace member in which the
 | 
						|
  //   declarator-id is a qualified-id, given that the qualified-id
 | 
						|
  //   for the namespace member has the form
 | 
						|
  //     nested-name-specifier unqualified-id
 | 
						|
  //   the unqualified-id shall name a member of the namespace
 | 
						|
  //   designated by the nested-name-specifier.
 | 
						|
  // See also [class.mfct]p5 and [class.static.data]p2.
 | 
						|
  if (R.isForRedeclaration())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is a namespace, look it up in the implied namespaces.
 | 
						|
  if (LookupCtx->isFileContext())
 | 
						|
    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
 | 
						|
 | 
						|
  // If this isn't a C++ class, we aren't allowed to look into base
 | 
						|
  // classes, we're done.
 | 
						|
  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
 | 
						|
  if (!LookupRec || !LookupRec->getDefinition())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we're performing qualified name lookup into a dependent class,
 | 
						|
  // then we are actually looking into a current instantiation. If we have any
 | 
						|
  // dependent base classes, then we either have to delay lookup until
 | 
						|
  // template instantiation time (at which point all bases will be available)
 | 
						|
  // or we have to fail.
 | 
						|
  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
 | 
						|
      LookupRec->hasAnyDependentBases()) {
 | 
						|
    R.setNotFoundInCurrentInstantiation();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform lookup into our base classes.
 | 
						|
  CXXBasePaths Paths;
 | 
						|
  Paths.setOrigin(LookupRec);
 | 
						|
 | 
						|
  // Look for this member in our base classes
 | 
						|
  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
 | 
						|
  switch (R.getLookupKind()) {
 | 
						|
    case LookupObjCImplicitSelfParam:
 | 
						|
    case LookupOrdinaryName:
 | 
						|
    case LookupMemberName:
 | 
						|
    case LookupRedeclarationWithLinkage:
 | 
						|
      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
 | 
						|
      break;
 | 
						|
 | 
						|
    case LookupTagName:
 | 
						|
      BaseCallback = &CXXRecordDecl::FindTagMember;
 | 
						|
      break;
 | 
						|
 | 
						|
    case LookupAnyName:
 | 
						|
      BaseCallback = &LookupAnyMember;
 | 
						|
      break;
 | 
						|
 | 
						|
    case LookupUsingDeclName:
 | 
						|
      // This lookup is for redeclarations only.
 | 
						|
 | 
						|
    case LookupOperatorName:
 | 
						|
    case LookupNamespaceName:
 | 
						|
    case LookupObjCProtocolName:
 | 
						|
    case LookupLabel:
 | 
						|
      // These lookups will never find a member in a C++ class (or base class).
 | 
						|
      return false;
 | 
						|
 | 
						|
    case LookupNestedNameSpecifierName:
 | 
						|
      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!LookupRec->lookupInBases(BaseCallback,
 | 
						|
                                R.getLookupName().getAsOpaquePtr(), Paths))
 | 
						|
    return false;
 | 
						|
 | 
						|
  R.setNamingClass(LookupRec);
 | 
						|
 | 
						|
  // C++ [class.member.lookup]p2:
 | 
						|
  //   [...] If the resulting set of declarations are not all from
 | 
						|
  //   sub-objects of the same type, or the set has a nonstatic member
 | 
						|
  //   and includes members from distinct sub-objects, there is an
 | 
						|
  //   ambiguity and the program is ill-formed. Otherwise that set is
 | 
						|
  //   the result of the lookup.
 | 
						|
  QualType SubobjectType;
 | 
						|
  int SubobjectNumber = 0;
 | 
						|
  AccessSpecifier SubobjectAccess = AS_none;
 | 
						|
 | 
						|
  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
 | 
						|
       Path != PathEnd; ++Path) {
 | 
						|
    const CXXBasePathElement &PathElement = Path->back();
 | 
						|
 | 
						|
    // Pick the best (i.e. most permissive i.e. numerically lowest) access
 | 
						|
    // across all paths.
 | 
						|
    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
 | 
						|
 | 
						|
    // Determine whether we're looking at a distinct sub-object or not.
 | 
						|
    if (SubobjectType.isNull()) {
 | 
						|
      // This is the first subobject we've looked at. Record its type.
 | 
						|
      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
 | 
						|
      SubobjectNumber = PathElement.SubobjectNumber;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SubobjectType
 | 
						|
                 != Context.getCanonicalType(PathElement.Base->getType())) {
 | 
						|
      // We found members of the given name in two subobjects of
 | 
						|
      // different types. If the declaration sets aren't the same, this
 | 
						|
      // this lookup is ambiguous.
 | 
						|
      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
 | 
						|
        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
 | 
						|
        DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
 | 
						|
        DeclContext::lookup_iterator CurrentD = Path->Decls.first;
 | 
						|
 | 
						|
        while (FirstD != FirstPath->Decls.second &&
 | 
						|
               CurrentD != Path->Decls.second) {
 | 
						|
         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
 | 
						|
             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
 | 
						|
           break;
 | 
						|
 | 
						|
          ++FirstD;
 | 
						|
          ++CurrentD;
 | 
						|
        }
 | 
						|
 | 
						|
        if (FirstD == FirstPath->Decls.second &&
 | 
						|
            CurrentD == Path->Decls.second)
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      R.setAmbiguousBaseSubobjectTypes(Paths);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SubobjectNumber != PathElement.SubobjectNumber) {
 | 
						|
      // We have a different subobject of the same type.
 | 
						|
 | 
						|
      // C++ [class.member.lookup]p5:
 | 
						|
      //   A static member, a nested type or an enumerator defined in
 | 
						|
      //   a base class T can unambiguously be found even if an object
 | 
						|
      //   has more than one base class subobject of type T.
 | 
						|
      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We have found a nonstatic member name in multiple, distinct
 | 
						|
      // subobjects. Name lookup is ambiguous.
 | 
						|
      R.setAmbiguousBaseSubobjects(Paths);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Lookup in a base class succeeded; return these results.
 | 
						|
 | 
						|
  DeclContext::lookup_iterator I, E;
 | 
						|
  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
 | 
						|
    NamedDecl *D = *I;
 | 
						|
    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
 | 
						|
                                                    D->getAccess());
 | 
						|
    R.addDecl(D, AS);
 | 
						|
  }
 | 
						|
  R.resolveKind();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Performs name lookup for a name that was parsed in the
 | 
						|
/// source code, and may contain a C++ scope specifier.
 | 
						|
///
 | 
						|
/// This routine is a convenience routine meant to be called from
 | 
						|
/// contexts that receive a name and an optional C++ scope specifier
 | 
						|
/// (e.g., "N::M::x"). It will then perform either qualified or
 | 
						|
/// unqualified name lookup (with LookupQualifiedName or LookupName,
 | 
						|
/// respectively) on the given name and return those results.
 | 
						|
///
 | 
						|
/// @param S        The scope from which unqualified name lookup will
 | 
						|
/// begin.
 | 
						|
///
 | 
						|
/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
 | 
						|
///
 | 
						|
/// @param EnteringContext Indicates whether we are going to enter the
 | 
						|
/// context of the scope-specifier SS (if present).
 | 
						|
///
 | 
						|
/// @returns True if any decls were found (but possibly ambiguous)
 | 
						|
bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
 | 
						|
                            bool AllowBuiltinCreation, bool EnteringContext) {
 | 
						|
  if (SS && SS->isInvalid()) {
 | 
						|
    // When the scope specifier is invalid, don't even look for
 | 
						|
    // anything.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SS && SS->isSet()) {
 | 
						|
    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
 | 
						|
      // We have resolved the scope specifier to a particular declaration
 | 
						|
      // contex, and will perform name lookup in that context.
 | 
						|
      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
 | 
						|
        return false;
 | 
						|
 | 
						|
      R.setContextRange(SS->getRange());
 | 
						|
 | 
						|
      return LookupQualifiedName(R, DC);
 | 
						|
    }
 | 
						|
 | 
						|
    // We could not resolve the scope specified to a specific declaration
 | 
						|
    // context, which means that SS refers to an unknown specialization.
 | 
						|
    // Name lookup can't find anything in this case.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform unqualified name lookup starting in the given scope.
 | 
						|
  return LookupName(R, S, AllowBuiltinCreation);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// @brief Produce a diagnostic describing the ambiguity that resulted
 | 
						|
/// from name lookup.
 | 
						|
///
 | 
						|
/// @param Result       The ambiguous name lookup result.
 | 
						|
///
 | 
						|
/// @param Name         The name of the entity that name lookup was
 | 
						|
/// searching for.
 | 
						|
///
 | 
						|
/// @param NameLoc      The location of the name within the source code.
 | 
						|
///
 | 
						|
/// @param LookupRange  A source range that provides more
 | 
						|
/// source-location information concerning the lookup itself. For
 | 
						|
/// example, this range might highlight a nested-name-specifier that
 | 
						|
/// precedes the name.
 | 
						|
///
 | 
						|
/// @returns true
 | 
						|
bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
 | 
						|
  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
 | 
						|
 | 
						|
  DeclarationName Name = Result.getLookupName();
 | 
						|
  SourceLocation NameLoc = Result.getNameLoc();
 | 
						|
  SourceRange LookupRange = Result.getContextRange();
 | 
						|
 | 
						|
  switch (Result.getAmbiguityKind()) {
 | 
						|
  case LookupResult::AmbiguousBaseSubobjects: {
 | 
						|
    CXXBasePaths *Paths = Result.getBasePaths();
 | 
						|
    QualType SubobjectType = Paths->front().back().Base->getType();
 | 
						|
    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
 | 
						|
      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
 | 
						|
      << LookupRange;
 | 
						|
 | 
						|
    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
 | 
						|
    while (isa<CXXMethodDecl>(*Found) &&
 | 
						|
           cast<CXXMethodDecl>(*Found)->isStatic())
 | 
						|
      ++Found;
 | 
						|
 | 
						|
    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case LookupResult::AmbiguousBaseSubobjectTypes: {
 | 
						|
    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
 | 
						|
      << Name << LookupRange;
 | 
						|
 | 
						|
    CXXBasePaths *Paths = Result.getBasePaths();
 | 
						|
    std::set<Decl *> DeclsPrinted;
 | 
						|
    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
 | 
						|
                                      PathEnd = Paths->end();
 | 
						|
         Path != PathEnd; ++Path) {
 | 
						|
      Decl *D = *Path->Decls.first;
 | 
						|
      if (DeclsPrinted.insert(D).second)
 | 
						|
        Diag(D->getLocation(), diag::note_ambiguous_member_found);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case LookupResult::AmbiguousTagHiding: {
 | 
						|
    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
 | 
						|
 | 
						|
    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
 | 
						|
 | 
						|
    LookupResult::iterator DI, DE = Result.end();
 | 
						|
    for (DI = Result.begin(); DI != DE; ++DI)
 | 
						|
      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
 | 
						|
        TagDecls.insert(TD);
 | 
						|
        Diag(TD->getLocation(), diag::note_hidden_tag);
 | 
						|
      }
 | 
						|
 | 
						|
    for (DI = Result.begin(); DI != DE; ++DI)
 | 
						|
      if (!isa<TagDecl>(*DI))
 | 
						|
        Diag((*DI)->getLocation(), diag::note_hiding_object);
 | 
						|
 | 
						|
    // For recovery purposes, go ahead and implement the hiding.
 | 
						|
    LookupResult::Filter F = Result.makeFilter();
 | 
						|
    while (F.hasNext()) {
 | 
						|
      if (TagDecls.count(F.next()))
 | 
						|
        F.erase();
 | 
						|
    }
 | 
						|
    F.done();
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case LookupResult::AmbiguousReference: {
 | 
						|
    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
 | 
						|
 | 
						|
    LookupResult::iterator DI = Result.begin(), DE = Result.end();
 | 
						|
    for (; DI != DE; ++DI)
 | 
						|
      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown ambiguity kind");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct AssociatedLookup {
 | 
						|
    AssociatedLookup(Sema &S,
 | 
						|
                     Sema::AssociatedNamespaceSet &Namespaces,
 | 
						|
                     Sema::AssociatedClassSet &Classes)
 | 
						|
      : S(S), Namespaces(Namespaces), Classes(Classes) {
 | 
						|
    }
 | 
						|
 | 
						|
    Sema &S;
 | 
						|
    Sema::AssociatedNamespaceSet &Namespaces;
 | 
						|
    Sema::AssociatedClassSet &Classes;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
 | 
						|
 | 
						|
static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
 | 
						|
                                      DeclContext *Ctx) {
 | 
						|
  // Add the associated namespace for this class.
 | 
						|
 | 
						|
  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
 | 
						|
  // be a locally scoped record.
 | 
						|
 | 
						|
  // We skip out of inline namespaces. The innermost non-inline namespace
 | 
						|
  // contains all names of all its nested inline namespaces anyway, so we can
 | 
						|
  // replace the entire inline namespace tree with its root.
 | 
						|
  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
 | 
						|
         Ctx->isInlineNamespace())
 | 
						|
    Ctx = Ctx->getParent();
 | 
						|
 | 
						|
  if (Ctx->isFileContext())
 | 
						|
    Namespaces.insert(Ctx->getPrimaryContext());
 | 
						|
}
 | 
						|
 | 
						|
// \brief Add the associated classes and namespaces for argument-dependent
 | 
						|
// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
 | 
						|
static void
 | 
						|
addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
 | 
						|
                                  const TemplateArgument &Arg) {
 | 
						|
  // C++ [basic.lookup.koenig]p2, last bullet:
 | 
						|
  //   -- [...] ;
 | 
						|
  switch (Arg.getKind()) {
 | 
						|
    case TemplateArgument::Null:
 | 
						|
      break;
 | 
						|
 | 
						|
    case TemplateArgument::Type:
 | 
						|
      // [...] the namespaces and classes associated with the types of the
 | 
						|
      // template arguments provided for template type parameters (excluding
 | 
						|
      // template template parameters)
 | 
						|
      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
 | 
						|
      break;
 | 
						|
 | 
						|
    case TemplateArgument::Template:
 | 
						|
    case TemplateArgument::TemplateExpansion: {
 | 
						|
      // [...] the namespaces in which any template template arguments are
 | 
						|
      // defined; and the classes in which any member templates used as
 | 
						|
      // template template arguments are defined.
 | 
						|
      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
 | 
						|
      if (ClassTemplateDecl *ClassTemplate
 | 
						|
                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
 | 
						|
        DeclContext *Ctx = ClassTemplate->getDeclContext();
 | 
						|
        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | 
						|
          Result.Classes.insert(EnclosingClass);
 | 
						|
        // Add the associated namespace for this class.
 | 
						|
        CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case TemplateArgument::Declaration:
 | 
						|
    case TemplateArgument::Integral:
 | 
						|
    case TemplateArgument::Expression:
 | 
						|
      // [Note: non-type template arguments do not contribute to the set of
 | 
						|
      //  associated namespaces. ]
 | 
						|
      break;
 | 
						|
 | 
						|
    case TemplateArgument::Pack:
 | 
						|
      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
 | 
						|
                                        PEnd = Arg.pack_end();
 | 
						|
           P != PEnd; ++P)
 | 
						|
        addAssociatedClassesAndNamespaces(Result, *P);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// \brief Add the associated classes and namespaces for
 | 
						|
// argument-dependent lookup with an argument of class type
 | 
						|
// (C++ [basic.lookup.koenig]p2).
 | 
						|
static void
 | 
						|
addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
 | 
						|
                                  CXXRecordDecl *Class) {
 | 
						|
 | 
						|
  // Just silently ignore anything whose name is __va_list_tag.
 | 
						|
  if (Class->getDeclName() == Result.S.VAListTagName)
 | 
						|
    return;
 | 
						|
 | 
						|
  // C++ [basic.lookup.koenig]p2:
 | 
						|
  //   [...]
 | 
						|
  //     -- If T is a class type (including unions), its associated
 | 
						|
  //        classes are: the class itself; the class of which it is a
 | 
						|
  //        member, if any; and its direct and indirect base
 | 
						|
  //        classes. Its associated namespaces are the namespaces in
 | 
						|
  //        which its associated classes are defined.
 | 
						|
 | 
						|
  // Add the class of which it is a member, if any.
 | 
						|
  DeclContext *Ctx = Class->getDeclContext();
 | 
						|
  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | 
						|
    Result.Classes.insert(EnclosingClass);
 | 
						|
  // Add the associated namespace for this class.
 | 
						|
  CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | 
						|
 | 
						|
  // Add the class itself. If we've already seen this class, we don't
 | 
						|
  // need to visit base classes.
 | 
						|
  if (!Result.Classes.insert(Class))
 | 
						|
    return;
 | 
						|
 | 
						|
  // -- If T is a template-id, its associated namespaces and classes are
 | 
						|
  //    the namespace in which the template is defined; for member
 | 
						|
  //    templates, the member template's class; the namespaces and classes
 | 
						|
  //    associated with the types of the template arguments provided for
 | 
						|
  //    template type parameters (excluding template template parameters); the
 | 
						|
  //    namespaces in which any template template arguments are defined; and
 | 
						|
  //    the classes in which any member templates used as template template
 | 
						|
  //    arguments are defined. [Note: non-type template arguments do not
 | 
						|
  //    contribute to the set of associated namespaces. ]
 | 
						|
  if (ClassTemplateSpecializationDecl *Spec
 | 
						|
        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
 | 
						|
    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
 | 
						|
    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | 
						|
      Result.Classes.insert(EnclosingClass);
 | 
						|
    // Add the associated namespace for this class.
 | 
						|
    CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | 
						|
 | 
						|
    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
 | 
						|
    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Only recurse into base classes for complete types.
 | 
						|
  if (!Class->hasDefinition()) {
 | 
						|
    // FIXME: we might need to instantiate templates here
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add direct and indirect base classes along with their associated
 | 
						|
  // namespaces.
 | 
						|
  SmallVector<CXXRecordDecl *, 32> Bases;
 | 
						|
  Bases.push_back(Class);
 | 
						|
  while (!Bases.empty()) {
 | 
						|
    // Pop this class off the stack.
 | 
						|
    Class = Bases.back();
 | 
						|
    Bases.pop_back();
 | 
						|
 | 
						|
    // Visit the base classes.
 | 
						|
    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
 | 
						|
                                         BaseEnd = Class->bases_end();
 | 
						|
         Base != BaseEnd; ++Base) {
 | 
						|
      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
 | 
						|
      // In dependent contexts, we do ADL twice, and the first time around,
 | 
						|
      // the base type might be a dependent TemplateSpecializationType, or a
 | 
						|
      // TemplateTypeParmType. If that happens, simply ignore it.
 | 
						|
      // FIXME: If we want to support export, we probably need to add the
 | 
						|
      // namespace of the template in a TemplateSpecializationType, or even
 | 
						|
      // the classes and namespaces of known non-dependent arguments.
 | 
						|
      if (!BaseType)
 | 
						|
        continue;
 | 
						|
      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | 
						|
      if (Result.Classes.insert(BaseDecl)) {
 | 
						|
        // Find the associated namespace for this base class.
 | 
						|
        DeclContext *BaseCtx = BaseDecl->getDeclContext();
 | 
						|
        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
 | 
						|
 | 
						|
        // Make sure we visit the bases of this base class.
 | 
						|
        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
 | 
						|
          Bases.push_back(BaseDecl);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// \brief Add the associated classes and namespaces for
 | 
						|
// argument-dependent lookup with an argument of type T
 | 
						|
// (C++ [basic.lookup.koenig]p2).
 | 
						|
static void
 | 
						|
addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
 | 
						|
  // C++ [basic.lookup.koenig]p2:
 | 
						|
  //
 | 
						|
  //   For each argument type T in the function call, there is a set
 | 
						|
  //   of zero or more associated namespaces and a set of zero or more
 | 
						|
  //   associated classes to be considered. The sets of namespaces and
 | 
						|
  //   classes is determined entirely by the types of the function
 | 
						|
  //   arguments (and the namespace of any template template
 | 
						|
  //   argument). Typedef names and using-declarations used to specify
 | 
						|
  //   the types do not contribute to this set. The sets of namespaces
 | 
						|
  //   and classes are determined in the following way:
 | 
						|
 | 
						|
  SmallVector<const Type *, 16> Queue;
 | 
						|
  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    switch (T->getTypeClass()) {
 | 
						|
 | 
						|
#define TYPE(Class, Base)
 | 
						|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | 
						|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#define ABSTRACT_TYPE(Class, Base)
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
      // T is canonical.  We can also ignore dependent types because
 | 
						|
      // we don't need to do ADL at the definition point, but if we
 | 
						|
      // wanted to implement template export (or if we find some other
 | 
						|
      // use for associated classes and namespaces...) this would be
 | 
						|
      // wrong.
 | 
						|
      break;
 | 
						|
 | 
						|
    //    -- If T is a pointer to U or an array of U, its associated
 | 
						|
    //       namespaces and classes are those associated with U.
 | 
						|
    case Type::Pointer:
 | 
						|
      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
 | 
						|
      continue;
 | 
						|
    case Type::ConstantArray:
 | 
						|
    case Type::IncompleteArray:
 | 
						|
    case Type::VariableArray:
 | 
						|
      T = cast<ArrayType>(T)->getElementType().getTypePtr();
 | 
						|
      continue;
 | 
						|
 | 
						|
    //     -- If T is a fundamental type, its associated sets of
 | 
						|
    //        namespaces and classes are both empty.
 | 
						|
    case Type::Builtin:
 | 
						|
      break;
 | 
						|
 | 
						|
    //     -- If T is a class type (including unions), its associated
 | 
						|
    //        classes are: the class itself; the class of which it is a
 | 
						|
    //        member, if any; and its direct and indirect base
 | 
						|
    //        classes. Its associated namespaces are the namespaces in
 | 
						|
    //        which its associated classes are defined.
 | 
						|
    case Type::Record: {
 | 
						|
      CXXRecordDecl *Class
 | 
						|
        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
 | 
						|
      addAssociatedClassesAndNamespaces(Result, Class);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    //     -- If T is an enumeration type, its associated namespace is
 | 
						|
    //        the namespace in which it is defined. If it is class
 | 
						|
    //        member, its associated class is the member's class; else
 | 
						|
    //        it has no associated class.
 | 
						|
    case Type::Enum: {
 | 
						|
      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
 | 
						|
 | 
						|
      DeclContext *Ctx = Enum->getDeclContext();
 | 
						|
      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | 
						|
        Result.Classes.insert(EnclosingClass);
 | 
						|
 | 
						|
      // Add the associated namespace for this class.
 | 
						|
      CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    //     -- If T is a function type, its associated namespaces and
 | 
						|
    //        classes are those associated with the function parameter
 | 
						|
    //        types and those associated with the return type.
 | 
						|
    case Type::FunctionProto: {
 | 
						|
      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
 | 
						|
      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
 | 
						|
                                             ArgEnd = Proto->arg_type_end();
 | 
						|
             Arg != ArgEnd; ++Arg)
 | 
						|
        Queue.push_back(Arg->getTypePtr());
 | 
						|
      // fallthrough
 | 
						|
    }
 | 
						|
    case Type::FunctionNoProto: {
 | 
						|
      const FunctionType *FnType = cast<FunctionType>(T);
 | 
						|
      T = FnType->getResultType().getTypePtr();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    //     -- If T is a pointer to a member function of a class X, its
 | 
						|
    //        associated namespaces and classes are those associated
 | 
						|
    //        with the function parameter types and return type,
 | 
						|
    //        together with those associated with X.
 | 
						|
    //
 | 
						|
    //     -- If T is a pointer to a data member of class X, its
 | 
						|
    //        associated namespaces and classes are those associated
 | 
						|
    //        with the member type together with those associated with
 | 
						|
    //        X.
 | 
						|
    case Type::MemberPointer: {
 | 
						|
      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
 | 
						|
 | 
						|
      // Queue up the class type into which this points.
 | 
						|
      Queue.push_back(MemberPtr->getClass());
 | 
						|
 | 
						|
      // And directly continue with the pointee type.
 | 
						|
      T = MemberPtr->getPointeeType().getTypePtr();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // As an extension, treat this like a normal pointer.
 | 
						|
    case Type::BlockPointer:
 | 
						|
      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
 | 
						|
      continue;
 | 
						|
 | 
						|
    // References aren't covered by the standard, but that's such an
 | 
						|
    // obvious defect that we cover them anyway.
 | 
						|
    case Type::LValueReference:
 | 
						|
    case Type::RValueReference:
 | 
						|
      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
 | 
						|
      continue;
 | 
						|
 | 
						|
    // These are fundamental types.
 | 
						|
    case Type::Vector:
 | 
						|
    case Type::ExtVector:
 | 
						|
    case Type::Complex:
 | 
						|
      break;
 | 
						|
 | 
						|
    // If T is an Objective-C object or interface type, or a pointer to an 
 | 
						|
    // object or interface type, the associated namespace is the global
 | 
						|
    // namespace.
 | 
						|
    case Type::ObjCObject:
 | 
						|
    case Type::ObjCInterface:
 | 
						|
    case Type::ObjCObjectPointer:
 | 
						|
      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Queue.empty()) break;
 | 
						|
    T = Queue.back();
 | 
						|
    Queue.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find the associated classes and namespaces for
 | 
						|
/// argument-dependent lookup for a call with the given set of
 | 
						|
/// arguments.
 | 
						|
///
 | 
						|
/// This routine computes the sets of associated classes and associated
 | 
						|
/// namespaces searched by argument-dependent lookup
 | 
						|
/// (C++ [basic.lookup.argdep]) for a given set of arguments.
 | 
						|
void
 | 
						|
Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
 | 
						|
                                 AssociatedNamespaceSet &AssociatedNamespaces,
 | 
						|
                                 AssociatedClassSet &AssociatedClasses) {
 | 
						|
  AssociatedNamespaces.clear();
 | 
						|
  AssociatedClasses.clear();
 | 
						|
 | 
						|
  AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
 | 
						|
 | 
						|
  // C++ [basic.lookup.koenig]p2:
 | 
						|
  //   For each argument type T in the function call, there is a set
 | 
						|
  //   of zero or more associated namespaces and a set of zero or more
 | 
						|
  //   associated classes to be considered. The sets of namespaces and
 | 
						|
  //   classes is determined entirely by the types of the function
 | 
						|
  //   arguments (and the namespace of any template template
 | 
						|
  //   argument).
 | 
						|
  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
 | 
						|
    Expr *Arg = Args[ArgIdx];
 | 
						|
 | 
						|
    if (Arg->getType() != Context.OverloadTy) {
 | 
						|
      addAssociatedClassesAndNamespaces(Result, Arg->getType());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // [...] In addition, if the argument is the name or address of a
 | 
						|
    // set of overloaded functions and/or function templates, its
 | 
						|
    // associated classes and namespaces are the union of those
 | 
						|
    // associated with each of the members of the set: the namespace
 | 
						|
    // in which the function or function template is defined and the
 | 
						|
    // classes and namespaces associated with its (non-dependent)
 | 
						|
    // parameter types and return type.
 | 
						|
    Arg = Arg->IgnoreParens();
 | 
						|
    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
 | 
						|
      if (unaryOp->getOpcode() == UO_AddrOf)
 | 
						|
        Arg = unaryOp->getSubExpr();
 | 
						|
 | 
						|
    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
 | 
						|
    if (!ULE) continue;
 | 
						|
 | 
						|
    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
 | 
						|
           I != E; ++I) {
 | 
						|
      // Look through any using declarations to find the underlying function.
 | 
						|
      NamedDecl *Fn = (*I)->getUnderlyingDecl();
 | 
						|
 | 
						|
      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
 | 
						|
      if (!FDecl)
 | 
						|
        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
 | 
						|
 | 
						|
      // Add the classes and namespaces associated with the parameter
 | 
						|
      // types and return type of this function.
 | 
						|
      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
 | 
						|
/// an acceptable non-member overloaded operator for a call whose
 | 
						|
/// arguments have types T1 (and, if non-empty, T2). This routine
 | 
						|
/// implements the check in C++ [over.match.oper]p3b2 concerning
 | 
						|
/// enumeration types.
 | 
						|
static bool
 | 
						|
IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
 | 
						|
                                       QualType T1, QualType T2,
 | 
						|
                                       ASTContext &Context) {
 | 
						|
  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
 | 
						|
  if (Proto->getNumArgs() < 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (T1->isEnumeralType()) {
 | 
						|
    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
 | 
						|
    if (Context.hasSameUnqualifiedType(T1, ArgType))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Proto->getNumArgs() < 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!T2.isNull() && T2->isEnumeralType()) {
 | 
						|
    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
 | 
						|
    if (Context.hasSameUnqualifiedType(T2, ArgType))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
 | 
						|
                                  SourceLocation Loc,
 | 
						|
                                  LookupNameKind NameKind,
 | 
						|
                                  RedeclarationKind Redecl) {
 | 
						|
  LookupResult R(*this, Name, Loc, NameKind, Redecl);
 | 
						|
  LookupName(R, S);
 | 
						|
  return R.getAsSingle<NamedDecl>();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find the protocol with the given name, if any.
 | 
						|
ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
 | 
						|
                                       SourceLocation IdLoc) {
 | 
						|
  Decl *D = LookupSingleName(TUScope, II, IdLoc,
 | 
						|
                             LookupObjCProtocolName);
 | 
						|
  return cast_or_null<ObjCProtocolDecl>(D);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
 | 
						|
                                        QualType T1, QualType T2,
 | 
						|
                                        UnresolvedSetImpl &Functions) {
 | 
						|
  // C++ [over.match.oper]p3:
 | 
						|
  //     -- The set of non-member candidates is the result of the
 | 
						|
  //        unqualified lookup of operator@ in the context of the
 | 
						|
  //        expression according to the usual rules for name lookup in
 | 
						|
  //        unqualified function calls (3.4.2) except that all member
 | 
						|
  //        functions are ignored. However, if no operand has a class
 | 
						|
  //        type, only those non-member functions in the lookup set
 | 
						|
  //        that have a first parameter of type T1 or "reference to
 | 
						|
  //        (possibly cv-qualified) T1", when T1 is an enumeration
 | 
						|
  //        type, or (if there is a right operand) a second parameter
 | 
						|
  //        of type T2 or "reference to (possibly cv-qualified) T2",
 | 
						|
  //        when T2 is an enumeration type, are candidate functions.
 | 
						|
  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | 
						|
  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
 | 
						|
  LookupName(Operators, S);
 | 
						|
 | 
						|
  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
 | 
						|
 | 
						|
  if (Operators.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
 | 
						|
       Op != OpEnd; ++Op) {
 | 
						|
    NamedDecl *Found = (*Op)->getUnderlyingDecl();
 | 
						|
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
 | 
						|
      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
 | 
						|
        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
 | 
						|
    } else if (FunctionTemplateDecl *FunTmpl
 | 
						|
                 = dyn_cast<FunctionTemplateDecl>(Found)) {
 | 
						|
      // FIXME: friend operators?
 | 
						|
      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
 | 
						|
      // later?
 | 
						|
      if (!FunTmpl->getDeclContext()->isRecord())
 | 
						|
        Functions.addDecl(*Op, Op.getAccess());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
 | 
						|
                                                            CXXSpecialMember SM,
 | 
						|
                                                            bool ConstArg,
 | 
						|
                                                            bool VolatileArg,
 | 
						|
                                                            bool RValueThis,
 | 
						|
                                                            bool ConstThis,
 | 
						|
                                                            bool VolatileThis) {
 | 
						|
  RD = RD->getDefinition();
 | 
						|
  assert((RD && !RD->isBeingDefined()) &&
 | 
						|
         "doing special member lookup into record that isn't fully complete");
 | 
						|
  if (RValueThis || ConstThis || VolatileThis)
 | 
						|
    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
 | 
						|
           "constructors and destructors always have unqualified lvalue this");
 | 
						|
  if (ConstArg || VolatileArg)
 | 
						|
    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
 | 
						|
           "parameter-less special members can't have qualified arguments");
 | 
						|
 | 
						|
  llvm::FoldingSetNodeID ID;
 | 
						|
  ID.AddPointer(RD);
 | 
						|
  ID.AddInteger(SM);
 | 
						|
  ID.AddInteger(ConstArg);
 | 
						|
  ID.AddInteger(VolatileArg);
 | 
						|
  ID.AddInteger(RValueThis);
 | 
						|
  ID.AddInteger(ConstThis);
 | 
						|
  ID.AddInteger(VolatileThis);
 | 
						|
 | 
						|
  void *InsertPoint;
 | 
						|
  SpecialMemberOverloadResult *Result =
 | 
						|
    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
 | 
						|
 | 
						|
  // This was already cached
 | 
						|
  if (Result)
 | 
						|
    return Result;
 | 
						|
 | 
						|
  Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
 | 
						|
  Result = new (Result) SpecialMemberOverloadResult(ID);
 | 
						|
  SpecialMemberCache.InsertNode(Result, InsertPoint);
 | 
						|
 | 
						|
  if (SM == CXXDestructor) {
 | 
						|
    if (!RD->hasDeclaredDestructor())
 | 
						|
      DeclareImplicitDestructor(RD);
 | 
						|
    CXXDestructorDecl *DD = RD->getDestructor();
 | 
						|
    assert(DD && "record without a destructor");
 | 
						|
    Result->setMethod(DD);
 | 
						|
    Result->setSuccess(DD->isDeleted());
 | 
						|
    Result->setConstParamMatch(false);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Prepare for overload resolution. Here we construct a synthetic argument
 | 
						|
  // if necessary and make sure that implicit functions are declared.
 | 
						|
  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
 | 
						|
  DeclarationName Name;
 | 
						|
  Expr *Arg = 0;
 | 
						|
  unsigned NumArgs;
 | 
						|
 | 
						|
  if (SM == CXXDefaultConstructor) {
 | 
						|
    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
 | 
						|
    NumArgs = 0;
 | 
						|
    if (RD->needsImplicitDefaultConstructor())
 | 
						|
      DeclareImplicitDefaultConstructor(RD);
 | 
						|
  } else {
 | 
						|
    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
 | 
						|
      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
 | 
						|
      if (!RD->hasDeclaredCopyConstructor())
 | 
						|
        DeclareImplicitCopyConstructor(RD);
 | 
						|
      if (getLangOptions().CPlusPlus0x && RD->needsImplicitMoveConstructor())
 | 
						|
        DeclareImplicitMoveConstructor(RD);
 | 
						|
    } else {
 | 
						|
      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
 | 
						|
      if (!RD->hasDeclaredCopyAssignment())
 | 
						|
        DeclareImplicitCopyAssignment(RD);
 | 
						|
      if (getLangOptions().CPlusPlus0x && RD->needsImplicitMoveAssignment())
 | 
						|
        DeclareImplicitMoveAssignment(RD);
 | 
						|
    }
 | 
						|
 | 
						|
    QualType ArgType = CanTy;
 | 
						|
    if (ConstArg)
 | 
						|
      ArgType.addConst();
 | 
						|
    if (VolatileArg)
 | 
						|
      ArgType.addVolatile();
 | 
						|
 | 
						|
    // This isn't /really/ specified by the standard, but it's implied
 | 
						|
    // we should be working from an RValue in the case of move to ensure
 | 
						|
    // that we prefer to bind to rvalue references, and an LValue in the
 | 
						|
    // case of copy to ensure we don't bind to rvalue references.
 | 
						|
    // Possibly an XValue is actually correct in the case of move, but
 | 
						|
    // there is no semantic difference for class types in this restricted
 | 
						|
    // case.
 | 
						|
    ExprValueKind VK;
 | 
						|
    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
 | 
						|
      VK = VK_LValue;
 | 
						|
    else
 | 
						|
      VK = VK_RValue;
 | 
						|
 | 
						|
    NumArgs = 1;
 | 
						|
    Arg = new (Context) OpaqueValueExpr(SourceLocation(), ArgType, VK);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the object argument
 | 
						|
  QualType ThisTy = CanTy;
 | 
						|
  if (ConstThis)
 | 
						|
    ThisTy.addConst();
 | 
						|
  if (VolatileThis)
 | 
						|
    ThisTy.addVolatile();
 | 
						|
  Expr::Classification Classification =
 | 
						|
    (new (Context) OpaqueValueExpr(SourceLocation(), ThisTy,
 | 
						|
                                   RValueThis ? VK_RValue : VK_LValue))->
 | 
						|
        Classify(Context);
 | 
						|
 | 
						|
  // Now we perform lookup on the name we computed earlier and do overload
 | 
						|
  // resolution. Lookup is only performed directly into the class since there
 | 
						|
  // will always be a (possibly implicit) declaration to shadow any others.
 | 
						|
  OverloadCandidateSet OCS((SourceLocation()));
 | 
						|
  DeclContext::lookup_iterator I, E;
 | 
						|
  Result->setConstParamMatch(false);
 | 
						|
 | 
						|
  llvm::tie(I, E) = RD->lookup(Name);
 | 
						|
  assert((I != E) &&
 | 
						|
         "lookup for a constructor or assignment operator was empty");
 | 
						|
  for ( ; I != E; ++I) {
 | 
						|
    Decl *Cand = *I;
 | 
						|
 | 
						|
    if (Cand->isInvalidDecl())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
 | 
						|
      // FIXME: [namespace.udecl]p15 says that we should only consider a
 | 
						|
      // using declaration here if it does not match a declaration in the
 | 
						|
      // derived class. We do not implement this correctly in other cases
 | 
						|
      // either.
 | 
						|
      Cand = U->getTargetDecl();
 | 
						|
 | 
						|
      if (Cand->isInvalidDecl())
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
 | 
						|
      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
 | 
						|
        AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
 | 
						|
                           Classification, &Arg, NumArgs, OCS, true);
 | 
						|
      else
 | 
						|
        AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public), &Arg,
 | 
						|
                             NumArgs, OCS, true);
 | 
						|
 | 
						|
      // Here we're looking for a const parameter to speed up creation of
 | 
						|
      // implicit copy methods.
 | 
						|
      if ((SM == CXXCopyAssignment && M->isCopyAssignmentOperator()) ||
 | 
						|
          (SM == CXXCopyConstructor &&
 | 
						|
            cast<CXXConstructorDecl>(M)->isCopyConstructor())) {
 | 
						|
        QualType ArgType = M->getType()->getAs<FunctionProtoType>()->getArgType(0);
 | 
						|
        if (!ArgType->isReferenceType() ||
 | 
						|
            ArgType->getPointeeType().isConstQualified())
 | 
						|
          Result->setConstParamMatch(true);
 | 
						|
      }
 | 
						|
    } else if (FunctionTemplateDecl *Tmpl =
 | 
						|
                 dyn_cast<FunctionTemplateDecl>(Cand)) {
 | 
						|
      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
 | 
						|
        AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
 | 
						|
                                   RD, 0, ThisTy, Classification, &Arg, NumArgs,
 | 
						|
                                   OCS, true);
 | 
						|
      else
 | 
						|
        AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
 | 
						|
                                     0, &Arg, NumArgs, OCS, true);
 | 
						|
    } else {
 | 
						|
      assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  OverloadCandidateSet::iterator Best;
 | 
						|
  switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
 | 
						|
    case OR_Success:
 | 
						|
      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
 | 
						|
      Result->setSuccess(true);
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_Deleted:
 | 
						|
      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
 | 
						|
      Result->setSuccess(false);
 | 
						|
      break;
 | 
						|
 | 
						|
    case OR_Ambiguous:
 | 
						|
    case OR_No_Viable_Function:
 | 
						|
      Result->setMethod(0);
 | 
						|
      Result->setSuccess(false);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look up the default constructor for the given class.
 | 
						|
CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
 | 
						|
  SpecialMemberOverloadResult *Result =
 | 
						|
    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
 | 
						|
                        false, false);
 | 
						|
 | 
						|
  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look up the copying constructor for the given class.
 | 
						|
CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
 | 
						|
                                                   unsigned Quals,
 | 
						|
                                                   bool *ConstParamMatch) {
 | 
						|
  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
 | 
						|
         "non-const, non-volatile qualifiers for copy ctor arg");
 | 
						|
  SpecialMemberOverloadResult *Result =
 | 
						|
    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
 | 
						|
                        Quals & Qualifiers::Volatile, false, false, false);
 | 
						|
 | 
						|
  if (ConstParamMatch)
 | 
						|
    *ConstParamMatch = Result->hasConstParamMatch();
 | 
						|
 | 
						|
  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look up the moving constructor for the given class.
 | 
						|
CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class) {
 | 
						|
  SpecialMemberOverloadResult *Result =
 | 
						|
    LookupSpecialMember(Class, CXXMoveConstructor, false,
 | 
						|
                        false, false, false, false);
 | 
						|
 | 
						|
  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look up the constructors for the given class.
 | 
						|
DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
 | 
						|
  // If the implicit constructors have not yet been declared, do so now.
 | 
						|
  if (CanDeclareSpecialMemberFunction(Context, Class)) {
 | 
						|
    if (Class->needsImplicitDefaultConstructor())
 | 
						|
      DeclareImplicitDefaultConstructor(Class);
 | 
						|
    if (!Class->hasDeclaredCopyConstructor())
 | 
						|
      DeclareImplicitCopyConstructor(Class);
 | 
						|
    if (getLangOptions().CPlusPlus0x && Class->needsImplicitMoveConstructor())
 | 
						|
      DeclareImplicitMoveConstructor(Class);
 | 
						|
  }
 | 
						|
 | 
						|
  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
 | 
						|
  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
 | 
						|
  return Class->lookup(Name);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look up the copying assignment operator for the given class.
 | 
						|
CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
 | 
						|
                                             unsigned Quals, bool RValueThis,
 | 
						|
                                             unsigned ThisQuals,
 | 
						|
                                             bool *ConstParamMatch) {
 | 
						|
  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
 | 
						|
         "non-const, non-volatile qualifiers for copy assignment arg");
 | 
						|
  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
 | 
						|
         "non-const, non-volatile qualifiers for copy assignment this");
 | 
						|
  SpecialMemberOverloadResult *Result =
 | 
						|
    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
 | 
						|
                        Quals & Qualifiers::Volatile, RValueThis,
 | 
						|
                        ThisQuals & Qualifiers::Const,
 | 
						|
                        ThisQuals & Qualifiers::Volatile);
 | 
						|
 | 
						|
  if (ConstParamMatch)
 | 
						|
    *ConstParamMatch = Result->hasConstParamMatch();
 | 
						|
 | 
						|
  return Result->getMethod();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look up the moving assignment operator for the given class.
 | 
						|
CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
 | 
						|
                                            bool RValueThis,
 | 
						|
                                            unsigned ThisQuals) {
 | 
						|
  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
 | 
						|
         "non-const, non-volatile qualifiers for copy assignment this");
 | 
						|
  SpecialMemberOverloadResult *Result =
 | 
						|
    LookupSpecialMember(Class, CXXMoveAssignment, false, false, RValueThis,
 | 
						|
                        ThisQuals & Qualifiers::Const,
 | 
						|
                        ThisQuals & Qualifiers::Volatile);
 | 
						|
 | 
						|
  return Result->getMethod();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look for the destructor of the given class.
 | 
						|
///
 | 
						|
/// During semantic analysis, this routine should be used in lieu of
 | 
						|
/// CXXRecordDecl::getDestructor().
 | 
						|
///
 | 
						|
/// \returns The destructor for this class.
 | 
						|
CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
 | 
						|
  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
 | 
						|
                                                     false, false, false,
 | 
						|
                                                     false, false)->getMethod());
 | 
						|
}
 | 
						|
 | 
						|
void ADLResult::insert(NamedDecl *New) {
 | 
						|
  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
 | 
						|
 | 
						|
  // If we haven't yet seen a decl for this key, or the last decl
 | 
						|
  // was exactly this one, we're done.
 | 
						|
  if (Old == 0 || Old == New) {
 | 
						|
    Old = New;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, decide which is a more recent redeclaration.
 | 
						|
  FunctionDecl *OldFD, *NewFD;
 | 
						|
  if (isa<FunctionTemplateDecl>(New)) {
 | 
						|
    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
 | 
						|
    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
 | 
						|
  } else {
 | 
						|
    OldFD = cast<FunctionDecl>(Old);
 | 
						|
    NewFD = cast<FunctionDecl>(New);
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *Cursor = NewFD;
 | 
						|
  while (true) {
 | 
						|
    Cursor = Cursor->getPreviousDeclaration();
 | 
						|
 | 
						|
    // If we got to the end without finding OldFD, OldFD is the newer
 | 
						|
    // declaration;  leave things as they are.
 | 
						|
    if (!Cursor) return;
 | 
						|
 | 
						|
    // If we do find OldFD, then NewFD is newer.
 | 
						|
    if (Cursor == OldFD) break;
 | 
						|
 | 
						|
    // Otherwise, keep looking.
 | 
						|
  }
 | 
						|
 | 
						|
  Old = New;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
 | 
						|
                                   Expr **Args, unsigned NumArgs,
 | 
						|
                                   ADLResult &Result,
 | 
						|
                                   bool StdNamespaceIsAssociated) {
 | 
						|
  // Find all of the associated namespaces and classes based on the
 | 
						|
  // arguments we have.
 | 
						|
  AssociatedNamespaceSet AssociatedNamespaces;
 | 
						|
  AssociatedClassSet AssociatedClasses;
 | 
						|
  FindAssociatedClassesAndNamespaces(Args, NumArgs,
 | 
						|
                                     AssociatedNamespaces,
 | 
						|
                                     AssociatedClasses);
 | 
						|
  if (StdNamespaceIsAssociated && StdNamespace)
 | 
						|
    AssociatedNamespaces.insert(getStdNamespace());
 | 
						|
 | 
						|
  QualType T1, T2;
 | 
						|
  if (Operator) {
 | 
						|
    T1 = Args[0]->getType();
 | 
						|
    if (NumArgs >= 2)
 | 
						|
      T2 = Args[1]->getType();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [basic.lookup.argdep]p3:
 | 
						|
  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
 | 
						|
  //   and let Y be the lookup set produced by argument dependent
 | 
						|
  //   lookup (defined as follows). If X contains [...] then Y is
 | 
						|
  //   empty. Otherwise Y is the set of declarations found in the
 | 
						|
  //   namespaces associated with the argument types as described
 | 
						|
  //   below. The set of declarations found by the lookup of the name
 | 
						|
  //   is the union of X and Y.
 | 
						|
  //
 | 
						|
  // Here, we compute Y and add its members to the overloaded
 | 
						|
  // candidate set.
 | 
						|
  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
 | 
						|
                                     NSEnd = AssociatedNamespaces.end();
 | 
						|
       NS != NSEnd; ++NS) {
 | 
						|
    //   When considering an associated namespace, the lookup is the
 | 
						|
    //   same as the lookup performed when the associated namespace is
 | 
						|
    //   used as a qualifier (3.4.3.2) except that:
 | 
						|
    //
 | 
						|
    //     -- Any using-directives in the associated namespace are
 | 
						|
    //        ignored.
 | 
						|
    //
 | 
						|
    //     -- Any namespace-scope friend functions declared in
 | 
						|
    //        associated classes are visible within their respective
 | 
						|
    //        namespaces even if they are not visible during an ordinary
 | 
						|
    //        lookup (11.4).
 | 
						|
    DeclContext::lookup_iterator I, E;
 | 
						|
    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
 | 
						|
      NamedDecl *D = *I;
 | 
						|
      // If the only declaration here is an ordinary friend, consider
 | 
						|
      // it only if it was declared in an associated classes.
 | 
						|
      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
 | 
						|
        DeclContext *LexDC = D->getLexicalDeclContext();
 | 
						|
        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<UsingShadowDecl>(D))
 | 
						|
        D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | 
						|
 | 
						|
      if (isa<FunctionDecl>(D)) {
 | 
						|
        if (Operator &&
 | 
						|
            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
 | 
						|
                                                    T1, T2, Context))
 | 
						|
          continue;
 | 
						|
      } else if (!isa<FunctionTemplateDecl>(D))
 | 
						|
        continue;
 | 
						|
 | 
						|
      Result.insert(D);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// Search for all visible declarations.
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
VisibleDeclConsumer::~VisibleDeclConsumer() { }
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class ShadowContextRAII;
 | 
						|
 | 
						|
class VisibleDeclsRecord {
 | 
						|
public:
 | 
						|
  /// \brief An entry in the shadow map, which is optimized to store a
 | 
						|
  /// single declaration (the common case) but can also store a list
 | 
						|
  /// of declarations.
 | 
						|
  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
 | 
						|
 | 
						|
private:
 | 
						|
  /// \brief A mapping from declaration names to the declarations that have
 | 
						|
  /// this name within a particular scope.
 | 
						|
  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
 | 
						|
 | 
						|
  /// \brief A list of shadow maps, which is used to model name hiding.
 | 
						|
  std::list<ShadowMap> ShadowMaps;
 | 
						|
 | 
						|
  /// \brief The declaration contexts we have already visited.
 | 
						|
  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
 | 
						|
 | 
						|
  friend class ShadowContextRAII;
 | 
						|
 | 
						|
public:
 | 
						|
  /// \brief Determine whether we have already visited this context
 | 
						|
  /// (and, if not, note that we are going to visit that context now).
 | 
						|
  bool visitedContext(DeclContext *Ctx) {
 | 
						|
    return !VisitedContexts.insert(Ctx);
 | 
						|
  }
 | 
						|
 | 
						|
  bool alreadyVisitedContext(DeclContext *Ctx) {
 | 
						|
    return VisitedContexts.count(Ctx);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Determine whether the given declaration is hidden in the
 | 
						|
  /// current scope.
 | 
						|
  ///
 | 
						|
  /// \returns the declaration that hides the given declaration, or
 | 
						|
  /// NULL if no such declaration exists.
 | 
						|
  NamedDecl *checkHidden(NamedDecl *ND);
 | 
						|
 | 
						|
  /// \brief Add a declaration to the current shadow map.
 | 
						|
  void add(NamedDecl *ND) {
 | 
						|
    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief RAII object that records when we've entered a shadow context.
 | 
						|
class ShadowContextRAII {
 | 
						|
  VisibleDeclsRecord &Visible;
 | 
						|
 | 
						|
  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
 | 
						|
 | 
						|
public:
 | 
						|
  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
 | 
						|
    Visible.ShadowMaps.push_back(ShadowMap());
 | 
						|
  }
 | 
						|
 | 
						|
  ~ShadowContextRAII() {
 | 
						|
    Visible.ShadowMaps.pop_back();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
 | 
						|
  // Look through using declarations.
 | 
						|
  ND = ND->getUnderlyingDecl();
 | 
						|
 | 
						|
  unsigned IDNS = ND->getIdentifierNamespace();
 | 
						|
  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
 | 
						|
  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
 | 
						|
       SM != SMEnd; ++SM) {
 | 
						|
    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
 | 
						|
    if (Pos == SM->end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (ShadowMapEntry::iterator I = Pos->second.begin(),
 | 
						|
                               IEnd = Pos->second.end();
 | 
						|
         I != IEnd; ++I) {
 | 
						|
      // A tag declaration does not hide a non-tag declaration.
 | 
						|
      if ((*I)->hasTagIdentifierNamespace() &&
 | 
						|
          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
 | 
						|
                   Decl::IDNS_ObjCProtocol)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Protocols are in distinct namespaces from everything else.
 | 
						|
      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
 | 
						|
           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
 | 
						|
          (*I)->getIdentifierNamespace() != IDNS)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Functions and function templates in the same scope overload
 | 
						|
      // rather than hide.  FIXME: Look for hiding based on function
 | 
						|
      // signatures!
 | 
						|
      if ((*I)->isFunctionOrFunctionTemplate() &&
 | 
						|
          ND->isFunctionOrFunctionTemplate() &&
 | 
						|
          SM == ShadowMaps.rbegin())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We've found a declaration that hides this one.
 | 
						|
      return *I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
 | 
						|
                               bool QualifiedNameLookup,
 | 
						|
                               bool InBaseClass,
 | 
						|
                               VisibleDeclConsumer &Consumer,
 | 
						|
                               VisibleDeclsRecord &Visited) {
 | 
						|
  if (!Ctx)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Make sure we don't visit the same context twice.
 | 
						|
  if (Visited.visitedContext(Ctx->getPrimaryContext()))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
 | 
						|
    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
 | 
						|
 | 
						|
  // Enumerate all of the results in this context.
 | 
						|
  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
 | 
						|
       CurCtx = CurCtx->getNextContext()) {
 | 
						|
    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
 | 
						|
                                 DEnd = CurCtx->decls_end();
 | 
						|
         D != DEnd; ++D) {
 | 
						|
      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) {
 | 
						|
        if (Result.isAcceptableDecl(ND)) {
 | 
						|
          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
 | 
						|
          Visited.add(ND);
 | 
						|
        }
 | 
						|
      } else if (ObjCForwardProtocolDecl *ForwardProto
 | 
						|
                                      = dyn_cast<ObjCForwardProtocolDecl>(*D)) {
 | 
						|
        for (ObjCForwardProtocolDecl::protocol_iterator
 | 
						|
                  P = ForwardProto->protocol_begin(),
 | 
						|
               PEnd = ForwardProto->protocol_end();
 | 
						|
             P != PEnd;
 | 
						|
             ++P) {
 | 
						|
          if (Result.isAcceptableDecl(*P)) {
 | 
						|
            Consumer.FoundDecl(*P, Visited.checkHidden(*P), InBaseClass);
 | 
						|
            Visited.add(*P);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (ObjCClassDecl *Class = dyn_cast<ObjCClassDecl>(*D)) {
 | 
						|
          ObjCInterfaceDecl *IFace = Class->getForwardInterfaceDecl();
 | 
						|
          if (Result.isAcceptableDecl(IFace)) {
 | 
						|
            Consumer.FoundDecl(IFace, Visited.checkHidden(IFace), InBaseClass);
 | 
						|
            Visited.add(IFace);
 | 
						|
          }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Visit transparent contexts and inline namespaces inside this context.
 | 
						|
      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
 | 
						|
        if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
 | 
						|
          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
 | 
						|
                             Consumer, Visited);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Traverse using directives for qualified name lookup.
 | 
						|
  if (QualifiedNameLookup) {
 | 
						|
    ShadowContextRAII Shadow(Visited);
 | 
						|
    DeclContext::udir_iterator I, E;
 | 
						|
    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
 | 
						|
      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
 | 
						|
                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Traverse the contexts of inherited C++ classes.
 | 
						|
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
 | 
						|
    if (!Record->hasDefinition())
 | 
						|
      return;
 | 
						|
 | 
						|
    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
 | 
						|
                                         BEnd = Record->bases_end();
 | 
						|
         B != BEnd; ++B) {
 | 
						|
      QualType BaseType = B->getType();
 | 
						|
 | 
						|
      // Don't look into dependent bases, because name lookup can't look
 | 
						|
      // there anyway.
 | 
						|
      if (BaseType->isDependentType())
 | 
						|
        continue;
 | 
						|
 | 
						|
      const RecordType *Record = BaseType->getAs<RecordType>();
 | 
						|
      if (!Record)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // FIXME: It would be nice to be able to determine whether referencing
 | 
						|
      // a particular member would be ambiguous. For example, given
 | 
						|
      //
 | 
						|
      //   struct A { int member; };
 | 
						|
      //   struct B { int member; };
 | 
						|
      //   struct C : A, B { };
 | 
						|
      //
 | 
						|
      //   void f(C *c) { c->### }
 | 
						|
      //
 | 
						|
      // accessing 'member' would result in an ambiguity. However, we
 | 
						|
      // could be smart enough to qualify the member with the base
 | 
						|
      // class, e.g.,
 | 
						|
      //
 | 
						|
      //   c->B::member
 | 
						|
      //
 | 
						|
      // or
 | 
						|
      //
 | 
						|
      //   c->A::member
 | 
						|
 | 
						|
      // Find results in this base class (and its bases).
 | 
						|
      ShadowContextRAII Shadow(Visited);
 | 
						|
      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
 | 
						|
                         true, Consumer, Visited);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Traverse the contexts of Objective-C classes.
 | 
						|
  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
 | 
						|
    // Traverse categories.
 | 
						|
    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
 | 
						|
         Category; Category = Category->getNextClassCategory()) {
 | 
						|
      ShadowContextRAII Shadow(Visited);
 | 
						|
      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
 | 
						|
                         Consumer, Visited);
 | 
						|
    }
 | 
						|
 | 
						|
    // Traverse protocols.
 | 
						|
    for (ObjCInterfaceDecl::all_protocol_iterator
 | 
						|
         I = IFace->all_referenced_protocol_begin(),
 | 
						|
         E = IFace->all_referenced_protocol_end(); I != E; ++I) {
 | 
						|
      ShadowContextRAII Shadow(Visited);
 | 
						|
      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
 | 
						|
                         Visited);
 | 
						|
    }
 | 
						|
 | 
						|
    // Traverse the superclass.
 | 
						|
    if (IFace->getSuperClass()) {
 | 
						|
      ShadowContextRAII Shadow(Visited);
 | 
						|
      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
 | 
						|
                         true, Consumer, Visited);
 | 
						|
    }
 | 
						|
 | 
						|
    // If there is an implementation, traverse it. We do this to find
 | 
						|
    // synthesized ivars.
 | 
						|
    if (IFace->getImplementation()) {
 | 
						|
      ShadowContextRAII Shadow(Visited);
 | 
						|
      LookupVisibleDecls(IFace->getImplementation(), Result,
 | 
						|
                         QualifiedNameLookup, true, Consumer, Visited);
 | 
						|
    }
 | 
						|
  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
 | 
						|
    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
 | 
						|
           E = Protocol->protocol_end(); I != E; ++I) {
 | 
						|
      ShadowContextRAII Shadow(Visited);
 | 
						|
      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
 | 
						|
                         Visited);
 | 
						|
    }
 | 
						|
  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
 | 
						|
    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
 | 
						|
           E = Category->protocol_end(); I != E; ++I) {
 | 
						|
      ShadowContextRAII Shadow(Visited);
 | 
						|
      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
 | 
						|
                         Visited);
 | 
						|
    }
 | 
						|
 | 
						|
    // If there is an implementation, traverse it.
 | 
						|
    if (Category->getImplementation()) {
 | 
						|
      ShadowContextRAII Shadow(Visited);
 | 
						|
      LookupVisibleDecls(Category->getImplementation(), Result,
 | 
						|
                         QualifiedNameLookup, true, Consumer, Visited);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void LookupVisibleDecls(Scope *S, LookupResult &Result,
 | 
						|
                               UnqualUsingDirectiveSet &UDirs,
 | 
						|
                               VisibleDeclConsumer &Consumer,
 | 
						|
                               VisibleDeclsRecord &Visited) {
 | 
						|
  if (!S)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!S->getEntity() ||
 | 
						|
      (!S->getParent() &&
 | 
						|
       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
 | 
						|
      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
 | 
						|
    // Walk through the declarations in this Scope.
 | 
						|
    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
 | 
						|
         D != DEnd; ++D) {
 | 
						|
      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
 | 
						|
        if (Result.isAcceptableDecl(ND)) {
 | 
						|
          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
 | 
						|
          Visited.add(ND);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: C++ [temp.local]p8
 | 
						|
  DeclContext *Entity = 0;
 | 
						|
  if (S->getEntity()) {
 | 
						|
    // Look into this scope's declaration context, along with any of its
 | 
						|
    // parent lookup contexts (e.g., enclosing classes), up to the point
 | 
						|
    // where we hit the context stored in the next outer scope.
 | 
						|
    Entity = (DeclContext *)S->getEntity();
 | 
						|
    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
 | 
						|
 | 
						|
    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
 | 
						|
         Ctx = Ctx->getLookupParent()) {
 | 
						|
      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
 | 
						|
        if (Method->isInstanceMethod()) {
 | 
						|
          // For instance methods, look for ivars in the method's interface.
 | 
						|
          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
 | 
						|
                                  Result.getNameLoc(), Sema::LookupMemberName);
 | 
						|
          if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
 | 
						|
            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
 | 
						|
                               /*InBaseClass=*/false, Consumer, Visited);              
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // We've already performed all of the name lookup that we need
 | 
						|
        // to for Objective-C methods; the next context will be the
 | 
						|
        // outer scope.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Ctx->isFunctionOrMethod())
 | 
						|
        continue;
 | 
						|
 | 
						|
      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
 | 
						|
                         /*InBaseClass=*/false, Consumer, Visited);
 | 
						|
    }
 | 
						|
  } else if (!S->getParent()) {
 | 
						|
    // Look into the translation unit scope. We walk through the translation
 | 
						|
    // unit's declaration context, because the Scope itself won't have all of
 | 
						|
    // the declarations if we loaded a precompiled header.
 | 
						|
    // FIXME: We would like the translation unit's Scope object to point to the
 | 
						|
    // translation unit, so we don't need this special "if" branch. However,
 | 
						|
    // doing so would force the normal C++ name-lookup code to look into the
 | 
						|
    // translation unit decl when the IdentifierInfo chains would suffice.
 | 
						|
    // Once we fix that problem (which is part of a more general "don't look
 | 
						|
    // in DeclContexts unless we have to" optimization), we can eliminate this.
 | 
						|
    Entity = Result.getSema().Context.getTranslationUnitDecl();
 | 
						|
    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
 | 
						|
                       /*InBaseClass=*/false, Consumer, Visited);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Entity) {
 | 
						|
    // Lookup visible declarations in any namespaces found by using
 | 
						|
    // directives.
 | 
						|
    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
 | 
						|
    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
 | 
						|
    for (; UI != UEnd; ++UI)
 | 
						|
      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
 | 
						|
                         Result, /*QualifiedNameLookup=*/false,
 | 
						|
                         /*InBaseClass=*/false, Consumer, Visited);
 | 
						|
  }
 | 
						|
 | 
						|
  // Lookup names in the parent scope.
 | 
						|
  ShadowContextRAII Shadow(Visited);
 | 
						|
  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
 | 
						|
                              VisibleDeclConsumer &Consumer,
 | 
						|
                              bool IncludeGlobalScope) {
 | 
						|
  // Determine the set of using directives available during
 | 
						|
  // unqualified name lookup.
 | 
						|
  Scope *Initial = S;
 | 
						|
  UnqualUsingDirectiveSet UDirs;
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // Find the first namespace or translation-unit scope.
 | 
						|
    while (S && !isNamespaceOrTranslationUnitScope(S))
 | 
						|
      S = S->getParent();
 | 
						|
 | 
						|
    UDirs.visitScopeChain(Initial, S);
 | 
						|
  }
 | 
						|
  UDirs.done();
 | 
						|
 | 
						|
  // Look for visible declarations.
 | 
						|
  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
 | 
						|
  VisibleDeclsRecord Visited;
 | 
						|
  if (!IncludeGlobalScope)
 | 
						|
    Visited.visitedContext(Context.getTranslationUnitDecl());
 | 
						|
  ShadowContextRAII Shadow(Visited);
 | 
						|
  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
 | 
						|
                              VisibleDeclConsumer &Consumer,
 | 
						|
                              bool IncludeGlobalScope) {
 | 
						|
  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
 | 
						|
  VisibleDeclsRecord Visited;
 | 
						|
  if (!IncludeGlobalScope)
 | 
						|
    Visited.visitedContext(Context.getTranslationUnitDecl());
 | 
						|
  ShadowContextRAII Shadow(Visited);
 | 
						|
  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
 | 
						|
                       /*InBaseClass=*/false, Consumer, Visited);
 | 
						|
}
 | 
						|
 | 
						|
/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
 | 
						|
/// If GnuLabelLoc is a valid source location, then this is a definition
 | 
						|
/// of an __label__ label name, otherwise it is a normal label definition
 | 
						|
/// or use.
 | 
						|
LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
 | 
						|
                                     SourceLocation GnuLabelLoc) {
 | 
						|
  // Do a lookup to see if we have a label with this name already.
 | 
						|
  NamedDecl *Res = 0;
 | 
						|
 | 
						|
  if (GnuLabelLoc.isValid()) {
 | 
						|
    // Local label definitions always shadow existing labels.
 | 
						|
    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
 | 
						|
    Scope *S = CurScope;
 | 
						|
    PushOnScopeChains(Res, S, true);
 | 
						|
    return cast<LabelDecl>(Res);
 | 
						|
  }
 | 
						|
 | 
						|
  // Not a GNU local label.
 | 
						|
  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
 | 
						|
  // If we found a label, check to see if it is in the same context as us.
 | 
						|
  // When in a Block, we don't want to reuse a label in an enclosing function.
 | 
						|
  if (Res && Res->getDeclContext() != CurContext)
 | 
						|
    Res = 0;
 | 
						|
  if (Res == 0) {
 | 
						|
    // If not forward referenced or defined already, create the backing decl.
 | 
						|
    Res = LabelDecl::Create(Context, CurContext, Loc, II);
 | 
						|
    Scope *S = CurScope->getFnParent();
 | 
						|
    assert(S && "Not in a function?");
 | 
						|
    PushOnScopeChains(Res, S, true);
 | 
						|
  }
 | 
						|
  return cast<LabelDecl>(Res);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Typo correction
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
typedef llvm::StringMap<TypoCorrection, llvm::BumpPtrAllocator> TypoResultsMap;
 | 
						|
typedef std::map<unsigned, TypoResultsMap *> TypoEditDistanceMap;
 | 
						|
 | 
						|
static const unsigned MaxTypoDistanceResultSets = 5;
 | 
						|
 | 
						|
class TypoCorrectionConsumer : public VisibleDeclConsumer {
 | 
						|
  /// \brief The name written that is a typo in the source.
 | 
						|
  StringRef Typo;
 | 
						|
 | 
						|
  /// \brief The results found that have the smallest edit distance
 | 
						|
  /// found (so far) with the typo name.
 | 
						|
  ///
 | 
						|
  /// The pointer value being set to the current DeclContext indicates
 | 
						|
  /// whether there is a keyword with this name.
 | 
						|
  TypoEditDistanceMap BestResults;
 | 
						|
 | 
						|
  /// \brief The worst of the best N edit distances found so far.
 | 
						|
  unsigned MaxEditDistance;
 | 
						|
 | 
						|
  Sema &SemaRef;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
 | 
						|
    : Typo(Typo->getName()),
 | 
						|
      MaxEditDistance((std::numeric_limits<unsigned>::max)()),
 | 
						|
      SemaRef(SemaRef) { }
 | 
						|
 | 
						|
  ~TypoCorrectionConsumer() {
 | 
						|
    for (TypoEditDistanceMap::iterator I = BestResults.begin(),
 | 
						|
                                    IEnd = BestResults.end();
 | 
						|
         I != IEnd;
 | 
						|
         ++I)
 | 
						|
      delete I->second;
 | 
						|
  }
 | 
						|
  
 | 
						|
  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
 | 
						|
  void FoundName(StringRef Name);
 | 
						|
  void addKeywordResult(StringRef Keyword);
 | 
						|
  void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
 | 
						|
               NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
 | 
						|
  void addCorrection(TypoCorrection Correction);
 | 
						|
 | 
						|
  typedef TypoResultsMap::iterator result_iterator;
 | 
						|
  typedef TypoEditDistanceMap::iterator distance_iterator;
 | 
						|
  distance_iterator begin() { return BestResults.begin(); }
 | 
						|
  distance_iterator end()  { return BestResults.end(); }
 | 
						|
  void erase(distance_iterator I) { BestResults.erase(I); }
 | 
						|
  unsigned size() const { return BestResults.size(); }
 | 
						|
  bool empty() const { return BestResults.empty(); }
 | 
						|
 | 
						|
  TypoCorrection &operator[](StringRef Name) {
 | 
						|
    return (*BestResults.begin()->second)[Name];
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getMaxEditDistance() const {
 | 
						|
    return MaxEditDistance;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getBestEditDistance() {
 | 
						|
    return (BestResults.empty()) ? MaxEditDistance : BestResults.begin()->first;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
 | 
						|
                                       bool InBaseClass) {
 | 
						|
  // Don't consider hidden names for typo correction.
 | 
						|
  if (Hiding)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Only consider entities with identifiers for names, ignoring
 | 
						|
  // special names (constructors, overloaded operators, selectors,
 | 
						|
  // etc.).
 | 
						|
  IdentifierInfo *Name = ND->getIdentifier();
 | 
						|
  if (!Name)
 | 
						|
    return;
 | 
						|
 | 
						|
  FoundName(Name->getName());
 | 
						|
}
 | 
						|
 | 
						|
void TypoCorrectionConsumer::FoundName(StringRef Name) {
 | 
						|
  // Use a simple length-based heuristic to determine the minimum possible
 | 
						|
  // edit distance. If the minimum isn't good enough, bail out early.
 | 
						|
  unsigned MinED = abs((int)Name.size() - (int)Typo.size());
 | 
						|
  if (MinED > MaxEditDistance || (MinED && Typo.size() / MinED < 3))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Compute an upper bound on the allowable edit distance, so that the
 | 
						|
  // edit-distance algorithm can short-circuit.
 | 
						|
  unsigned UpperBound =
 | 
						|
    std::min(unsigned((Typo.size() + 2) / 3), MaxEditDistance);
 | 
						|
 | 
						|
  // Compute the edit distance between the typo and the name of this
 | 
						|
  // entity. If this edit distance is not worse than the best edit
 | 
						|
  // distance we've seen so far, add it to the list of results.
 | 
						|
  unsigned ED = Typo.edit_distance(Name, true, UpperBound);
 | 
						|
 | 
						|
  if (ED > MaxEditDistance) {
 | 
						|
    // This result is worse than the best results we've seen so far;
 | 
						|
    // ignore it.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  addName(Name, NULL, ED);
 | 
						|
}
 | 
						|
 | 
						|
void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
 | 
						|
  // Compute the edit distance between the typo and this keyword.
 | 
						|
  // If this edit distance is not worse than the best edit
 | 
						|
  // distance we've seen so far, add it to the list of results.
 | 
						|
  unsigned ED = Typo.edit_distance(Keyword);
 | 
						|
  if (ED > MaxEditDistance) {
 | 
						|
    // This result is worse than the best results we've seen so far;
 | 
						|
    // ignore it.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  addName(Keyword, NULL, ED, NULL, true);
 | 
						|
}
 | 
						|
 | 
						|
void TypoCorrectionConsumer::addName(StringRef Name,
 | 
						|
                                     NamedDecl *ND,
 | 
						|
                                     unsigned Distance,
 | 
						|
                                     NestedNameSpecifier *NNS,
 | 
						|
                                     bool isKeyword) {
 | 
						|
  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
 | 
						|
  if (isKeyword) TC.makeKeyword();
 | 
						|
  addCorrection(TC);
 | 
						|
}
 | 
						|
 | 
						|
void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
 | 
						|
  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
 | 
						|
  TypoResultsMap *& Map = BestResults[Correction.getEditDistance()];
 | 
						|
  if (!Map)
 | 
						|
    Map = new TypoResultsMap;
 | 
						|
 | 
						|
  TypoCorrection &CurrentCorrection = (*Map)[Name];
 | 
						|
  if (!CurrentCorrection ||
 | 
						|
      // FIXME: The following should be rolled up into an operator< on
 | 
						|
      // TypoCorrection with a more principled definition.
 | 
						|
      CurrentCorrection.isKeyword() < Correction.isKeyword() ||
 | 
						|
      Correction.getAsString(SemaRef.getLangOptions()) <
 | 
						|
      CurrentCorrection.getAsString(SemaRef.getLangOptions()))
 | 
						|
    CurrentCorrection = Correction;
 | 
						|
 | 
						|
  while (BestResults.size() > MaxTypoDistanceResultSets) {
 | 
						|
    TypoEditDistanceMap::iterator Last = BestResults.end();
 | 
						|
    --Last;
 | 
						|
    delete Last->second;
 | 
						|
    BestResults.erase(Last);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class SpecifierInfo {
 | 
						|
 public:
 | 
						|
  DeclContext* DeclCtx;
 | 
						|
  NestedNameSpecifier* NameSpecifier;
 | 
						|
  unsigned EditDistance;
 | 
						|
 | 
						|
  SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
 | 
						|
      : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
 | 
						|
};
 | 
						|
 | 
						|
typedef SmallVector<DeclContext*, 4> DeclContextList;
 | 
						|
typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
 | 
						|
 | 
						|
class NamespaceSpecifierSet {
 | 
						|
  ASTContext &Context;
 | 
						|
  DeclContextList CurContextChain;
 | 
						|
  bool isSorted;
 | 
						|
 | 
						|
  SpecifierInfoList Specifiers;
 | 
						|
  llvm::SmallSetVector<unsigned, 4> Distances;
 | 
						|
  llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
 | 
						|
 | 
						|
  /// \brief Helper for building the list of DeclContexts between the current
 | 
						|
  /// context and the top of the translation unit
 | 
						|
  static DeclContextList BuildContextChain(DeclContext *Start);
 | 
						|
 | 
						|
  void SortNamespaces();
 | 
						|
 | 
						|
 public:
 | 
						|
  explicit NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext)
 | 
						|
      : Context(Context), CurContextChain(BuildContextChain(CurContext)),
 | 
						|
        isSorted(true) {}
 | 
						|
 | 
						|
  /// \brief Add the namespace to the set, computing the corresponding
 | 
						|
  /// NestedNameSpecifier and its distance in the process.
 | 
						|
  void AddNamespace(NamespaceDecl *ND);
 | 
						|
 | 
						|
  typedef SpecifierInfoList::iterator iterator;
 | 
						|
  iterator begin() {
 | 
						|
    if (!isSorted) SortNamespaces();
 | 
						|
    return Specifiers.begin();
 | 
						|
  }
 | 
						|
  iterator end() { return Specifiers.end(); }
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
 | 
						|
  assert(Start && "Bulding a context chain from a null context");
 | 
						|
  DeclContextList Chain;
 | 
						|
  for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
 | 
						|
       DC = DC->getLookupParent()) {
 | 
						|
    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
 | 
						|
    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
 | 
						|
        !(ND && ND->isAnonymousNamespace()))
 | 
						|
      Chain.push_back(DC->getPrimaryContext());
 | 
						|
  }
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
void NamespaceSpecifierSet::SortNamespaces() {
 | 
						|
  SmallVector<unsigned, 4> sortedDistances;
 | 
						|
  sortedDistances.append(Distances.begin(), Distances.end());
 | 
						|
 | 
						|
  if (sortedDistances.size() > 1)
 | 
						|
    std::sort(sortedDistances.begin(), sortedDistances.end());
 | 
						|
 | 
						|
  Specifiers.clear();
 | 
						|
  for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
 | 
						|
                                             DIEnd = sortedDistances.end();
 | 
						|
       DI != DIEnd; ++DI) {
 | 
						|
    SpecifierInfoList &SpecList = DistanceMap[*DI];
 | 
						|
    Specifiers.append(SpecList.begin(), SpecList.end());
 | 
						|
  }
 | 
						|
 | 
						|
  isSorted = true;
 | 
						|
}
 | 
						|
 | 
						|
void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
 | 
						|
  DeclContext *Ctx = cast<DeclContext>(ND);
 | 
						|
  NestedNameSpecifier *NNS = NULL;
 | 
						|
  unsigned NumSpecifiers = 0;
 | 
						|
  DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
 | 
						|
 | 
						|
  // Eliminate common elements from the two DeclContext chains
 | 
						|
  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
 | 
						|
                                      CEnd = CurContextChain.rend();
 | 
						|
       C != CEnd && !NamespaceDeclChain.empty() &&
 | 
						|
       NamespaceDeclChain.back() == *C; ++C) {
 | 
						|
    NamespaceDeclChain.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
 | 
						|
  for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
 | 
						|
                                      CEnd = NamespaceDeclChain.rend();
 | 
						|
       C != CEnd; ++C) {
 | 
						|
    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
 | 
						|
    if (ND) {
 | 
						|
      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
 | 
						|
      ++NumSpecifiers;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  isSorted = false;
 | 
						|
  Distances.insert(NumSpecifiers);
 | 
						|
  DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform name lookup for a possible result for typo correction.
 | 
						|
static void LookupPotentialTypoResult(Sema &SemaRef,
 | 
						|
                                      LookupResult &Res,
 | 
						|
                                      IdentifierInfo *Name,
 | 
						|
                                      Scope *S, CXXScopeSpec *SS,
 | 
						|
                                      DeclContext *MemberContext,
 | 
						|
                                      bool EnteringContext,
 | 
						|
                                      Sema::CorrectTypoContext CTC) {
 | 
						|
  Res.suppressDiagnostics();
 | 
						|
  Res.clear();
 | 
						|
  Res.setLookupName(Name);
 | 
						|
  if (MemberContext) {
 | 
						|
    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
 | 
						|
      if (CTC == Sema::CTC_ObjCIvarLookup) {
 | 
						|
        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
 | 
						|
          Res.addDecl(Ivar);
 | 
						|
          Res.resolveKind();
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
 | 
						|
        Res.addDecl(Prop);
 | 
						|
        Res.resolveKind();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SemaRef.LookupQualifiedName(Res, MemberContext);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
 | 
						|
                           EnteringContext);
 | 
						|
 | 
						|
  // Fake ivar lookup; this should really be part of
 | 
						|
  // LookupParsedName.
 | 
						|
  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
 | 
						|
    if (Method->isInstanceMethod() && Method->getClassInterface() &&
 | 
						|
        (Res.empty() ||
 | 
						|
         (Res.isSingleResult() &&
 | 
						|
          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
 | 
						|
       if (ObjCIvarDecl *IV
 | 
						|
             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
 | 
						|
         Res.addDecl(IV);
 | 
						|
         Res.resolveKind();
 | 
						|
       }
 | 
						|
     }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Add keywords to the consumer as possible typo corrections.
 | 
						|
static void AddKeywordsToConsumer(Sema &SemaRef,
 | 
						|
                                  TypoCorrectionConsumer &Consumer,
 | 
						|
                                  Scope *S, Sema::CorrectTypoContext CTC) {
 | 
						|
  // Add context-dependent keywords.
 | 
						|
  bool WantTypeSpecifiers = false;
 | 
						|
  bool WantExpressionKeywords = false;
 | 
						|
  bool WantCXXNamedCasts = false;
 | 
						|
  bool WantRemainingKeywords = false;
 | 
						|
  switch (CTC) {
 | 
						|
    case Sema::CTC_Unknown:
 | 
						|
      WantTypeSpecifiers = true;
 | 
						|
      WantExpressionKeywords = true;
 | 
						|
      WantCXXNamedCasts = true;
 | 
						|
      WantRemainingKeywords = true;
 | 
						|
 | 
						|
      if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl())
 | 
						|
        if (Method->getClassInterface() &&
 | 
						|
            Method->getClassInterface()->getSuperClass())
 | 
						|
          Consumer.addKeywordResult("super");
 | 
						|
 | 
						|
      break;
 | 
						|
 | 
						|
    case Sema::CTC_NoKeywords:
 | 
						|
      break;
 | 
						|
 | 
						|
    case Sema::CTC_Type:
 | 
						|
      WantTypeSpecifiers = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    case Sema::CTC_ObjCMessageReceiver:
 | 
						|
      Consumer.addKeywordResult("super");
 | 
						|
      // Fall through to handle message receivers like expressions.
 | 
						|
 | 
						|
    case Sema::CTC_Expression:
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus)
 | 
						|
        WantTypeSpecifiers = true;
 | 
						|
      WantExpressionKeywords = true;
 | 
						|
      // Fall through to get C++ named casts.
 | 
						|
 | 
						|
    case Sema::CTC_CXXCasts:
 | 
						|
      WantCXXNamedCasts = true;
 | 
						|
      break;
 | 
						|
 | 
						|
    case Sema::CTC_ObjCPropertyLookup:
 | 
						|
      // FIXME: Add "isa"?
 | 
						|
      break;
 | 
						|
 | 
						|
    case Sema::CTC_MemberLookup:
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus)
 | 
						|
        Consumer.addKeywordResult("template");
 | 
						|
      break;
 | 
						|
 | 
						|
    case Sema::CTC_ObjCIvarLookup:
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (WantTypeSpecifiers) {
 | 
						|
    // Add type-specifier keywords to the set of results.
 | 
						|
    const char *CTypeSpecs[] = {
 | 
						|
      "char", "const", "double", "enum", "float", "int", "long", "short",
 | 
						|
      "signed", "struct", "union", "unsigned", "void", "volatile", 
 | 
						|
      "_Complex", "_Imaginary",
 | 
						|
      // storage-specifiers as well
 | 
						|
      "extern", "inline", "static", "typedef"
 | 
						|
    };
 | 
						|
 | 
						|
    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
 | 
						|
    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
 | 
						|
      Consumer.addKeywordResult(CTypeSpecs[I]);
 | 
						|
 | 
						|
    if (SemaRef.getLangOptions().C99)
 | 
						|
      Consumer.addKeywordResult("restrict");
 | 
						|
    if (SemaRef.getLangOptions().Bool || SemaRef.getLangOptions().CPlusPlus)
 | 
						|
      Consumer.addKeywordResult("bool");
 | 
						|
    else if (SemaRef.getLangOptions().C99)
 | 
						|
      Consumer.addKeywordResult("_Bool");
 | 
						|
    
 | 
						|
    if (SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
      Consumer.addKeywordResult("class");
 | 
						|
      Consumer.addKeywordResult("typename");
 | 
						|
      Consumer.addKeywordResult("wchar_t");
 | 
						|
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus0x) {
 | 
						|
        Consumer.addKeywordResult("char16_t");
 | 
						|
        Consumer.addKeywordResult("char32_t");
 | 
						|
        Consumer.addKeywordResult("constexpr");
 | 
						|
        Consumer.addKeywordResult("decltype");
 | 
						|
        Consumer.addKeywordResult("thread_local");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (SemaRef.getLangOptions().GNUMode)
 | 
						|
      Consumer.addKeywordResult("typeof");
 | 
						|
  }
 | 
						|
 | 
						|
  if (WantCXXNamedCasts && SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
    Consumer.addKeywordResult("const_cast");
 | 
						|
    Consumer.addKeywordResult("dynamic_cast");
 | 
						|
    Consumer.addKeywordResult("reinterpret_cast");
 | 
						|
    Consumer.addKeywordResult("static_cast");
 | 
						|
  }
 | 
						|
 | 
						|
  if (WantExpressionKeywords) {
 | 
						|
    Consumer.addKeywordResult("sizeof");
 | 
						|
    if (SemaRef.getLangOptions().Bool || SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
      Consumer.addKeywordResult("false");
 | 
						|
      Consumer.addKeywordResult("true");
 | 
						|
    }
 | 
						|
 | 
						|
    if (SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
      const char *CXXExprs[] = {
 | 
						|
        "delete", "new", "operator", "throw", "typeid"
 | 
						|
      };
 | 
						|
      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
 | 
						|
      for (unsigned I = 0; I != NumCXXExprs; ++I)
 | 
						|
        Consumer.addKeywordResult(CXXExprs[I]);
 | 
						|
 | 
						|
      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
 | 
						|
          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
 | 
						|
        Consumer.addKeywordResult("this");
 | 
						|
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus0x) {
 | 
						|
        Consumer.addKeywordResult("alignof");
 | 
						|
        Consumer.addKeywordResult("nullptr");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (WantRemainingKeywords) {
 | 
						|
    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
 | 
						|
      // Statements.
 | 
						|
      const char *CStmts[] = {
 | 
						|
        "do", "else", "for", "goto", "if", "return", "switch", "while" };
 | 
						|
      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
 | 
						|
      for (unsigned I = 0; I != NumCStmts; ++I)
 | 
						|
        Consumer.addKeywordResult(CStmts[I]);
 | 
						|
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
        Consumer.addKeywordResult("catch");
 | 
						|
        Consumer.addKeywordResult("try");
 | 
						|
      }
 | 
						|
 | 
						|
      if (S && S->getBreakParent())
 | 
						|
        Consumer.addKeywordResult("break");
 | 
						|
 | 
						|
      if (S && S->getContinueParent())
 | 
						|
        Consumer.addKeywordResult("continue");
 | 
						|
 | 
						|
      if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
 | 
						|
        Consumer.addKeywordResult("case");
 | 
						|
        Consumer.addKeywordResult("default");
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
        Consumer.addKeywordResult("namespace");
 | 
						|
        Consumer.addKeywordResult("template");
 | 
						|
      }
 | 
						|
 | 
						|
      if (S && S->isClassScope()) {
 | 
						|
        Consumer.addKeywordResult("explicit");
 | 
						|
        Consumer.addKeywordResult("friend");
 | 
						|
        Consumer.addKeywordResult("mutable");
 | 
						|
        Consumer.addKeywordResult("private");
 | 
						|
        Consumer.addKeywordResult("protected");
 | 
						|
        Consumer.addKeywordResult("public");
 | 
						|
        Consumer.addKeywordResult("virtual");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (SemaRef.getLangOptions().CPlusPlus) {
 | 
						|
      Consumer.addKeywordResult("using");
 | 
						|
 | 
						|
      if (SemaRef.getLangOptions().CPlusPlus0x)
 | 
						|
        Consumer.addKeywordResult("static_assert");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Try to "correct" a typo in the source code by finding
 | 
						|
/// visible declarations whose names are similar to the name that was
 | 
						|
/// present in the source code.
 | 
						|
///
 | 
						|
/// \param TypoName the \c DeclarationNameInfo structure that contains
 | 
						|
/// the name that was present in the source code along with its location.
 | 
						|
///
 | 
						|
/// \param LookupKind the name-lookup criteria used to search for the name.
 | 
						|
///
 | 
						|
/// \param S the scope in which name lookup occurs.
 | 
						|
///
 | 
						|
/// \param SS the nested-name-specifier that precedes the name we're
 | 
						|
/// looking for, if present.
 | 
						|
///
 | 
						|
/// \param MemberContext if non-NULL, the context in which to look for
 | 
						|
/// a member access expression.
 | 
						|
///
 | 
						|
/// \param EnteringContext whether we're entering the context described by
 | 
						|
/// the nested-name-specifier SS.
 | 
						|
///
 | 
						|
/// \param CTC The context in which typo correction occurs, which impacts the
 | 
						|
/// set of keywords permitted.
 | 
						|
///
 | 
						|
/// \param OPT when non-NULL, the search for visible declarations will
 | 
						|
/// also walk the protocols in the qualified interfaces of \p OPT.
 | 
						|
///
 | 
						|
/// \returns a \c TypoCorrection containing the corrected name if the typo
 | 
						|
/// along with information such as the \c NamedDecl where the corrected name
 | 
						|
/// was declared, and any additional \c NestedNameSpecifier needed to access
 | 
						|
/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
 | 
						|
TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
 | 
						|
                                 Sema::LookupNameKind LookupKind,
 | 
						|
                                 Scope *S, CXXScopeSpec *SS,
 | 
						|
                                 DeclContext *MemberContext,
 | 
						|
                                 bool EnteringContext,
 | 
						|
                                 CorrectTypoContext CTC,
 | 
						|
                                 const ObjCObjectPointerType *OPT) {
 | 
						|
  if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking)
 | 
						|
    return TypoCorrection();
 | 
						|
 | 
						|
  // We only attempt to correct typos for identifiers.
 | 
						|
  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
 | 
						|
  if (!Typo)
 | 
						|
    return TypoCorrection();
 | 
						|
 | 
						|
  // If the scope specifier itself was invalid, don't try to correct
 | 
						|
  // typos.
 | 
						|
  if (SS && SS->isInvalid())
 | 
						|
    return TypoCorrection();
 | 
						|
 | 
						|
  // Never try to correct typos during template deduction or
 | 
						|
  // instantiation.
 | 
						|
  if (!ActiveTemplateInstantiations.empty())
 | 
						|
    return TypoCorrection();
 | 
						|
 | 
						|
  NamespaceSpecifierSet Namespaces(Context, CurContext);
 | 
						|
 | 
						|
  TypoCorrectionConsumer Consumer(*this, Typo);
 | 
						|
 | 
						|
  // Perform name lookup to find visible, similarly-named entities.
 | 
						|
  bool IsUnqualifiedLookup = false;
 | 
						|
  if (MemberContext) {
 | 
						|
    LookupVisibleDecls(MemberContext, LookupKind, Consumer);
 | 
						|
 | 
						|
    // Look in qualified interfaces.
 | 
						|
    if (OPT) {
 | 
						|
      for (ObjCObjectPointerType::qual_iterator
 | 
						|
             I = OPT->qual_begin(), E = OPT->qual_end();
 | 
						|
           I != E; ++I)
 | 
						|
        LookupVisibleDecls(*I, LookupKind, Consumer);
 | 
						|
    }
 | 
						|
  } else if (SS && SS->isSet()) {
 | 
						|
    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
 | 
						|
    if (!DC)
 | 
						|
      return TypoCorrection();
 | 
						|
 | 
						|
    // Provide a stop gap for files that are just seriously broken.  Trying
 | 
						|
    // to correct all typos can turn into a HUGE performance penalty, causing
 | 
						|
    // some files to take minutes to get rejected by the parser.
 | 
						|
    if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
 | 
						|
      return TypoCorrection();
 | 
						|
    ++TyposCorrected;
 | 
						|
 | 
						|
    LookupVisibleDecls(DC, LookupKind, Consumer);
 | 
						|
  } else {
 | 
						|
    IsUnqualifiedLookup = true;
 | 
						|
    UnqualifiedTyposCorrectedMap::iterator Cached
 | 
						|
      = UnqualifiedTyposCorrected.find(Typo);
 | 
						|
    if (Cached == UnqualifiedTyposCorrected.end()) {
 | 
						|
      // Provide a stop gap for files that are just seriously broken.  Trying
 | 
						|
      // to correct all typos can turn into a HUGE performance penalty, causing
 | 
						|
      // some files to take minutes to get rejected by the parser.
 | 
						|
      if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
 | 
						|
        return TypoCorrection();
 | 
						|
 | 
						|
      // For unqualified lookup, look through all of the names that we have
 | 
						|
      // seen in this translation unit.
 | 
						|
      for (IdentifierTable::iterator I = Context.Idents.begin(),
 | 
						|
                                  IEnd = Context.Idents.end();
 | 
						|
           I != IEnd; ++I)
 | 
						|
        Consumer.FoundName(I->getKey());
 | 
						|
 | 
						|
      // Walk through identifiers in external identifier sources.
 | 
						|
      if (IdentifierInfoLookup *External
 | 
						|
                              = Context.Idents.getExternalIdentifierLookup()) {
 | 
						|
        llvm::OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
 | 
						|
        do {
 | 
						|
          StringRef Name = Iter->Next();
 | 
						|
          if (Name.empty())
 | 
						|
            break;
 | 
						|
 | 
						|
          Consumer.FoundName(Name);
 | 
						|
        } while (true);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Use the cached value, unless it's a keyword. In the keyword case, we'll
 | 
						|
      // end up adding the keyword below.
 | 
						|
      if (!Cached->second)
 | 
						|
        return TypoCorrection();
 | 
						|
 | 
						|
      if (!Cached->second.isKeyword())
 | 
						|
        Consumer.addCorrection(Cached->second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AddKeywordsToConsumer(*this, Consumer, S,  CTC);
 | 
						|
 | 
						|
  // If we haven't found anything, we're done.
 | 
						|
  if (Consumer.empty()) {
 | 
						|
    // If this was an unqualified lookup, note that no correction was found.
 | 
						|
    if (IsUnqualifiedLookup)
 | 
						|
      (void)UnqualifiedTyposCorrected[Typo];
 | 
						|
 | 
						|
    return TypoCorrection();
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that the user typed at least 3 characters for each correction
 | 
						|
  // made. Otherwise, we don't even both looking at the results.
 | 
						|
  unsigned ED = Consumer.getBestEditDistance();
 | 
						|
  if (ED > 0 && Typo->getName().size() / ED < 3) {
 | 
						|
    // If this was an unqualified lookup, note that no correction was found.
 | 
						|
    if (IsUnqualifiedLookup)
 | 
						|
      (void)UnqualifiedTyposCorrected[Typo];
 | 
						|
 | 
						|
    return TypoCorrection();
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the NestedNameSpecifiers for the KnownNamespaces
 | 
						|
  if (getLangOptions().CPlusPlus) {
 | 
						|
    // Load any externally-known namespaces.
 | 
						|
    if (ExternalSource && !LoadedExternalKnownNamespaces) {
 | 
						|
      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
 | 
						|
      LoadedExternalKnownNamespaces = true;
 | 
						|
      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
 | 
						|
      for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
 | 
						|
        KnownNamespaces[ExternalKnownNamespaces[I]] = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (llvm::DenseMap<NamespaceDecl*, bool>::iterator 
 | 
						|
           KNI = KnownNamespaces.begin(),
 | 
						|
           KNIEnd = KnownNamespaces.end();
 | 
						|
         KNI != KNIEnd; ++KNI)
 | 
						|
      Namespaces.AddNamespace(KNI->first);
 | 
						|
  }
 | 
						|
 | 
						|
  // Weed out any names that could not be found by name lookup.
 | 
						|
  llvm::SmallPtrSet<IdentifierInfo*, 16> QualifiedResults;
 | 
						|
  LookupResult TmpRes(*this, TypoName, LookupKind);
 | 
						|
  TmpRes.suppressDiagnostics();
 | 
						|
  while (!Consumer.empty()) {
 | 
						|
    TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
 | 
						|
    unsigned ED = DI->first;
 | 
						|
    for (TypoCorrectionConsumer::result_iterator I = DI->second->begin(),
 | 
						|
                                              IEnd = DI->second->end();
 | 
						|
         I != IEnd; /* Increment in loop. */) {
 | 
						|
      // If the item already has been looked up or is a keyword, keep it
 | 
						|
      if (I->second.isResolved()) {
 | 
						|
        ++I;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Perform name lookup on this name.
 | 
						|
      IdentifierInfo *Name = I->second.getCorrectionAsIdentifierInfo();
 | 
						|
      LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
 | 
						|
                                EnteringContext, CTC);
 | 
						|
 | 
						|
      switch (TmpRes.getResultKind()) {
 | 
						|
      case LookupResult::NotFound:
 | 
						|
      case LookupResult::NotFoundInCurrentInstantiation:
 | 
						|
        QualifiedResults.insert(Name);
 | 
						|
        // We didn't find this name in our scope, or didn't like what we found;
 | 
						|
        // ignore it.
 | 
						|
        {
 | 
						|
          TypoCorrectionConsumer::result_iterator Next = I;
 | 
						|
          ++Next;
 | 
						|
          DI->second->erase(I);
 | 
						|
          I = Next;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case LookupResult::Ambiguous:
 | 
						|
        // We don't deal with ambiguities.
 | 
						|
        return TypoCorrection();
 | 
						|
 | 
						|
      case LookupResult::FoundOverloaded: {
 | 
						|
        // Store all of the Decls for overloaded symbols
 | 
						|
        for (LookupResult::iterator TRD = TmpRes.begin(),
 | 
						|
                                 TRDEnd = TmpRes.end();
 | 
						|
             TRD != TRDEnd; ++TRD)
 | 
						|
          I->second.addCorrectionDecl(*TRD);
 | 
						|
        ++I;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case LookupResult::Found:
 | 
						|
      case LookupResult::FoundUnresolvedValue:
 | 
						|
        I->second.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
 | 
						|
        ++I;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (DI->second->empty())
 | 
						|
      Consumer.erase(DI);
 | 
						|
    else if (!getLangOptions().CPlusPlus || QualifiedResults.empty() || !ED)
 | 
						|
      // If there are results in the closest possible bucket, stop
 | 
						|
      break;
 | 
						|
 | 
						|
    // Only perform the qualified lookups for C++
 | 
						|
    if (getLangOptions().CPlusPlus) {
 | 
						|
      TmpRes.suppressDiagnostics();
 | 
						|
      for (llvm::SmallPtrSet<IdentifierInfo*,
 | 
						|
                             16>::iterator QRI = QualifiedResults.begin(),
 | 
						|
                                        QRIEnd = QualifiedResults.end();
 | 
						|
           QRI != QRIEnd; ++QRI) {
 | 
						|
        for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
 | 
						|
                                          NIEnd = Namespaces.end();
 | 
						|
             NI != NIEnd; ++NI) {
 | 
						|
          DeclContext *Ctx = NI->DeclCtx;
 | 
						|
          unsigned QualifiedED = ED + NI->EditDistance;
 | 
						|
 | 
						|
          // Stop searching once the namespaces are too far away to create
 | 
						|
          // acceptable corrections for this identifier (since the namespaces
 | 
						|
          // are sorted in ascending order by edit distance)
 | 
						|
          if (QualifiedED > Consumer.getMaxEditDistance()) break;
 | 
						|
 | 
						|
          TmpRes.clear();
 | 
						|
          TmpRes.setLookupName(*QRI);
 | 
						|
          if (!LookupQualifiedName(TmpRes, Ctx)) continue;
 | 
						|
 | 
						|
          switch (TmpRes.getResultKind()) {
 | 
						|
          case LookupResult::Found:
 | 
						|
          case LookupResult::FoundUnresolvedValue:
 | 
						|
            Consumer.addName((*QRI)->getName(), TmpRes.getAsSingle<NamedDecl>(),
 | 
						|
                             QualifiedED, NI->NameSpecifier);
 | 
						|
            break;
 | 
						|
          case LookupResult::FoundOverloaded: {
 | 
						|
            TypoCorrection corr(&Context.Idents.get((*QRI)->getName()), NULL,
 | 
						|
                                NI->NameSpecifier, QualifiedED);
 | 
						|
            for (LookupResult::iterator TRD = TmpRes.begin(),
 | 
						|
                                     TRDEnd = TmpRes.end();
 | 
						|
                 TRD != TRDEnd; ++TRD)
 | 
						|
              corr.addCorrectionDecl(*TRD);
 | 
						|
            Consumer.addCorrection(corr);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          case LookupResult::NotFound:
 | 
						|
          case LookupResult::NotFoundInCurrentInstantiation:
 | 
						|
          case LookupResult::Ambiguous:
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    QualifiedResults.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // No corrections remain...
 | 
						|
  if (Consumer.empty()) return TypoCorrection();
 | 
						|
 | 
						|
  TypoResultsMap &BestResults = *Consumer.begin()->second;
 | 
						|
  ED = Consumer.begin()->first;
 | 
						|
 | 
						|
  if (ED > 0 && Typo->getName().size() / ED < 3) {
 | 
						|
    // If this was an unqualified lookup, note that no correction was found.
 | 
						|
    if (IsUnqualifiedLookup)
 | 
						|
      (void)UnqualifiedTyposCorrected[Typo];
 | 
						|
 | 
						|
    return TypoCorrection();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have multiple possible corrections, eliminate the ones where we
 | 
						|
  // added namespace qualifiers to try to resolve the ambiguity (and to favor
 | 
						|
  // corrections without additional namespace qualifiers)
 | 
						|
  if (getLangOptions().CPlusPlus && BestResults.size() > 1) {
 | 
						|
    TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
 | 
						|
    for (TypoCorrectionConsumer::result_iterator I = DI->second->begin(),
 | 
						|
                                              IEnd = DI->second->end();
 | 
						|
         I != IEnd; /* Increment in loop. */) {
 | 
						|
      if (I->second.getCorrectionSpecifier() != NULL) {
 | 
						|
        TypoCorrectionConsumer::result_iterator Cur = I;
 | 
						|
        ++I;
 | 
						|
        DI->second->erase(Cur);
 | 
						|
      } else ++I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If only a single name remains, return that result.
 | 
						|
  if (BestResults.size() == 1) {
 | 
						|
    const llvm::StringMapEntry<TypoCorrection> &Correction = *(BestResults.begin());
 | 
						|
    const TypoCorrection &Result = Correction.second;
 | 
						|
 | 
						|
    // Don't correct to a keyword that's the same as the typo; the keyword
 | 
						|
    // wasn't actually in scope.
 | 
						|
    if (ED == 0 && Result.isKeyword()) return TypoCorrection();
 | 
						|
 | 
						|
    // Record the correction for unqualified lookup.
 | 
						|
    if (IsUnqualifiedLookup)
 | 
						|
      UnqualifiedTyposCorrected[Typo] = Result;
 | 
						|
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  else if (BestResults.size() > 1 && CTC == CTC_ObjCMessageReceiver
 | 
						|
           && BestResults["super"].isKeyword()) {
 | 
						|
    // Prefer 'super' when we're completing in a message-receiver
 | 
						|
    // context.
 | 
						|
 | 
						|
    // Don't correct to a keyword that's the same as the typo; the keyword
 | 
						|
    // wasn't actually in scope.
 | 
						|
    if (ED == 0) return TypoCorrection();
 | 
						|
 | 
						|
    // Record the correction for unqualified lookup.
 | 
						|
    if (IsUnqualifiedLookup)
 | 
						|
      UnqualifiedTyposCorrected[Typo] = BestResults["super"];
 | 
						|
 | 
						|
    return BestResults["super"];
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsUnqualifiedLookup)
 | 
						|
    (void)UnqualifiedTyposCorrected[Typo];
 | 
						|
 | 
						|
  return TypoCorrection();
 | 
						|
}
 | 
						|
 | 
						|
void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
 | 
						|
  if (!CDecl) return;
 | 
						|
 | 
						|
  if (isKeyword())
 | 
						|
    CorrectionDecls.clear();
 | 
						|
 | 
						|
  CorrectionDecls.push_back(CDecl);
 | 
						|
 | 
						|
  if (!CorrectionName)
 | 
						|
    CorrectionName = CDecl->getDeclName();
 | 
						|
}
 | 
						|
 | 
						|
std::string TypoCorrection::getAsString(const LangOptions &LO) const {
 | 
						|
  if (CorrectionNameSpec) {
 | 
						|
    std::string tmpBuffer;
 | 
						|
    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
 | 
						|
    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
 | 
						|
    return PrefixOStream.str() + CorrectionName.getAsString();
 | 
						|
  }
 | 
						|
 | 
						|
  return CorrectionName.getAsString();
 | 
						|
}
 |